• login
  • register
  • lost your password?

Nonequilibrium Solute Transport

  • sitemap
  • mail to me
  • add to bookmarks
  • Home
  • News
  • Programs
  • Support
  • Downloads
  • About us
  • Contacts
  • Home
  • Programs
  • HYDRUS-1D
  • Description
  • References
  • Tutorials
  • Library of Projects
  • Direct
  • Inverse
  • Atmospheric BCs
  • Infiltration
  • Meteo BCs
  • Nonequilibrium Solute Transport
  • Bacteria Transport
  • Nanotube Transport
  • Roots Uptake
  • HP1
  • Unsatchem
  • Portugal
  • Dual-Permeability
  • Centrifuge
  • C-Ride Examples
  • Colloids and Theta Transients
  • Colloid-Facilitated Solute Transport
  • Isotopes
  • Root Growth
  • Freezing/Thawing
  • H1D Overland Flow Module
  • Cosmic Ray Neutron Probe
  • Tillage Mixing
  • HP1 Module
  • UnsatChem Module
  • Package for MODFLOW

Home / Programs / HYDRUS-1D / Library of Projects / Nonequilibrium Solute Transport

Hydrus-1D Projects - VZJ

  • Project Group: VZJ
  • Description: Examples from Šimůnek et al. (2008) demonstrating the use of Hydrus-1D to simulate nonequilibrium solute transport
  • Availability: Download now (5.4 MB)
Project Description
DPM-MIM1 Dual-Permeability Model with MIM, Figure 7
L=10 cm, q_m = 3 cm/d, q_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.1 d-1, omega_dpm = 0.1 d-1, theta_im,m = 0.1 and f_m=0.8
DPM-MIM2 Dual-Permeability Model with MIM, Figure 7
L=10 cm, q_m = 3 cm/d, q_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.1 d-1, omega_dpm = 0.1 d-1, theta_im,m = 0.3 and f_m=0.4
DPM-MIM3 Dual-Permeability Model with MIM, Figure 7
L=10 cm, q_m = 3 cm/d, q_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.1 d-1, omega_dpm = 0.1 d-1, theta_im,m = 0.4 and f_m=0.2
DPM-TSM1 Dual-Permeability Model with Two-Site Sorption, Figure 12
L=10 cm, pulse duration = 10 d, Ks_m = 3 cm/d, Ks_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.1 d-1, alfa_ch,m = alfa_ch,f = 0.1, and f_f = f_m = 1
DPM-TSM2 Dual-Permeability Model with Two-Site Sorption, Figure 12
L=10 cm, pulse duration = 10 d, Ks_m = 3 cm/d, Ks_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.1 d-1, alfa_ch,m = alfa_ch,f = 0.1, and f_f = f_m = 0.7
DPM-TSM3 Dual-Permeability Model with Two-Site Sorption, Figure 12
L=10 cm, pulse duration = 10 d, Ks_m = 3 cm/d, Ks_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.1 d-1, alfa_ch,m = alfa_ch,f = 0.1, and f_f = f_m = 0.4
DPM1 Dual-Permeability Model, Figure 6
L=10 cm, q_m = 3 cm/d, q_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.0 d-1
DPM2 Dual-Permeability Model, Figure 6
L=10 cm, q_m = 3 cm/d, q_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.1 d-1
DPM3 Dual-Permeability Model, Figure 6
L=10 cm, q_m = 3 cm/d, q_f = 30 cm/d, theta = theta_m = theta_f = 0.5, w=0.1, disp_m = disp_f = 1 cm, Kd_m = Kd_f = 1 cm3/g, rb= 1.5 g/cm3, omega_dp = 0.5 d-1
MIM0 Mobile-Immobile Water Model, Figure 5
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, omega_mim = 0.0 d-1
MIM1 Mobile-Immobile Water Model, Figure 5a
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, omega_mim = 0.1 d-1
MIM1a Mobile-Immobile Water Model
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.4, omega_mim = 0.1 d-1
MIM2 Mobile-Immobile Water Model, Figure 5ab
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, omega_mim = 0.5 d-1
MIM2a Mobile-Immobile Water Model, Figure 5b
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.2, theta_im = 0.3, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.4, omega_mim = 0.5 d-1
MIM2b Mobile-Immobile Water Model, Figure 5ab
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, omega_mim = 0.5 d-1
MIM2c Mobile-Immobile Water Model, Figure 5b
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.4, theta_im = 0.1, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.8, omega_mim = 0.5 d-1
MIM3 Mobile-Immobile Water Model, Figure 5a
L=10 cm, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, omega_mim = 10 d-1
MIMTSM1 Dual-Porosity Model with One Kinetic Site, Figure 11a
L=10 cm, pulse duration = 10 d, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, alfa = 0.1 d-1, alfa_ch = 0.1 d-1 and f_em = 1.0
MIMTSM2 Dual-Porosity Model with One Kinetic Site, Figure 11a
L=10 cm, pulse duration = 10 d, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, alfa = 0.1 d-1, alfa_ch = 0.1 d-1 and f_em = 0.7
MIMTSM3 Dual-Porosity Model with One Kinetic Site, Figure 11ab
L=10 cm, pulse duration = 10 d, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, alfa = 0.1 d-1, alfa_ch = 0.1 d-1 and f_em = 0.4
MIMTSM3a Dual-Porosity Model with One Kinetic Site, Figure 11a
L=10 cm, pulse duration = 10 d, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, alfa = 0.1 d-1, f_em = 0.4, alfa_ch = 0.5 d-1
MIMTSM3b Dual-Porosity Model with One Kinetic Site, Figure 11a
L=10 cm, pulse duration = 10 d, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, alfa = 0.1 d-1, f_em = 0.4, alfa_ch = 10 d-1
MIMTSM4 Dual-Porosity Model with One Kinetic Site, Figure 11b
L=10 cm, pulse duration = 10 d, q = 3 cm/d, theta = 0.5, theta_mo = 0.3, theta_im = 0.2, disp_mo = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f_mo = 0.6, alfa = 0.1 d-1, f_em = 0.4, alfa_ch = 0.1 d-1
OSM1 One Kinetic Site Model, Figure 8
L=10 cm, q = 5 cm/d, theta = 0.5, l = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, alfa_k = 0.1 d-1
OSM2 One Kinetic Site Model, Figure 8
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, alfa_k = 0.5 d-1
OSM3 One Kinetic Site Model, Figure 8
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, alfa_k = 10 d-1
TKSM1 Two Kinetic Sites Model, Figure 10
L=10 cm, pulse duration = 10 d, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, k_a1 = 1.5 d-1, k_d1 = 0.5 d-1, k_a2 = 0.0 d-1, k_d2 = 0.0 d-1
TKSM2 Two Kinetic Sites Model, Figure 10
L=10 cm, pulse duration = 10 d, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, k_a1 = 1.5 d-1, k_d1 = 0.5 d-1, k_a2 = 0.3 d-1, k_d2 = 0.1 d-1
TKSM3 Two Kinetic Sites Model, Figure 10
L=10 cm, pulse duration = 10 d, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, k_a1 = 1.5 d-1, k_d1 = 0.5 d-1, k_a2 = 3.0 d-1, k_d2 = 1.0 d-1
TSM1 Two Site Kinetic Model, Figure 9a
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f = 0.4, and alfa_k = 0.1 d-1
TSM2 Two Site Kinetic Model, Figure 9a
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f = 0.4, and alfa_k = 0.5 d-1
TSM2a Two Site Kinetic Model, Figure 9b
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f = 0.1, alfa_k = 0.5 d-1
TSM2b Two Site Kinetic Model, Figure 9b
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f = 0.4, alfa_k = 0.5 d-1
TSM2c Two Site Kinetic Model, Figure 9b
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f = 0.8, alfa_k = 0.5 d-1
TSM3 Two Site Kinetic Model, Figure 9a
L=10 cm, q = 5 cm/d, theta = 0.5, disp = 1 cm, Kd = 1 cm3/g, rb= 1.5 g/cm3, f = 0.4, and alfa_k = 10 d-1
Unif1 Uniform Transport Model, Figure 4a
L=10 cm, q = 5 cm/d, theta = 0.5, rb= 1.5 g/cm3, Kd = 1 cm3/g, disp = 0.1 cm
Unif2 Uniform Transport Model, Figure 4ab
L=10 cm, q = 5 cm/d, theta = 0.5, rb= 1.5 g/cm3, Kd = 1 cm3/g, disp = 1 cm
Unif2a Uniform Transport Model, Figure 4b
L=10 cm, q = 5 cm/d, theta = 0.5, rb= 1.5 g/cm3, Kd = 0 cm3/g, disp = 1 cm
Unif2b Uniform Transport Model, Figure 4b
L=10 cm, q = 5 cm/d, theta = 0.5, rb= 1.5 g/cm3, Kd = 3 cm3/g, disp = 1 cm
Unif3 Uniform Transport Model, Figure 4a
L=10 cm, q = 5 cm/d, theta = 0.5, rb= 1.5 g/cm3, Kd = 1 cm3/g, disp = 10 cm


References:

  • Šimůnek, J. and M. Th. van Genuchten, Modeling nonequilibrium flow and transport with HYDRUS, Vadose Zone Journal, doi:10.2136/VZJ2007.0074, Special Issue “Vadose Zone Modeling”, 7(2), 782-797, 2008. Download PDF (2MB).
 

Copyright © 2021, PC-Progress s.r.o. | powered by NetGenium