HYDRUS

WETLAND MODULE

VERSION 2

Manual

by

Günter Langergraber1 and Jirka Šimůnek2

March 2011

1 Institute for Sanitary Engineering and Water Pollution Control
BOKU - University of Natural Resources and Life Sciences, Vienna
Muthgasse 18, A-1190 Vienna, Austria

2 Department of Environmental Sciences
University of California Riverside
Riverside, CA, 92521, USA
Abstract

This report documents version 2 of the HYDRUS wetland module. In version 2, two biokinetic model formulations can be chosen: (1) CW2D (Langergraber and Šimůnek, 2005) and (2) CWM1 (Constructed Wetland Model #1) (Langergraber et al., 2009b). Aerobic and anoxic transformation and degradation processes for organic matter, nitrogen and phosphorus are considered in CW2D, whereas aerobic, anoxic and anaerobic processes for organic matter, nitrogen and sulphur are considered in CWM1.
DISCLAIMER

This report documents version 2 of the HYDRUS wetland module. The Wetland module was developed as a supplemental module of the HYDRUS software package, to model the biochemical transformation and degradation processes in subsurface wetlands. The software has been verified against selected test cases. However, no warranty is given that the program is completely error-free. If you do encounter problems with the code, find errors, or have suggestions for improvement, please contact one of the authors at

Günter Langergraber
Tel: +43-(0)1-47654-5814
Fax: +43-(0)1-368 99 49
Email: guenter.langergraber@boku.ac.at

Jirka Šimůnek
Tel/Fax: 1-951-827-7854
Email: jiri.simunek@ucr.edu
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Modeling of constructed wetlands</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Numerical models for SSF CWs</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>The Constructed Wetland Model N°1 (CWM1)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Description of the CW2D and CWM1 biokinetic models</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Principles</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>Matrix format and notation</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of CW2D and CWM1 components and processes</td>
<td>7</td>
</tr>
<tr>
<td>3.4</td>
<td>CW2D biokinetic model</td>
<td>9</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Stoichiometric matrix and reaction rates</td>
<td>9</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Model parameters</td>
<td>12</td>
</tr>
<tr>
<td>3.5</td>
<td>CWM1 biokinetic model</td>
<td>14</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Stoichiometric matrix and reaction rates</td>
<td>14</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Model parameters</td>
<td>17</td>
</tr>
<tr>
<td>3.6</td>
<td>When to use which biokinetic model?</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Version 2 of HYDRUS GUI</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Preliminary remarks</td>
<td>19</td>
</tr>
<tr>
<td>4.2</td>
<td>Pre-processing</td>
<td>20</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The "Solute Transport" window</td>
<td>20</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The "Solute Transport Parameters" window</td>
<td>21</td>
</tr>
<tr>
<td>4.2.3</td>
<td>The "Reaction Parameters" window</td>
<td>22</td>
</tr>
<tr>
<td>4.2.4</td>
<td>The "Constructed Wetland Model Parameters I" window</td>
<td>23</td>
</tr>
<tr>
<td>4.2.5</td>
<td>The "Constructed Wetland Model Parameters II" window</td>
<td>25</td>
</tr>
<tr>
<td>4.2.6</td>
<td>"Initial Conditions" on the Navigator Bar</td>
<td>26</td>
</tr>
<tr>
<td>4.3</td>
<td>Post-processing</td>
<td>27</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The "Results - Graphical Display" window</td>
<td>27</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The "Observation Nodes" window</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Examples</td>
<td>29</td>
</tr>
<tr>
<td>5.1</td>
<td>Pilot-scale vertical flow CW for wastewater treatment (Wetland 4)</td>
<td>29</td>
</tr>
<tr>
<td>5.2</td>
<td>Pilot-scale horizontal flow CW for wastewater treatment (Wetland 5)</td>
<td>35</td>
</tr>
</tbody>
</table>
5.2.1 System description and measured data .. 35
5.2.2 Model set-up .. 35
5.2.3 Simulation results .. 38
5.3 Applications of the HYDRUS wetland module .. 41

6 Input data .. 42
6.1 The 'options.in' input file .. 42

7 Output data ... 43
7.1 Format of the 'effluent.out' output file .. 43

8 List of examples .. 44

9 References .. 45
List of Figures

Figure 4.1: The "Domain types and Units" window ... 19
Figure 4.2: The "Solute Transport" window with a selection of the CW2D biokinetic model 20
Figure 4.3: The "Solute Transport" window with a selection of the CWM1 biokinetic model 21
Figure 4.4: The "Solute Transport Parameters" window for CWM1 (for length units in meters and time units in days) ... 22
Figure 4.5: The "Solute Transport Parameters" window for CW2D (for length units in meters and time units in days) ... 22
Figure 4.6: The "Reaction Parameters" window ... 23
Figure 4.7: The "Constructed Wetland Model (CW2D) Parameters I" window (for time units in days) .. 24
Figure 4.8: The "Constructed Wetland Model No1 (CWM1) Parameters I" window (for time units in days) .. 24
Figure 4.9: The "Constructed Wetland Model (CW2D) Parameters II" window (for time units in days) .. 25
Figure 4.10: The "Constructed Wetland Model No1 (CWM1) Parameters II" window (for time units in days) .. 25
Figure 4.11: "Initial Conditions" in the data tree of the Navigator Bar for CW2D (left) and CWM1 (right) .. 26
Figure 4.12: The "Import Initial Conditions" window for CWM1 ... 26
Figure 4.13: The main window of HYDRUS GUI for CW2D with the "Results - Graphical Display" section of the Navigator Bar open .. 27
Figure 4.14: The main window of HYDRUS GUI for CWM1 with the "Results - Graphical Display" section of the Navigator Bar open .. 27
Figure 4.15: The "Observation Nodes" window for CW2D ... 28
Figure 4.16: The "Observation Nodes" window for CWM1 ... 28
Figure 5.1: The "Copy Project" window ... 29
Figure 5.2: Selection of the biokinetic model in the "Solute Transport" window 29
Figure 5.3: Set up of diffusion coefficients in the "Solute Transport Parameters" window 30
Figure 5.4: Inflow concentrations in the "Time Variable Boundary Conditions" window 31
Figure 5.5: The "Default Domain Properties" window ... 31
Figure 5.6: The "Time Information" window ... 32
Figure 5.7: Concentrations of fermentable, readily biodegradable soluble COD (SF) at 2 depths (the Wetland 4 example) .. 32
Figure 5.8: Concentrations of nitrate nitrogen (SNO) at 3 depths (the Wetland 4 example) 33
Figure 5.9: Concentrations of heterotrophic bacteria (XH) at 5 depths (the Wetland 4 example)... 33
Figure 5.10: Concentrations of autotrophic bacteria (XA) at 5 depths (the Wetland 4 example). ... 34
Figure 5.11: Plan view of the HF CW showing sampling wells (left) and a cross-sectional view of one of five intermediate sampling wells (right) (Headley et al., 2005). 35
Figure 5.12: BOD₃ and NH₄ concentrations measured along the flow path of the HF CW (Headley et al., 2005). ... 35
Figure 5.13: Material distribution (right: inlet distribution zone = Material 2). 36
Figure 5.14: Root water uptake distribution... 36
Figure 5.15: The "Time Variable Boundary Conditions" window.. 37
Figure 5.16: The Ammonia NH4 "Reaction Parameters" window. .. 37
Figure 5.17: The Dissolved Oxygen "Reaction Parameters" window. 37
Figure 5.18: Cumulative Root Solute Uptake for Dissolved Oxygen.................................... 38
Figure 5.19: Dissolved Oxygen concentrations in the two-dimensional domain.................. 38
Figure 5.20: Dissolved Oxygen concentrations in a vertical cross section through the HF bed 0.5 m before the effluent... 39
Figure 5.21: NH4-N concentrations along the flow path in a depth of 50 cm in the HF bed. 39
Figure 5.22: Comparison of measured and simulated NH₄-N concentrations along the flow path in a depth of 50 cm of the HF bed. .. 39
Figure 5.23: Comparison of measured and simulated COD concentrations along the flow path in a depth of 50 cm of the HF bed. ... 40
List of Tables

Table 3.1: Gujer matrix describing process kinetics and stoichiometry for heterotrophic bacterial growth in an aerobic environment (adapted from Henze et al., 2000, using the notations of Corominas et al., 2010) ... 6
Table 3.2: Comparison of CW2D and CWM1 components ... 7
Table 3.3: Definitions of CW2D and CWM1 components in the liquid and solid phases 7
Table 3.4: Comparison of CW2D and CWM1 processes ... 8
Table 3.5: Stoichiometric coefficients for ammonium nitrogen ... 9
Table 3.6: Stoichiometric coefficients for inorganic phosphorus .. 9
Table 3.7: Stoichiometric matrix of reactions in CW2D (Langergraber and Šimůnek, 2005; see Table 3.10 for definitions of the stoichiometric coefficients) ... 10
Table 3.8: Reaction rates in CW2D (Langergraber and Šimůnek, 2005). .. 11
Table 3.9: Kinetic parameters in the CW2D biokinetic model (Langergraber and Šimůnek, 2005). ... 12
Table 3.10: Temperature dependences, stoichiometric parameters, composition parameters and parameters describing oxygen transfer in the CW2D biokinetic model (Langergraber and Šimůnek, 2005) ... 13
Table 3.11: Stoichiometric matrix of reactions in CWM1 (Langergraber et al., 2009; see Table 3.16 for definitions of the stoichiometric coefficients) ... 14
Table 3.12: Stoichiometric coefficients for ammonia nitrogen ... 15
Table 3.13: Reaction rates in CWM1 - part 1 (Langergraber et al., 2009). 15
Table 3.14: Reaction rates in CWM1 - part 2 (Langergraber et al., 2009). 16
Table 3.15: Kinetic parameters in the CWM1 biokinetic model (Langergraber et al., 2009b). 17
Table 3.16: Temperature dependences, stoichiometric parameters, composition parameters and parameters describing oxygen transfer in the CW2D biokinetic model (Langergraber et al., 2009b). ... 18
Table 3.17: Application of the biokinetic models for different applications 18
Table 4.1: Units of concentrations in the liquid and solid phases and of the bulk density 19
Table 4.2: Default values of diffusion coefficients for CW2D and CWM1 components (for length units in meters and time units in days). ... 22
Table 5.1: COD influent fractionation for organic matter components in CW2D and CWM1 for a total COD of 300 mg/L (values in mg/L) ... 30
Table 5.2: Influent concentrations (values in mg/L) .. 30
Table 5.3: Parameters for root water and solutes uptake ... 36
Table 6.1: Description of variables used in the 'options.in' input file ... 42
1 Introduction

Constructed Wetlands (CWs) are engineered water treatment systems that optimize the treatment processes found in natural environments. CWs are popular systems which efficiently treat different kinds of polluted water and are therefore sustainable environmentally friendly solutions. A large number of physical, chemical and biological processes are simultaneously active and mutually influence each other (e.g., Kadlec and Wallace, 2009). As complex systems, CWs for a long time have been considered as "black boxes". Only little effort has been made to understand the main processes leading to contaminant removal. Only recently, efforts have been made to understand the processes in CWs in more detail, and modern tools from environmental microbiology, plant biology, ecology, and molecular biology have been used for this purpose (e.g., Faulwetter et al., 2009).

During the last few years, models of different complexities have been developed for describing processes in SubSurface Flow (SSF) CWs. The main objective of numerical modeling of CWs is to obtain a better understanding of the processes governing the biological and chemical transformation and degradation processes, to provide insights into these "black box" systems, and last but not least, to evaluate and improve existing design criteria (Langergraber, 2008).

This report documents version 2 of the HYDRUS wetland module. Version 2 of the HYDRUS wetland module includes two biokinetic model formulations: (1) the CW2D module (Langergraber and Šimůnek, 2005), and/or (2) the CWM1 (Constructed Wetland Model #1) biokinetic model (Langergraber et al., 2009b). In CW2D, aerobic and anoxic transformation and degradation processes for organic matter, nitrogen and phosphorus are described, whereas in CWM1, aerobic, anoxic and anaerobic processes for organic matter, nitrogen and sulphur are considered. CWM1 has been developed with the main goal to provide a widely accepted model formulation for biochemical transformation and degradation processes in SSF CWs. The HYDRUS wetland module is the only implementation of a CW model that is currently publicly available.

Chapter 2 gives a brief overview of available numerical models for SSF CWs. Chapter 3 describes the CW2D and CWM1 biokinetic models, whereas Chapter 4 describes their implementation into HYDRUS. Chapter 5 describes two additional examples: Wetland 4 shows the startup of a simulation using the CWM1 biokinetic model and Wetland 5 the simulation of the effects of wetland plants. A description of additional input and output files is then provided in Chapters 6 and 7, respectively.

For detailed information about the CW2D and CWM1 biokinetic models, the reader is referred to the original papers, i.e., Langergraber and Šimůnek (2005) and Langergraber et al. (2009b), respectively. For detailed information on how to set-up models for SSF CWs in HYDRUS, the reader is referred to the manual of version 1 of the HYDRUS wetland module (Langergraber and Šimůnek, 2006). For general information on HYDRUS the reader is referred to Šimůnek et al. (2008), for detailed information on the software to the technical manual (Šimůnek et al., 2011).
2 Modeling of constructed wetlands

2.1 Numerical models for SSF CWs

No free water level is visible in SSF CWs and water flows either horizontally or vertically through the porous filter media. Horizontal Flow (HF) systems can be simulated when only water flow saturated conditions are considered. A series or network of continuously stirred tank reactors (CSTRs) is most frequently used to describe the hydraulics of these systems, and reactions are modeled with various complexities. For modeling vertical flow (VF) CWs with intermittent loading, transient variably-saturated flow models are required. Due to the intermittent loading, these systems are highly dynamic, adding to the complexity needed to model the overall system. Models applicable to VF CWs use either the Richards equation or other simplified approaches to describe variably-saturated flow.

The following list (Langergraber, 2011) summarizes process-based numerical models available for subsurface flow CWs, whereby only models with minimum complexity in describing water flow and/or biochemical processes are listed. More information on the models can be found in recently published review papers (Langergraber, 2008, 2010; and Langergraber et al., 2009a) and in the original references, respectively.

1. Complex flow models with transport of a single solute
 - Forquet et al. (2009): two-phase flow numerical model (based on finite-elements), simulating the parallel movement of air and water in a VF filter.

2. Reactive transport models for saturated flow conditions
 - Reactive transport models applicable only for constant flow rates:
 - Mayo and Bigambo (2005): only nitrogen transformation processes.
 - Wang et al. (2009): only nitrogen transformation processes.
 - Reactive transport models with a tanks-in-series approach for water flow:
 - Chen et al. (1999): only carbon transformation processes.
 - Reactive transport models coupled to a complex groundwater flow model:
 - PHWAT (Brovelli et al., 2009a,b): carbon and nitrogen transformation processes; a reaction model in the matrix notation based on ASMs, coupled with the groundwater flow model MODFLOW; an extension of MODFLOW for unsaturated zones is on the way to be implemented.
3. Reactive transport models for variably-saturated flow

- Reactive transport models with simplified approaches for simulating variably-saturated water flow:
 - McGechan et al. (2005): different horizontal layers to describe variably-saturated water flow; considers pools of organic matter, ammonium, nitrate and oxygen; microbiologically controlled transformations between these pools.
 - FITOVERT (Giraldi et al., 2010): different horizontal layers to describe variably-saturated water flow; a reaction model in the matrix notation based on ASMs describing carbon and nitrogen transformation processes, implemented in Matlab®.
 - Freire et al. (2009): combination of CSTRs and dead-zones to describe variably-saturated flow; description of the removal processes for the dye AO7 only.

- Reactive transport models coupled with flow models that use the Richards equation to describe variably-saturated water flow:
 - CW2D (Langergraber, 2001; Langergraber and Šimůnek, 2005): implemented in the HYDRUS software; a reaction model in the matrix notation based on ASMs describing carbon, nitrogen, and phosphorous transformation processes, it has most published applications.
 - Maier et al. (2009): implemented in the MIN3P flow and transport code; describes processes in CWs for the remediation of contaminated groundwater.

2.2 The Constructed Wetland Model N°1 (CWM1)

The Constructed Wetland Model N°1 (CWM1) is a general model describing biochemical transformation and degradation processes for organic matter, nitrogen, and sulphur in SSF CWs (Langergraber et al., 2009b). CWM1 has been published with the main goal to provide a widely accepted model formulation for biochemical transformation and degradation processes in CWs that can then be implemented in various simulation tools. CWM1 describes all relevant aerobic, anoxic, and anaerobic biokinetic processes occurring in HF and VF CWs that need to be considered in order to predict effluent concentrations of organic matter, nitrogen, and sulphur. 17 processes and 16 components (8 solute and 8 particulate components) are considered.

Version 2 of the HYDRUS wetland model provides the first available implementation of CWM1.
3 Description of the CW2D and CWM1 biokinetic models

3.1 Principles

In version 2 of the HYDRUS wetland module, two biokinetic models for describing the transformation and degradation processes are implemented:

1. CW2D (Langergraber and Šimůnek, 2005) was mainly developed for modeling VF systems and therefore includes only aerobic and anoxic transformation and degradation processes. These processes are described for the main constituents of wastewater, i.e., organic matter, nitrogen, and phosphorus.

2. CWM1 (Constructed Wetland Model #1, Langergraber et al., 2009b) was developed as a general model describing biochemical transformation and degradation processes for organic matter, nitrogen, and sulphur in HF and VF CWs. CWM1 describes all relevant aerobic, anoxic, and anaerobic biokinetic processes occurring in HF and VF CWs required to predict effluent concentrations of organic matter, nitrogen, and sulphur.

As the wastewater constituents considered in the CW2D and CWM1 biokinetic models are different, it has to be noted that no direct conversion between model components is possible and therefore provided by the HYDRUS GUI. The user is responsible for the correct use of the two biokinetic models.

3.2 Matrix format and notation

It is a common practice to present biokinetic models using the matrix notation introduced by the IWA (International Water Association) for ASMs (Henze et al., 2000). The Gujer matrix consists of 3 parts representing:

1. stoichiometry,
2. kinetic rate expressions, and
3. composition.

A simple model representing aerobic heterotrophic bacteria growth and decay (adapted from Henze et al., 2000) is chosen as an example to illustrate the use of the Gujer matrix. Table 3.1 describes two processes (growth and decay of heterotrophic bacteria) and three components (biomass, substrate, and dissolved oxygen). Bacteria need energy to integrate their carbon substrate and produce new biomass. Heterotrophs (X_{OHO}) find their energy and their carbon source in an organic substrate (S_B) and use dissolved oxygen (S_{O2}) as an electron acceptor under aerobic conditions. Consequently, only part of the substrate used by bacteria will directly contribute to biomass growth (1/Y_{OHO}), whereas the other part is oxidized to produce energy (1-1/Y_{OHO}).

In this example, the growth rate depends on the maximum growth rate of the heterotrophic biomass (\mu_{OHO,Max}), the biomass concentration (X_{OHO}), the availability of the substrate for the bacteria (S_B/(K_{SB,OHO}+S_B) where K_{SB,OHO} is the half-saturation coefficient for S_B), and the availability of electron acceptors (S_{O2}/(K_{SO2,OHO}+S_{O2}) where K_{SO2,OHO} is the half-saturation coefficient for S_{O2}). The ratios S_B/(K_{SB,OHO}+S_B) and S_{O2}/(K_{SO2,OHO}+S_{O2}) are the Monod equations used as a switching function for substrate, nutrients, alkalinity, and
electron acceptors. Similarly, when a process occurs only when a component is absent (e.g., dissolved oxygen in anoxic processes), the switching function takes the following form: \(K_{O_2,OH_0} / (K_{O_2,OH_0} + S_{O_2}) \).

The continuity check for every process is calculated by multiplying the stoichiometric coefficients by the correlated term in the composition matrix for every component and summing up for different processes (recalling that oxygen is negative COD, its coefficient must thus be multiplied by -1).

Table 3.1: Gujer matrix describing process kinetics and stoichiometry for heterotrophic bacterial growth in an aerobic environment (adapted from Henze et al., 2000, using the notations of Corominas et al., 2010)

<table>
<thead>
<tr>
<th>Component (i)</th>
<th>Continuity</th>
<th>Heterotrophic biomass (mg COD/L)</th>
<th>Substrate (mg COD/L)</th>
<th>Dissolved oxygen (mg COD/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Growth</td>
<td>1</td>
<td>(\mu_{OH_0,Max}) (\frac{S_B}{K_{SB,OH_0} + S_B}) (\frac{S_{O_2}}{K_{SO_2,OH_0} + S_{O_2}}) (X_{OH_0})</td>
<td>(\frac{1}{Y_{OH_0}}) (\frac{S_B}{K_{SB,OH_0} + S_B}) (\frac{S_{O_2}}{K_{SO_2,OH_0} + S_{O_2}})</td>
<td>(\mu_{OH_0,Max}) (\frac{S_B}{K_{SB,OH_0} + S_B}) (\frac{S_{O_2}}{K_{SO_2,OH_0} + S_{O_2}}) (X_{OH_0})</td>
</tr>
<tr>
<td>2. Decay</td>
<td>-1</td>
<td>(b_{OH_0}) (X_{OH_0})</td>
<td>(b_{OH_0}) (X_{OH_0})</td>
<td>(b_{OH_0}) (X_{OH_0})</td>
</tr>
</tbody>
</table>

Stoichiometric parameters: \(Y_{OH_0} \) = Heterotrophic yield coefficient
Kinetic parameters: \(\mu_{OH_0,Max} \) = Maximum heterotrophic growth rate
\(K_{SB,OH_0} \) = Half-saturation coefficient for substrate
\(K_{SO_2,OH_0} \) = Half-saturation coefficient for oxygen
\(b_{OH_0} \) = Heterotrophic decay rate

The reaction rates for the three components are calculated by summing up the products of the stoichiometric factor and the process rate over the different processes. For the example described above the reaction rates are calculated as follows:

\[
\begin{align*}
 r_{OH_0} &= \mu_{OH_0,Max} \frac{S_B}{K_{SB,OH_0} + S_B} \frac{S_{O_2}}{K_{SO_2,OH_0} + S_{O_2}} X_{OH_0} - b_{OH_0} X_{OH_0} \\
 r_B &= -\frac{1}{Y_{OH_0}} \mu_{OH_0,Max} \frac{S_B}{K_{SB,OH_0} + S_B} \frac{S_{O_2}}{K_{SO_2,OH_0} + S_{O_2}} X_{OH_0} \\
 r_{SO_2} &= -\left(1 - \frac{1}{Y_{OH_0}}\right) \mu_{OH_0,Max} \frac{S_B}{K_{SB,OH_0} + S_B} \frac{S_{O_2}}{K_{SO_2,OH_0} + S_{O_2}} X_{OH_0} - b_{OH_0} X_{OH_0}
\end{align*}
\]
3.3 Comparison of CW2D and CWM1 components and processes

Table 3.2 compares the components defined in the CW2D and CWM1 model formulations. As described before, both biokinetic models describe processes affecting organic matter and nitrogen. Additionally, CW2D also describes processes affecting phosphorus, whereas CWM1 describes processes affecting sulphur.

Table 3.2: Comparison of CW2D and CWM1 components.

<table>
<thead>
<tr>
<th>Component</th>
<th>CW2D (Langergraber and Šimůnek, 2005)</th>
<th>CWM1 (Langergraber et al., 2009b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter, nitrogen, phosphorus</td>
<td>Soluble components</td>
<td></td>
</tr>
<tr>
<td>2. CR: Readily biodegradable soluble COD.</td>
<td>2. SF: Fermentable, readily biodegradable soluble COD.</td>
<td></td>
</tr>
<tr>
<td>4. CI: Inert soluble COD.</td>
<td>4. SI: Inert soluble COD.</td>
<td></td>
</tr>
<tr>
<td>8. NH4N: Ammonium and ammonia nitrogen.</td>
<td>8. SH2S: Dihydrogensulphide sulphur.</td>
<td></td>
</tr>
<tr>
<td>9. NO2N: Nitrite nitrogen.</td>
<td>Particulate components</td>
<td></td>
</tr>
<tr>
<td>10. NO3N: Nitrate nitrogen.</td>
<td>9. XS: Slowly biodegradable particulate COD.</td>
<td></td>
</tr>
<tr>
<td>11. N2: Elemental nitrogen.</td>
<td>10. XI: Inert particulate COD.</td>
<td></td>
</tr>
</tbody>
</table>

Contrary to version 1 of the HYDRUS wetland module, organic matter components are defined in both liquid and solid phases, i.e., adsorption/desorption processes of organic matter components can be modeled in version 2. Table 3.3 summarizes in what phases (i.e., liquid and/or solid) the CW2D and CWM1 components are defined. It has to be noted that the number of components in Table 3.3 for both CW2D and CWM1 is increased by one to that given in Table 3.2. In both models, a non-reactive tracer that is independent of other components is added. This non-reactive tracer is defined in both liquid and solid phases.

Table 3.3: Definitions of CW2D and CWM1 components in the liquid and solid phases.

<table>
<thead>
<tr>
<th>Component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW2D</td>
<td>L</td>
<td>L+S</td>
<td>L+S</td>
<td>L+S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S+L</td>
<td>L</td>
<td>L+L</td>
<td>L+L</td>
<td>L+L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CWM1</td>
<td>L</td>
<td>L+S</td>
<td>L+S</td>
<td>L+S</td>
<td>L+S</td>
<td>L</td>
<td>L+L</td>
<td>L+S</td>
<td>L+S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>L+S</td>
<td></td>
</tr>
</tbody>
</table>

L = defined in the liquid phase only; S = defined in the solid phase only; L+S = defined in both liquid and solid phases

Table 3.4 compares the processes defined in the CW2D and CWM1 model formulations. In CW2D only aerobic and anoxic processes are defined. Two main types of bacteria are
modeled, heterotrophic and autotrophic bacteria. One special feature of CW2D is that nitrification is modeled as a two-step process, from ammonia over nitrite to nitrate.

Since in CWM1 anaerobic processes are also defined, 6 different types of bacteria needs to be described. Besides heterotrophic and autotrophic bacteria, also fermenting, acetotrophic methanogenic, acetotrophic sulphate reducing and sulphide oxidising bacteria are defined in order to describe mainly anaerobic processes.

Table 3.4: Comparison of CW2D and CWM1 processes.

<table>
<thead>
<tr>
<th>CW2D (Langergraber and Šimůnek, 2005)</th>
<th>CWM1 (Langergraber et al., 2009b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterotrophic bacteria:</td>
<td>Heterotrophic bacteria:</td>
</tr>
<tr>
<td>1. Hydrolysis: conversion of CS into CR.</td>
<td>1. Hydrolysis: conversion of XS into SF.</td>
</tr>
<tr>
<td>(denitrification on NO2N).</td>
<td>5. Anoxic growth of XH on SA (denitrification).</td>
</tr>
<tr>
<td>(denitrification on NO3N).</td>
<td></td>
</tr>
<tr>
<td>5. Lysis of XH.</td>
<td></td>
</tr>
<tr>
<td>Autotrophic bacteria:</td>
<td>Autotrophic bacteria:</td>
</tr>
<tr>
<td>(ammonium oxidation).</td>
<td>8. Lysis of XA.</td>
</tr>
<tr>
<td>7. Lysis of XANs.</td>
<td></td>
</tr>
<tr>
<td>(nitrite oxidation).</td>
<td>10. Lysis of XFB.</td>
</tr>
<tr>
<td>9. Lysis of XANb.</td>
<td>Fermenting bacteria:</td>
</tr>
<tr>
<td></td>
<td>10. Lysis of XFB.</td>
</tr>
<tr>
<td></td>
<td>Acetotrophic methanogenic bacteria:</td>
</tr>
<tr>
<td></td>
<td>11. Growth of XAMB: Anaerobic growth of acetotrophic, methanogenic bacteria XAMB on acetate SA.</td>
</tr>
<tr>
<td></td>
<td>12. Lysis of XAMB.</td>
</tr>
<tr>
<td></td>
<td>Acetotrophic sulphate reducing bacteria:</td>
</tr>
<tr>
<td></td>
<td>14. Lysis of XASRB.</td>
</tr>
<tr>
<td></td>
<td>Sulphide oxidizing bacteria:</td>
</tr>
<tr>
<td></td>
<td>15. Aerobic growth of XSOB on SH2S: The opposite process to process 13, the oxidation of SH2S to SSO4.</td>
</tr>
<tr>
<td></td>
<td>16. Anoxic growth of XSOB on SH2S: Similar to process 15 but under anoxic conditions.</td>
</tr>
<tr>
<td></td>
<td>17. Lysis of XSOB.</td>
</tr>
</tbody>
</table>

8
3.4 CW2D biokinetic model

3.4.1 Stoichiometric matrix and reaction rates

Table 3.5 and Table 3.6 show stoichiometric coefficients for ammonium nitrogen and inorganic phosphorus, respectively. Table 3.7 shows the stoichiometric matrix of reactions in CW2D, whereas Table 3.8 shows the reaction rates.

Table 3.5: Stoichiometric coefficients for ammonium nitrogen.

<table>
<thead>
<tr>
<th>ν</th>
<th>i_{N,CS} \cdot (1 - f_{Hyd,CI}) \cdot i_{N,CR} - f_{Hyd,CI} \cdot i_{N,CI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{1,N}</td>
<td>i_{N,CS} \cdot (1 - f_{Hyd,CI}) \cdot i_{N,CR} - f_{Hyd,CI} \cdot i_{N,CI}</td>
</tr>
<tr>
<td>v_{2,N}</td>
<td>1/Y_H \cdot i_{N,CR} \cdot i_{N,BM}</td>
</tr>
<tr>
<td>v_{3,N}</td>
<td>1/Y_H \cdot i_{N,CR} \cdot i_{N,BM}</td>
</tr>
<tr>
<td>v_{4,N}</td>
<td>1/Y_H \cdot i_{N,CR} \cdot i_{N,BM}</td>
</tr>
<tr>
<td>v_{5,N}</td>
<td>i_{N,BM} \cdot (1 - f_{BM,CR} - f_{BM,CI}) \cdot i_{N,CS} - f_{BM,CR} \cdot i_{N,CR} - f_{BM,CI} \cdot i_{N,CI}</td>
</tr>
<tr>
<td>v_{6,N}</td>
<td>- 1/Y_{ANs} \cdot i_{N,BM}</td>
</tr>
<tr>
<td>v_{7,N}</td>
<td>i_{N,BM} \cdot (1 - f_{BM,CR} - f_{BM,CI}) \cdot i_{N,CS} - f_{BM,CR} \cdot i_{N,CR} - f_{BM,CI} \cdot i_{N,CI}</td>
</tr>
<tr>
<td>v_{8,N}</td>
<td>- i_{N,BM}</td>
</tr>
<tr>
<td>v_{9,N}</td>
<td>i_{N,BM} \cdot (1 - f_{BM,CR} - f_{BM,CI}) \cdot i_{N,CS} - f_{BM,CR} \cdot i_{N,CR} - f_{BM,CI} \cdot i_{N,CI}</td>
</tr>
</tbody>
</table>

See Table 3.10 for definitions of the composition and stoichiometric parameters.

Table 3.6: Stoichiometric coefficients for inorganic phosphorus.

<table>
<thead>
<tr>
<th>ν</th>
<th>i_{P,CS} \cdot (1 - f_{Hyd,CI}) \cdot i_{P,CR} - f_{Hyd,CI} \cdot i_{P,CI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{1,P}</td>
<td>i_{P,CS} \cdot (1 - f_{Hyd,CI}) \cdot i_{P,CR} - f_{Hyd,CI} \cdot i_{P,CI}</td>
</tr>
<tr>
<td>v_{2,P}</td>
<td>1/Y_H \cdot i_{P,CR} \cdot i_{P,BM}</td>
</tr>
<tr>
<td>v_{3,P}</td>
<td>1/Y_H \cdot i_{P,CR} \cdot i_{P,BM}</td>
</tr>
<tr>
<td>v_{4,P}</td>
<td>1/Y_H \cdot i_{P,CR} \cdot i_{P,BM}</td>
</tr>
<tr>
<td>v_{5,P}</td>
<td>i_{P,BM} \cdot (1 - f_{BM,CR} - f_{BM,CI}) \cdot i_{P,CS} - f_{BM,CR} \cdot i_{P,CR} - f_{BM,CI} \cdot i_{P,CI}</td>
</tr>
<tr>
<td>v_{6,P}</td>
<td>- i_{P,BM}</td>
</tr>
<tr>
<td>v_{7,P}</td>
<td>i_{P,BM} \cdot (1 - f_{BM,CR} - f_{BM,CI}) \cdot i_{P,CS} - f_{BM,CR} \cdot i_{P,CR} - f_{BM,CI} \cdot i_{P,CI}</td>
</tr>
<tr>
<td>v_{8,P}</td>
<td>- i_{P,BM}</td>
</tr>
<tr>
<td>v_{9,P}</td>
<td>i_{P,BM} \cdot (1 - f_{BM,CR} - f_{BM,CI}) \cdot i_{P,CS} - f_{BM,CR} \cdot i_{P,CR} - f_{BM,CI} \cdot i_{P,CI}</td>
</tr>
</tbody>
</table>

See Table 3.10 for definitions of the composition and stoichiometric parameters.
Table 3.7: Stoichiometric matrix of reactions in CW2D (Langergraber and Šimůnek, 2005; see Table 3.10 for definitions of the stoichiometric coefficients).

<table>
<thead>
<tr>
<th>R</th>
<th>Components</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrolysis</td>
<td>g02</td>
<td>1</td>
<td>−f_{\text{max}}</td>
<td>−1</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aerobic growth of heterotrophs on readily biodegradable COD</td>
<td>1 − 1/Y_e</td>
<td>1</td>
<td>−f_{\text{max}}</td>
<td>−1</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nitrate-based growth of heterotrophs on readily biodegradable COD</td>
<td>−f_{\text{max}}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Nitrite-based growth of heterotrophs on readily biodegradable COD</td>
<td>−1/Y_e</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lysis of heterotrophs</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td>−f_{\text{max}}</td>
<td>−1</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autotrophic organisms 1—Nitrifying</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Aerobic growth of Nitrosomonas on ammonium</td>
<td>(3.43 − Y_{NH})/Y_{NH}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Lysis of Nitrosomonas</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td>−f_{\text{max}}</td>
<td>−1</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autotrophic organisms 2—Nitrobacter</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Aerobic growth of Nitrobacter on nitrite</td>
<td>(1.14 − Y_{NO})/Y_{NO}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Lysis of Nitrobacter</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td>−f_{\text{max}}</td>
<td>−1</td>
<td>f_{\text{max}}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.8: Reaction rates in CW2D (Langergraber and Šimůnek, 2005).

<table>
<thead>
<tr>
<th>R</th>
<th>Process / Reaction rate r_{cj}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrolysis $K_{h} \cdot \frac{c_{CS} / c_{XH}}{K_{X} + c_{CS} / c_{XH}} \cdot c_{XH}$</td>
</tr>
<tr>
<td>2</td>
<td>Aerobic growth of heterotrophs on readily biodegradable COD $\mu_{H} \cdot \frac{c_{O2}}{K_{Het,O2} + c_{O2}} \cdot \frac{c_{CR}}{K_{Het,CR} + c_{CR}} \cdot f_{N,Het} \cdot c_{XH}$</td>
</tr>
<tr>
<td>3</td>
<td>NO3-growth of heterotrophs on readily biodegradable COD $\mu_{DN} \cdot \frac{K_{DN,O2} c_{NO3}}{K_{DN,O2} + c_{O2} c_{DN,NO3}} \cdot \frac{c_{NO3}}{K_{DN,NO3} + c_{NO3} c_{DN,NO3}} \cdot \frac{c_{CR}}{K_{DN,CR} + c_{CR} c_{DN,CR}} \cdot f_{N,DN} \cdot c_{XH}$</td>
</tr>
<tr>
<td>4</td>
<td>NO2-growth of heterotrophs on readily biodegradable COD $\mu_{DN} \cdot \frac{K_{DN,O2} c_{NO2}}{K_{DN,O2} + c_{O2} c_{DN,NO2}} \cdot \frac{c_{NO2}}{K_{DN,NO2} + c_{NO2} c_{DN,NO2}} \cdot \frac{c_{CR}}{K_{DN,CR} + c_{CR} c_{DN,CR}} \cdot f_{N,DN} \cdot c_{XH}$</td>
</tr>
<tr>
<td>5</td>
<td>Lysis of heterotrophs $b_{H} \cdot c_{XH}$</td>
</tr>
<tr>
<td>Autotrophic organisms 1 – Nitrosomonas</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Aerobic growth of Nitrosomonas on NH4 $\mu_{ANs} \cdot \frac{c_{O2}}{K_{ANs,O2} + c_{O2} c_{ANs,NH4}} \cdot \frac{c_{NH4}}{K_{ANs,NH4} + c_{NH4} c_{ANs,NH4}} \cdot \frac{c_{IP}}{K_{ANs,IP} + c_{IP} c_{ANs,IP}} \cdot c_{XANs}$</td>
</tr>
<tr>
<td>7</td>
<td>Lysis of Nitrosomonas $b_{HANs} \cdot c_{XANs}$</td>
</tr>
<tr>
<td>Autotrophic organisms 2 – Nitrobacter</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Aerobic growth of Nitrobacter on NO2 $\mu_{ANb} \cdot \frac{c_{O2}}{K_{ANb,O2} + c_{O2} c_{ANb,NO2}} \cdot \frac{c_{NO2}}{K_{ANb,NO2} + c_{NO2} c_{ANb,NO2}} \cdot f_{N,ANb} \cdot c_{XANb}$</td>
</tr>
<tr>
<td>9</td>
<td>Lysis of Nitrobacter $b_{HANb} \cdot c_{XANb}$</td>
</tr>
</tbody>
</table>

Conversion of solid and liquid phase concentrations

$c_{X} = \frac{D}{\theta} \cdot s_{X}$, where $Y = H, ANs, ANb$

Factor for nutrients

$f_{N,x} = \frac{c_{NH4}}{K_{s,NH4} + c_{NH4}} \cdot \frac{c_{IP}}{K_{s,IP} + c_{IP}}$, where $x = Het, DN, ANb$

See Table 3.9 for definitions of rate coefficients.
3.4.2 Model parameters

Table 3.9 shows the kinetic parameters, and Table 3.10 the temperature dependences, stoichiometric parameters, composition parameters and parameters describing oxygen transfer for the CW2D biokinetic model as described in Langergraber and Šimůnek (2005).

Table 3.9: Kinetic parameters in the CW2D biokinetic model (Langergraber and Šimůnek, 2005).

<table>
<thead>
<tr>
<th>Description [unit]</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysis</td>
<td>for 20°C (10°C)</td>
</tr>
<tr>
<td>K_h</td>
<td>hydrolysis rate constant [1/d]</td>
</tr>
<tr>
<td>K_X</td>
<td>saturation/inhibition coefficient for hydrolysis [g COD${CS}$/g COD${BM}$]</td>
</tr>
</tbody>
</table>

Heterotrophic bacteria (aerobic growth)

μ_H	maximum aerobic growth rate on CR [1/d]	6 (3)
b_H	rate constant for lysis [1/d]	0.4 (0.2)
$K_{het,O2}$	saturation/inhibition coefficient for O$_2$ [mg O$_2$/L]	0.2
$K_{het,CR}$	saturation/inhibition coefficient for substrate [mg COD$_{CR}$/L]	2
$K_{het,NH4}$	saturation/inhibition coefficient for NH4 (nutrient) [mg N/L]	0.05
$K_{het,IP}$	saturation/inhibition coefficient for P [mg N/L]	0.01

Heterotrophic bacteria (denitrification)

μ_{DN}	maximum aerobic growth rate on CR [1/d]	4.8 (2.4)
$K_{DN,O2}$	saturation/inhibition coefficient for O$_2$ [mg O$_2$/L]	0.2
$K_{DN,NO3N}$	saturation/inhibition coefficient for NO3 [mg N/L]	0.5
$K_{DN,NO2N}$	saturation/inhibition coefficient for NO2 [mg N/L]	0.5
$K_{DN,CR}$	saturation/inhibition coefficient for substrate [mg COD$_{CR}$/L]	4
$K_{DN,NH4N}$	saturation/inhibition coefficient for NH4 (nutrient) [mg N/L]	0.05
$K_{DN,IP}$	saturation/inhibition coefficient for P [mg N/L]	0.01

Ammonia oxidising bacteria (Nitrosomonas spp.)

μ_{AN}	maximum aerobic growth rate on S$_{NH}$ [1/d]	0.9 (0.3)
b_{AN}	rate constant for lysis [1/d]	0.15 (0.05)
$K_{AN,SO2}$	saturation/inhibition coefficient for SO$_2$ [mg O$_2$/L]	1
$K_{AN,NH4N}$	saturation/inhibition coefficient for NH4 [mg N/L]	0.5
$K_{AN,IP}$	saturation/inhibition coefficient for P [mg N/L]	0.01

Nitrite oxidising bacteria (Nitrobacter spp.)

μ_{ANb}	maximum aerobic growth rate on S$_{NH}$ [1/d]	1 (0.35)
b_{ANb}	rate constant for lysis [1/d]	0.15 (0.05)
$K_{ANb,SO2}$	saturation/inhibition coefficient for SO$_2$ [mg O$_2$/L]	0.1
$K_{ANb,NO2N}$	saturation/inhibition coefficient for NO2 [mg N/L]	0.1
$K_{ANb,NH4N}$	saturation/inhibition coefficient for NH4 (nutrient) [mg N/L]	0.05
$K_{ANb,IP}$	saturation/inhibition coefficient for P [mg N/L]	0.01

Langergraber (2007)
Table 3.10: Temperature dependences, stoichiometric parameters, composition parameters and parameters describing oxygen transfer in the CW2D biokinetic model (Langergraber and Šimůnek, 2005).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description [unit]</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature dependences (activation energy [J/mol] for Arrhenius equation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tdep_het</td>
<td>Activation energy for processes caused by XH [J/mol]</td>
<td>47800</td>
</tr>
<tr>
<td>Tdep_aut</td>
<td>Activation energy for processes caused by XA [J/mol]</td>
<td>69000</td>
</tr>
<tr>
<td>Tdep_Kh</td>
<td>Activation energy Hydrolyses [J/mol]</td>
<td>28000</td>
</tr>
<tr>
<td>Tdep_KX</td>
<td>Activation energy factor KX for hydrolyses [J/mol]</td>
<td>-53000 *</td>
</tr>
<tr>
<td>Tdep_KNHA</td>
<td>Activation energy for factor KNHA for nitrification [J/mol]</td>
<td>-160000 *</td>
</tr>
<tr>
<td>Stoichiometric parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{Hyd,CI}</td>
<td>production of CI in hydrolysis</td>
<td>0.0</td>
</tr>
<tr>
<td>f_{BM,CR}</td>
<td>fraction of CR generated in biomass lysis</td>
<td>0.1</td>
</tr>
<tr>
<td>f_{BM,CI}</td>
<td>fraction of CI generated in biomass lysis</td>
<td>0.02</td>
</tr>
<tr>
<td>Y_{Het}</td>
<td>yield coefficient for XH</td>
<td>0.63</td>
</tr>
<tr>
<td>Y_{ANs}</td>
<td>yield coefficient for XANs</td>
<td>0.24</td>
</tr>
<tr>
<td>Y_{ANb}</td>
<td>yield coefficient for XANb</td>
<td>0.24</td>
</tr>
<tr>
<td>Composition parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{N,CR}</td>
<td>N content of CR [g N/g COD_{CR}]</td>
<td>0.03</td>
</tr>
<tr>
<td>i_{N,CS}</td>
<td>N content of CS [g N/g COD_{CS}]</td>
<td>0.04</td>
</tr>
<tr>
<td>i_{N,CI}</td>
<td>N content of CI [g N/g COD_{CI}]</td>
<td>0.01</td>
</tr>
<tr>
<td>i_{N,BM}</td>
<td>N content of biomass [g N/g COD_{BM}]</td>
<td>0.07</td>
</tr>
<tr>
<td>i_{P,CR}</td>
<td>P content of CR [g P/g COD_{CR}]</td>
<td>0.01</td>
</tr>
<tr>
<td>i_{P,CS}</td>
<td>P content of CS [g P/g COD_{CS}]</td>
<td>0.01</td>
</tr>
<tr>
<td>i_{P,CI}</td>
<td>P content of CI [g P/g COD_{CI}]</td>
<td>0.01</td>
</tr>
<tr>
<td>i_{P,BM}</td>
<td>P content of biomass [g P/g COD_{BM}]</td>
<td>0.02</td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cO2_sat_20</td>
<td>saturation concentration of oxygen [g/m³]</td>
<td>9.18</td>
</tr>
<tr>
<td>Tdep_cO2_sat</td>
<td>activation energy for saturation concentration of oxygen [J/mol]</td>
<td>-15000</td>
</tr>
<tr>
<td>rate_O2</td>
<td>re-aeration rate [1/d]</td>
<td>240</td>
</tr>
</tbody>
</table>

* Langergraber (2007)
Table 3.11: Stoichiometric matrix of reactions in CWM1 (Langergraber et al., 2009b; see Table 3.16 for definitions of the stoichiometric coefficients).
Table 3.12: Stoichiometric coefficients for ammonia nitrogen.

\[v_{5.1} = i_{N, XS} - (1 - f_{HYD, SI}) * i_{N, SF} - f_{HYD, SI} * i_{N, SI} \]

\[v_{5.2} = v_{5.3} = i_{N, SF} / Y_H - i_{N, BM} \]

\[v_{5.4} = \frac{1}{Y_A} \]

\[v_{5.5} = v_{5.6} = v_{5.7} = v_{5.8} = v_{5.9} = i_{N, SF} / Y_{FB} - i_{N, BM} \]

\[v_{5.10} = v_{5.11} = v_{5.12} = v_{5.13} = v_{5.14} = v_{5.15} = v_{5.16} = - \frac{i_{N, BM}}{Y_A} \]

\[v_{5.17} = i_{N, BM} - f_{BM, SF} * i_{N, SF} - (1 - f_{BM, SF} - f_{BM, XI}) * i_{N, XS} - f_{BM, XI} * i_{N, XI} \]

See Table 3.16 for definitions of the composition and stoichiometric parameters.

Table 3.13: Reaction rates in CWM1 - part 1 (Langergraber et al., 2009b).

<table>
<thead>
<tr>
<th>Process / Reaction rate (r_{cj})</th>
<th>Heterotrophic organisms</th>
<th>Autotrophic bacteria</th>
<th>Fermenting bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydrolysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_* \left[\frac{X_i / (X_i + X_i^a)}{K_x + (X_i / (X_i + X_i^a))} \right] * (X_i + \eta_* X_i^a))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Aerobic growth of XH on SF (mineralization)</td>
<td>(\mu_{H_*} \left[\frac{S_F}{K_{SF} + S_F} \right] * \left(\frac{S_F}{S_F + S_A} \right) * \left(\frac{S_O}{K_{OH} + S_O} \right) * \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) * \left(\frac{K_{H2SH}}{K_{H2SH} + S_{H2SH}} \right) * X_H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Aerobic growth of XH on SA (mineralization)</td>
<td>(\eta_* \mu_{H_*} \left[\frac{S_A}{K_{SA} + S_A} \right] * \left(\frac{S_A}{S_F + S_A} \right) * \left(\frac{K_{OH}}{K_{OH} + S_O} \right) * \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) * \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) * \left(\frac{K_{H2SH}}{K_{H2SH} + S_{H2SH}} \right) * X_H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Anoxic growth of XH on SF (denitrification)</td>
<td>(\mu_{H_*} \left[\frac{S_A}{K_{SA} + S_A} \right] * \left(\frac{S_A}{S_F + S_A} \right) * \left(\frac{K_{OH}}{K_{OH} + S_O} \right) * \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) * \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) * \left(\frac{K_{H2SH}}{K_{H2SH} + S_{H2SH}} \right) * X_H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Anoxic growth of XH on SA (denitrification)</td>
<td>(\eta_* \mu_{H_*} \left[\frac{S_A}{K_{SA} + S_A} \right] * \left(\frac{S_A}{S_F + S_A} \right) * \left(\frac{K_{OH}}{K_{OH} + S_O} \right) * \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) * \left(\frac{S_{NH}}{K_{NH} + S_{NH}} \right) * \left(\frac{K_{H2SH}}{K_{H2SH} + S_{H2SH}} \right) * X_H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Lysis of XH</td>
<td>(b_{H_*} * X_H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Aerobic growth ofXA on SNH (nitrification)</td>
<td>(\mu_{A_*} \left[\frac{S_{NH}}{K_{SNH} + S_{NH}} \right] * \left(\frac{S_O}{K_{OH} + S_O} \right) * \left(\frac{K_{H2SH}}{K_{H2SH} + S_{H2SH}} \right) * X_A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Lysis ofXA</td>
<td>(b_{A_*} * X_A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Growth of XFB (fermentation)</td>
<td>(\mu_{F_*} \left[\frac{S_F}{K_{SF} + S_F} \right] * \left(\frac{K_{H2SH}}{K_{H2SH} + S_{H2SH}} \right) * \left(\frac{K_{NOFB}}{K_{NOFB} + S_{NO}} \right) * \left(\frac{S_{NH}}{K_{SNH} + S_{NH}} \right) * X_{FB})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Lysis of XFB</td>
<td>(b_{F_*} * X_{FB})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Table 3.15 for definitions of rate coefficients.
See Table 3.15 for definitions of rate coefficients.
3.5.2 Model parameters

Table 3.15 shows the kinetic parameters in the CWM1 biokinetic model as described in Langergraber et al. (2009b).

Table 3.15: Kinetic parameters in the CWM1 biokinetic model (Langergraber et al., 2009b).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description [unit]</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysis</td>
<td>for 20°C (10°C)</td>
<td></td>
</tr>
<tr>
<td>K_h</td>
<td>hydrolysis rate constant [1/d]</td>
<td>3 (2)</td>
</tr>
<tr>
<td>K_X</td>
<td>saturation/inhibition coefficient for hydrolysis [g COD${ad}$/g COD${HM}$]</td>
<td>0.1 (0.22)</td>
</tr>
<tr>
<td>η_H</td>
<td>correction factor for hydrolysis by fermenting bacteria [-]</td>
<td>0.1</td>
</tr>
<tr>
<td>Heterotrophic bacteria (aerobic growth and denitrification)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_H</td>
<td>maximum aerobic growth rate on S_f and S_A [1/d]</td>
<td>6 (3)</td>
</tr>
<tr>
<td>b_H</td>
<td>rate constant for lysis [1/d]</td>
<td>0.8</td>
</tr>
<tr>
<td>K_{OH}</td>
<td>saturation/inhibition coefficient for S_O [mg O$_2$/L]</td>
<td>0.2</td>
</tr>
<tr>
<td>K_{OB}</td>
<td>saturation/inhibition coefficient for S_O [mg COD$_{ad}$/L]</td>
<td>2</td>
</tr>
<tr>
<td>K_{OS}</td>
<td>saturation/inhibition coefficient for S_O [mg COD$_{ad}$/L]</td>
<td>4</td>
</tr>
<tr>
<td>K_{NO}</td>
<td>saturation/inhibition coefficient for S_NO [mg N/L]</td>
<td>0.5</td>
</tr>
<tr>
<td>K_{NH}</td>
<td>saturation/inhibition coefficient for S_NH (nutrient) [mg N/L]</td>
<td>0.05</td>
</tr>
<tr>
<td>K_{HS}</td>
<td>saturation/inhibition coefficient for S_H [mg S/L]</td>
<td>140</td>
</tr>
<tr>
<td>Autotrophic bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_A</td>
<td>maximum aerobic growth rate on S_{NH} [1/d]</td>
<td>1 (0.35)</td>
</tr>
<tr>
<td>b_A</td>
<td>rate constant for lysis [1/d]</td>
<td>0.15 (0.05)</td>
</tr>
<tr>
<td>K_{OA}</td>
<td>saturation/inhibition coefficient for S_O [mg O$_2$/L]</td>
<td>1</td>
</tr>
<tr>
<td>K_{NA}</td>
<td>saturation/inhibition coefficient for S_{NH} [mg N/L]</td>
<td>0.5 (5)</td>
</tr>
<tr>
<td>K_{HS}</td>
<td>saturation/inhibition coefficient for S_H [mg S/L]</td>
<td>140</td>
</tr>
<tr>
<td>Fermenting bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_F</td>
<td>maximum aerobic growth rate for X_F [1/d]</td>
<td>6 (3)</td>
</tr>
<tr>
<td>b_F</td>
<td>rate constant for lysis [1/d]</td>
<td>0.02</td>
</tr>
<tr>
<td>K_{OF}</td>
<td>saturation/inhibition coefficient for S_O [mg O$_2$/L]</td>
<td>0.2</td>
</tr>
<tr>
<td>K_{SF}</td>
<td>saturation/inhibition coefficient for S_F [mg COD$_{ad}$/L]</td>
<td>28</td>
</tr>
<tr>
<td>K_{NO}</td>
<td>saturation/inhibition coefficient for S_NO [mg N/L]</td>
<td>0.5</td>
</tr>
<tr>
<td>K_{NH}</td>
<td>saturation/inhibition coefficient for S_NH (nutrient) [mg N/L]</td>
<td>0.01</td>
</tr>
<tr>
<td>K_{HS}</td>
<td>saturation/inhibition coefficient for S_H [mg S/L]</td>
<td>140</td>
</tr>
<tr>
<td>Acetotrophic methanogenic bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{AM}</td>
<td>maximum aerobic growth rate on X_{AM} [1/d]</td>
<td>0.085</td>
</tr>
<tr>
<td>b_{AM}</td>
<td>rate constant for lysis [1/d]</td>
<td>0.008</td>
</tr>
<tr>
<td>K_{OA}</td>
<td>saturation/inhibition coefficient for S_O [mg O$_2$/L]</td>
<td>0.0002</td>
</tr>
<tr>
<td>K_{SA}</td>
<td>saturation/inhibition coefficient for S_A [mg COD$_{ad}$/L]</td>
<td>56</td>
</tr>
<tr>
<td>K_{NO}</td>
<td>saturation/inhibition coefficient for S_NO [mg N/L]</td>
<td>0.0005</td>
</tr>
<tr>
<td>K_{NH}</td>
<td>saturation/inhibition coefficient for S_NH (nutrient) [mg N/L]</td>
<td>0.01</td>
</tr>
<tr>
<td>K_{HS}</td>
<td>saturation/inhibition coefficient for S_H [mg S/L]</td>
<td>140</td>
</tr>
<tr>
<td>Acetotrophic sulphate reducing bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{AS}</td>
<td>maximum aerobic growth rate for X_{AS} [1/d]</td>
<td>0.18</td>
</tr>
<tr>
<td>b_{AS}</td>
<td>rate constant for lysis [1/d]</td>
<td>0.012</td>
</tr>
<tr>
<td>K_{OA}</td>
<td>saturation/inhibition coefficient for S_O [mg O$_2$/L]</td>
<td>0.0002</td>
</tr>
<tr>
<td>K_{SA}</td>
<td>saturation/inhibition coefficient for S_A [mg COD$_{ad}$/L]</td>
<td>24</td>
</tr>
<tr>
<td>K_{NO}</td>
<td>saturation/inhibition coefficient for S_NO [mg N/L]</td>
<td>0.0005</td>
</tr>
<tr>
<td>K_{NH}</td>
<td>saturation/inhibition coefficient for S_NH (nutrient) [mg N/L]</td>
<td>0.01</td>
</tr>
<tr>
<td>K_{HS}</td>
<td>saturation/inhibition coefficient for S_H [mg S/L]</td>
<td>140</td>
</tr>
<tr>
<td>Sulphide oxidizing bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_{SO}</td>
<td>maximum aerobic growth rate for X_{SO} [1/d]</td>
<td>5.28</td>
</tr>
<tr>
<td>b_{SO}</td>
<td>rate constant for lysis [1/d]</td>
<td>0.15</td>
</tr>
<tr>
<td>K_{SO}</td>
<td>saturation/inhibition coefficient for S_O [mg O$_2$/L]</td>
<td>0.2</td>
</tr>
<tr>
<td>K_{NO}</td>
<td>saturation/inhibition coefficient for S_{NO} [mg N/L]</td>
<td>0.5</td>
</tr>
<tr>
<td>K_{NH}</td>
<td>saturation/inhibition coefficient for S_NH (nutrient) [mg N/L]</td>
<td>0.05</td>
</tr>
<tr>
<td>K_{HS}</td>
<td>saturation/inhibition coefficient for S_H [mg S/L]</td>
<td>0.24</td>
</tr>
</tbody>
</table>

* typing error in the original CWM1 publication.
Table 3.16 shows temperature dependences, stoichiometric parameters, composition parameters and parameters describing oxygen transfer as described in Langergraber et al. (2009b).

Table 3.16: Temperature dependences, stoichiometric parameters, composition parameters and parameters describing oxygen transfer in the CW2D biokinetic model (Langergraber et al., 2009b).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description [unit]</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tdep_HyKh</td>
<td>Activation energy Hydrolyses [J/mol]</td>
<td>28000</td>
</tr>
<tr>
<td>Tdep_HyKX</td>
<td>Activation energy factor KX for hydrolyses [J/mol]</td>
<td>-54400</td>
</tr>
<tr>
<td>Tdep_H</td>
<td>Activation energy for processes caused by XH [J/mol]</td>
<td>47800</td>
</tr>
<tr>
<td>Tdep_A</td>
<td>Activation energy for processes caused byXA [J/mol]</td>
<td>75800</td>
</tr>
<tr>
<td>Tdep_KNHA</td>
<td>Activation energy for factor KNHA for nitrification [J/mol]</td>
<td>-160000</td>
</tr>
<tr>
<td>Tdep_mueFB</td>
<td>Activation energy for XFB growth [J/mol]</td>
<td>47800</td>
</tr>
<tr>
<td>Tdep_bFB</td>
<td>Activation energy for XFB lysis [J/mol]</td>
<td>0</td>
</tr>
<tr>
<td>Tdep_AMB</td>
<td>Activation energy for processes caused by XAMB [J/mol]</td>
<td>0</td>
</tr>
<tr>
<td>Tdep_ASRB</td>
<td>Activation energy for processes caused by XASRB [J/mol]</td>
<td>0</td>
</tr>
<tr>
<td>Tdep SOB</td>
<td>Activation energy for processes caused by XSOB [J/mol]</td>
<td>0</td>
</tr>
</tbody>
</table>

Stoichiometric parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_{S_1,SI}$</td>
<td>production of S_1 in hydrolysis</td>
<td>0.0</td>
</tr>
<tr>
<td>$i_{BM,SF}$</td>
<td>fraction of S_F generated in biomass lysis</td>
<td>0.05</td>
</tr>
<tr>
<td>$i_{BM,XI}$</td>
<td>fraction of X_I generated in biomass lysis</td>
<td>0.1</td>
</tr>
<tr>
<td>Y_H</td>
<td>yield coefficient for XH</td>
<td>0.63</td>
</tr>
<tr>
<td>Y_A</td>
<td>yield coefficient forXA</td>
<td>0.24</td>
</tr>
<tr>
<td>Y_{FB}</td>
<td>yield coefficient for XFB</td>
<td>0.053</td>
</tr>
<tr>
<td>Y_{AMB}</td>
<td>yield coefficient for XAMB</td>
<td>0.032</td>
</tr>
<tr>
<td>Y_{ASRB}</td>
<td>yield coefficient for XASRB</td>
<td>0.05</td>
</tr>
<tr>
<td>Y_{SOB}</td>
<td>yield coefficient for XSOB</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Composition parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_{N,SR}$</td>
<td>N content of S_F [g N/g COD$_{SR}$]</td>
<td>0.03</td>
</tr>
<tr>
<td>$i_{N,SI}$</td>
<td>N content of S_I [g N/g COD$_{SI}$]</td>
<td>0.01</td>
</tr>
<tr>
<td>$i_{N,XS}$</td>
<td>N content of X_S [g N/g COD$_{XS}$]</td>
<td>0.04</td>
</tr>
<tr>
<td>$i_{N,XI}$</td>
<td>N content of X_I [g N/g COD$_{XI}$]</td>
<td>0.03</td>
</tr>
<tr>
<td>$i_{N,BM}$</td>
<td>N content of biomass [g N/g COD$_{BM}$]</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Oxygen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$cO_2_{sat_{20}}$</td>
<td>saturation concentration of oxygen [g/m³]</td>
<td>9.18</td>
</tr>
<tr>
<td>Tdep_cO2 sat</td>
<td>activation energy for saturation concentration of oxygen [J/mol]</td>
<td>-15000</td>
</tr>
<tr>
<td>rate_O2</td>
<td>re-aeration rate [1/d]</td>
<td>240</td>
</tr>
</tbody>
</table>

3.6 When to use which biokinetic model?

Table 3.17 provides hints which biokinetic model (i.e., CW2D or CWM1) to use for different types of CWs and for what type of processes.

Table 3.17: Application of the biokinetic models for different applications

<table>
<thead>
<tr>
<th>Biokinetic model</th>
<th>CW2D (Langergraber and Šimůnek, 2005)</th>
<th>CWM1 (Langergraber et al., 2009b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of CW</td>
<td>• VF CWs</td>
<td>• VF and HF CWs</td>
</tr>
<tr>
<td></td>
<td>• Low loaded HF beds</td>
<td></td>
</tr>
<tr>
<td>Processes</td>
<td>• Modeling P retention in CWs</td>
<td>• Modeling anaerobic processes</td>
</tr>
<tr>
<td></td>
<td>• Modeling nitrification as a 2-step</td>
<td>• Modeling transport and fate of</td>
</tr>
<tr>
<td></td>
<td>process</td>
<td>sulphur</td>
</tr>
</tbody>
</table>
<pre><code> | | |
</code></pre>
4 Version 2 of HYDRUS GUI

4.1 Preliminary remarks

As described already in Langergraber and Šimůnek (2006), concentrations units in the liquid and solid phases, as well as units of the bulk density, are fixed after choosing the length unit. In version 2 of HYDRUS this is done in the "Domain types and Units" window (Figure 4.1). The resulting concentration units are shown in Table 4.1.

Table 4.1: Units of concentrations in the liquid and solid phases and of the bulk density,

<table>
<thead>
<tr>
<th>Length Units</th>
<th>m</th>
<th>cm</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrations in the liquid phase</td>
<td>g.m⁻³</td>
<td>μg.cm⁻³ = μg.mL⁻¹</td>
<td>ng.mm⁻³ = ng.µL⁻¹</td>
</tr>
<tr>
<td>Concentrations in the solid phase</td>
<td>g.t⁻¹</td>
<td>μg.g⁻¹</td>
<td>ng.mg⁻¹</td>
</tr>
<tr>
<td>Bulk density</td>
<td>t.m⁻³</td>
<td>g.cm⁻³</td>
<td>mg.mm⁻³</td>
</tr>
</tbody>
</table>

Figure 4.1: The "Domain types and Units" window.
The HYDRUS user interface does not provide conversion of mass units and thus the default values of CW2D and CWM1 must be interpreted based on Table 4.1. Therefore units of concentrations in the liquid and solid phases and of the bulk density are fixed according to Table 4.1 once the length units are chosen.

4.2 Pre-processing

4.2.1 The "Solute Transport" window

To activate the HYDRUS wetland module in the GUI in the "Solute Transport" window (Figure 4.2), the "Wetland Module" box has to be checked. The Mass Units have to be set according to the chosen length units (Table 4.1). If the CW2D biokinetic model is chosen in Figure 4.2, the Number of Solutes is equal to 13 (12 CW2D components and one non-reactive tracer, independent of the other 12 compounds). If CWM1 is selected (Figure 4.3) the Number of Solutes is set to 17 (16 CWM1 components and one non-reactive tracer). If the Wetland Module is chosen, the "Attachment/Detachment Concept" (used in the standard HYDRUS to simulate the transport of particles, such as colloids, viruses, and bacteria) cannot be used and the Initial Conditions cannot be given in Total Concentrations. Initial Conditions need to be given in liquid or solid phase concentrations.

Figure 4.2: The "Solute Transport" window with a selection of the CW2D biokinetic model.
Please note that the *Iteration Criteria* in the "Solute Transport" window are used to adapt time steps based on the maximum allowed change in the dissolved oxygen concentration ($\Delta c < c_{\text{abs}} + c_{\text{rel, c}}$) during a particular time step when using the Wetland module (despite the text in the window stating that the iteration criteria are defined for *Nonlinear Adsorption only*). When this criterion is not fulfilled, the next time step will be reduced (see the $dMuL2$ variable in the HYDRUS technical manual, Šimůnek et al., 2011). Dissolved oxygen is the critical component in both CW2D and CWM1 with respect to their numerical stability as its reaction rates are fastest.

4.2.2 The "Solute Transport Parameters" window

Figure 4.4 and Figure 4.5 show the "Solute Transport Parameters" windows for CWM1 and CW2D, respectively. In the "Solute Transport Parameters" window the general transport parameters are set (i.e., bulk density, longitudinal and transverse dispersivities, and diffusion coefficients in the liquid and gaseous phases; for the description of chemical and physical non-equilibrium transport parameters $Fract$ and $ThImob$ see the HYDRUS manual, Šimůnek et al., 2011).
Figure 4.4: The "Solute Transport Parameters" window for CWM1 (for length units in meters and time units in days).

Figure 4.5: The "Solute Transport Parameters" window for CW2D (for length units in meters and time units in days).

Table 4.2 summarises the diffusion coefficients suggested for CW2D and CWM1 compounds. For a comparison with literature data see Langergraber and Šimůnek (2006). The same diffusion coefficient is used for all organic compounds, as well as for all nitrogen compounds. Due to the lack of data, diffusion coefficients for inorganic phosphorus and sulphur compounds are assumed to be the same as for nitrogen.

Table 4.2: Default values of diffusion coefficients for CW2D and CWM1 components (for length units in meters and time units in days).

<table>
<thead>
<tr>
<th>Compound</th>
<th>CW2D</th>
<th>Liquid</th>
<th>Gaseous</th>
<th>CWM1</th>
<th>Liquid</th>
<th>Gaseous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved oxygen</td>
<td>SO</td>
<td>1.73E-04</td>
<td>1.85</td>
<td>SO</td>
<td>1.73E-04</td>
<td>1.85</td>
</tr>
<tr>
<td>Organic matter</td>
<td>CR, CS, CI</td>
<td>1.09E-04</td>
<td>-</td>
<td>SF, SA, SI, XS, XI</td>
<td>1.09E-04</td>
<td>-</td>
</tr>
<tr>
<td>Ammonium nitrogen</td>
<td>NH4N</td>
<td>1.92E-04</td>
<td>-</td>
<td>SNH</td>
<td>1.92E-04</td>
<td>-</td>
</tr>
<tr>
<td>Nitrite nitrogen</td>
<td>NO2N</td>
<td>1.92E-04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate nitrogen</td>
<td>NO3N</td>
<td>1.92E-04</td>
<td>-</td>
<td>SNO</td>
<td>1.92E-04</td>
<td>-</td>
</tr>
<tr>
<td>Elemental nitrogen</td>
<td>N2</td>
<td>1.92E-04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phosphate phosphorus</td>
<td>PO4P</td>
<td>1.92E-04</td>
<td>-</td>
<td>SSO4</td>
<td>1.92E-04</td>
<td>-</td>
</tr>
<tr>
<td>Sulphate sulphur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SH2S</td>
<td>1.92E-04</td>
<td>-</td>
</tr>
<tr>
<td>Dihydrogensulphide sulphur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2.3 The "Reaction Parameters" window

Figure 4.6 shows the "Reaction Parameters" window for dissolved oxygen. One "Reaction Parameters" window is shown for each defined compound. All CW2D and CWM1 kinetic reactions are implemented as zero-order rate equations separately from the reactions
defined in these HYDRUS windows. Therefore all reaction rates in these windows should be zero. Only parameters for the following processes need to be set in these windows:

1. Adsorption and desorption parameters (\(K_d, Nu, Beta, Alpha\))
2. Uptake of compounds via roots (\(cRoot\))

For the description of these parameters the reader is referred to the HYDRUS manual (Šimůnek et al., 2011).

4.2.4 The "Constructed Wetland Model Parameters I" window

The "Constructed Wetland Model Parameters I" and "Constructed Wetland Model Parameters II" windows show the parameters of the biokinetic models, depending on which one is chosen. Figure 4.7 and Figure 4.8 show the kinetic parameters of the CW2D and CWM1 biokinetic models as listed in Table 3.9 and Table 3.15, respectively.
Figure 4.7: The "Constructed Wetland Model (CW2D) Parameters I" window (for time units in days).

Figure 4.8: The "Constructed Wetland Model No1 (CWM1) Parameters I" window (for time units in days).
4.2.5 The "Constructed Wetland Model Parameters II" window

Figure 4.9 and Figure 4.10 show the temperature dependences, stoichiometric parameters, composition parameters, and parameters describing oxygen transfer for the CW2D and CWM1 biokinetic models as listed in Table 3.10 and Table 3.16, respectively.

Figure 4.9: The "Constructed Wetland Model (CW2D) Parameters II" window (for time units in days).

Figure 4.10: The "Constructed Wetland Model No1 (CWM1) Parameters II" window (for time units in days).
4.2.6 "Initial Conditions" on the Navigator Bar

Figure 4.11 shows the "Initial Conditions" part of the data tree of the Navigator Bar (the left sidebar of the HYDRUS GUI) for CW2D and CWM1. Names of all components are listed here, with the "L" letter denoting the initial concentration in the liquid phase and "S" the initial concentration in the solid phase. The names of the same components also appear when importing initial conditions from previous simulation runs, as shown in Figure 4.12 for CWM1.

![Figure 4.11: "Initial Conditions" in the data tree of the Navigator Bar for CW2D (left) and CWM1 (right).](image)

![Figure 4.12: The "Import Initial Conditions" window for CWM1.](image)
4.3 Post-processing

4.3.1 The "Results - Graphical Display" window

Figure 4.13 and Figure 4.14 show the main window of the HYDRUS GUI with the "Results - Graphical Display" section of the Navigator Bar open for CW2D and CWM1, respectively. In both figures the concentration of heterotrophic organisms is shown. Similarly as when defining the initial conditions, the names of all components are listed in this section of the Navigator Bar.

Figure 4.13: The main window of HYDRUS GUI for CW2D with the "Results - Graphical Display" section of the Navigator Bar open.

Figure 4.14: The main window of HYDRUS GUI for CWM1 with the "Results - Graphical Display" section of the Navigator Bar open.
4.3.2 The "Observation Nodes" window

Figure 4.15 and Figure 4.16 show the "Observation Nodes" window for CW2D and CWM1, respectively. Again names of all variables are displayed, including all biochemical compounds.

![Figure 4.15: The "Observation Nodes" window for CW2D.](image1)

![Figure 4.16: The "Observation Nodes" window for CWM1.](image2)
5 Examples

5.1 Pilot-scale vertical flow CW for wastewater treatment (Wetland 4)

The Wetland 4 example is the same as the Wetland 1 example described in Chapter 5.1 of the manual for version 1 of the HYDRUS wetland model (Langergraber and Šimůnek, 2006), except evaluated using the CWM1 model instead of the CW2D biokinetic model. In the following text, the steps needed to set-up Wetland 4 from Wetland 1 are shown. To ensure that all other factors (e.g., transport domain, FE-mesh, water flow) of this project remain the same and only the reactive transport parameters are changed we start by copying the Wetland 1 project and rename it Wetland 4 (Figure 5.1). Note that in Wetland 1 the length units were centimeters and the time units were hours and that they remain the same in Wetland 4. After opening the project, we change the biokinetic model from CW2D to CWM1 in the "Solute Transport" window (Figure 5.2).

![Figure 5.1: The "Copy Project" window.](image1)

![Figure 5.2: Selection of the biokinetic model in the "Solute Transport" window.](image2)
In the next step the diffusion coefficients must be specified in the "Solute Transport Parameters" window (Figure 5.3), e.g., to default values as shown in Figure 4.4.

Figure 5.3: Set up of diffusion coefficients in the "Solute Transport Parameters" window.

In *Wetland 1*, adsorption was considered for phosphorus and the tracer compound (CW2D components 12 and 13, respectively). In the "Reaction Parameters" window (Figure 4.6) the adsorption parameters have to be checked and the parameters K_d and α have to be set to 0 for CWM1 components 12 through 16.

The next step is to specify the influent concentrations in the "Time Variable Boundary Conditions" window. The COD fractionation, i.e., the distribution of the total COD between individual COD model fractions, has to be done. A comparison between organic matter components in CW2D and CWM1 is shown in Table 5.1. It is assumed that $C_{II} = S_I + X_I$ (the inert fraction is the same); $C_{S} = X_S$; and $C_{R} = S_F + S_A$ (mostly S_F) (Table 5.1).

Table 5.1: COD influent fractionation for organic matter components in CW2D and CWM1 for a total COD of 300 mg/L (values in mg/L).

<table>
<thead>
<tr>
<th>CW2D components</th>
<th>CR</th>
<th>CS</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>160</td>
<td>120</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CWM1 components</th>
<th>SF</th>
<th>SA</th>
<th>SI</th>
<th>XS</th>
<th>XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>155</td>
<td>5</td>
<td>10</td>
<td>120</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5.2 shows the influent concentrations used for the *Wetland 4* example. Figure 5.4 shows where and how to specify the influent concentrations of individual components (note that component 17 is an independent tracer; also note that in $cValx-y$, x is the BC number and y is the component number). Similarly as in *Wetland 1*, $cValue2$, i.e., the 2nd vector of the time-dependent solute concentrations, is used in *Wetland 4* as well.

Table 5.2: Influent concentrations (values in mg/L).

<table>
<thead>
<tr>
<th>Components</th>
<th>SO</th>
<th>SF</th>
<th>SA</th>
<th>SI</th>
<th>SNH</th>
<th>SNO</th>
<th>SSO4</th>
<th>SH2S</th>
<th>XS</th>
<th>XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1</td>
<td>155</td>
<td>5</td>
<td>10</td>
<td>60</td>
<td>0.1</td>
<td>20</td>
<td>0.1</td>
<td>120</td>
<td>10</td>
</tr>
</tbody>
</table>
The next step is to set initial conditions for the CWM1 components (note that this Table, i.e., "Default Domain Properties", is available only for simple rectangular geometries and that for general geometries, one needs to define initial conditions graphically). A simple approach to set the initial conditions is chosen: all liquid and solid phase concentrations are set to 1 if the component is considered or to 0 if not, i.e. for Wetland 4 this results in: L1-L10 =1; L11-L16 =0; L17 =1; S1-10 =0 and S11-17 =1 (Figure 5.5). Although 13 or 17 components are displayed in this table for CW2D and CWM1 modules, initial values need to be specified only for those, which are needed as shown in Table 3.3.

Finally, since we want to run the simulation for 10 days we have to adjust the Final Time in the "Time Information" window (Figure 5.6). Since we want to repeat the same loading
pattern each day, the number of times to repeat the same set of BC records is therefore set to 10. The maximum time step is 60 seconds. Together with the settings for iteration criteria in the “Solute Transport” window (Figure 5.2), the maximum time step defines the stability of the numerical solution (see before). For Wetland 4 with a maximum time step of 60 seconds, an absolute concentration tolerance of 0.01 mg/L is a setting that avoids numerical instabilities.

Figure 5.6: The "Time Information" window.

Figure 5.7 through Figure 5.10 show the simulation results at 5 observation nodes during the first 10 days for fermentable soluble COD (SF), nitrate nitrogen (SNO), heterotrophic bacteria (XH), and autotrophic bacteria (XA), respectively. The observation nodes have been set at depths of 1, 5, 10, 25, and 60 cm in the vertical flow filter. The observation node at the 60-cm depth (#1) represents the effluent concentration. Please note that simulation results obtained by CWM1 for this example have not been verified using measured data.

Figure 5.7: Concentrations of fermentable, readily biodegradable soluble COD (SF) at 2 depths (the Wetland 4 example).
Figure 5.8: Concentrations of nitrate nitrogen (SNO) at 3 depths (the *Wetland 4* example).

Figure 5.9: Concentrations of heterotrophic bacteria (XH) at 5 depths (the *Wetland 4* example).
Figure 5.10: Concentrations of autotrophic bacteria (XA) at 5 depths (the Wetland 4 example).
5.2 Pilot-scale horizontal flow CW for wastewater treatment (*Wetland 5*)

5.2.1 System description and measured data

The *Wetland 5* example is based on the experiments for a HF CW described by Headley et al. (2005). The experimental site consisted of a 1 m deep HF CW planted with *Schoenoplectus tabernaemontani* (soft stem bulrush) and was designed to treat primary settled municipal wastewater in sub-tropical New South Wales, Australia. Water samples were collected from the upper (0.17 m), middle (0.5 m), and lower (0.83 m) depths at five equally-spaced sample points along the longitudinal axis of the 8.8 m² bed (Figure 5.11). Figure 5.12 shows measured data for BOD$_5$ and NH$_4$ concentrations measured along the flow path of the HF CW obtained at a hydraulic loading rate of 40 mm/d.

![Figure 5.11: Plan view of the HF CW showing sampling wells (left) and a cross-sectional view of one of five intermediate sampling wells (right) (Headley et al., 2005).](image)

![Figure 5.12: BOD$_5$ and NH$_4$ concentrations measured along the flow path of the HF CW (Headley et al., 2005).](image)

5.2.2 Model set-up

The width of the transport domain was 5.5 m, its depth was 1.1 m (1 m bed depth and 0.1 m free board are simulated), and the slope of the domain was 0.1°. The transport domain itself was discretized into 37 columns and 26 rows. This resulted in a structured two-dimensional finite element mesh consisting of 926 nodes and 1800 triangular finite elements. As described by Headley et al. (2005), the first 0.5 m on the right part of the domain is a distribution zone (a right part of Figure 5.13) that consists of a different material than the main bed. An atmospheric BC is used at the inlet point (a top right part in Figure 5.13) and a constant pressure head BC (a constant head of 95 cm at a node 5 cm above the bottom of the domain) at the outlet point (bottom left in Figure 5.13) of the system. This guarantees that the water level in the HF bed is maintained at 1 m. Calculations for *Wetland 5* have been carried out
using the CW2D biokinetic model. Using instead the CWM1 biokinetic model can be done as described in Wetland 4.

Headley et al. (2005) reported that the root biomass was very dense in the upper 25 cm of HF bed, decreased rapidly with depth, and only very few roots were observed at depths greater than 40 cm below the surface. The root distribution was set up accordingly (Figure 5.14). Note that no roots are present in the inlet distribution zone.

Parameters for root water and solutes uptake are shown in Table 5.3 and the settings in the GUI in Figure 5.15 through Figure 5.17. The negative value of \(c_{Root} \) for Dissolved Oxygen is used to model oxygen release from the plant roots.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential transpiration rate</td>
<td>0.0115</td>
<td>m/h</td>
<td>Time Variably Boundary Conditions (Figure 5.15)</td>
</tr>
<tr>
<td>(c_{Root}) (Ammonia NH4)</td>
<td>50</td>
<td>g/m³</td>
<td>Reaction Parameters for NH4 (Figure 5.16)</td>
</tr>
<tr>
<td>(c_{Root}) (Dissolved Oxygen)</td>
<td>-800</td>
<td>g/m³</td>
<td>Reaction Parameters for Oxygen (Figure 5.17)</td>
</tr>
</tbody>
</table>
Figure 5.15: The "Time Variable Boundary Conditions" window.

Figure 5.16: The Ammonia NH4 "Reaction Parameters" window.

Figure 5.17: The Dissolved Oxygen "Reaction Parameters" window.
5.2.3 Simulation results

Figure 5.18 shows the cumulative oxygen release by plant roots for a simulation time of 1 day. The simulated cumulative release is 20 g/m (a minus value for uptake indicates a release of oxygen). This results in a specific oxygen release of 2.5 g/m²/d (the total area covered by plants is 8 m² (5 m length of the bed times 1.6 m width), a rather conservative value. However, this oxygen release resulted in dissolved oxygen concentrations of about 0.1 mg/L in the root zone near the outlet of the bed (Figure 5.19 and Figure 5.20). Note that the contour levels in Figure 5.19 were adjusted to emphasize small values. Only by considering oxygen release by plant roots it was possible to simulate the decrease of NH₄-N concentrations along the flow path in the HF bed (Figure 5.21). Figure 5.22 and Figure 5.23 show that the simulation results are in good agreement with measured data for NH₄-N and COD concentrations, respectively.

![Cumulative Root Solute Uptake](image)

Figure 5.18: Cumulative Root Solute Uptake for Dissolved Oxygen.

![Dissolved Oxygen concentrations](image)

Figure 5.19: Dissolved Oxygen concentrations in the two-dimensional domain.
Figure 5.20: Dissolved Oxygen concentrations in a vertical cross section through the HF bed 0.5 m before the effluent.

Figure 5.21: NH4-N concentrations along the flow path in a depth of 50 cm in the HF bed.

Figure 5.22: Comparison of measured and simulated NH4-N concentrations along the flow path in a depth of 50 cm of the HF bed.
Figure 5.23: Comparison of measured and simulated COD concentrations along the flow path in a depth of 50 cm of the HF bed.
5.3 Applications of the HYDRUS wetland module

The following list gives an overview of different applications, in which the HYDRUS wetland module was used:

- CWs for treating combined sewer overflow (compare example "Wetland 3" as described in chapter 5.3 of Langergraber and Šimůnek, 2006): Dittmer et al. (2005), Henrichs et al. (2007, 2009), and Meyer et al. (2008).

- CWs treating effluents of the wastewater treatment plant for irrigation purposes: Toscano et al. (2009).

- Simulating run-off from agricultural sites and the effect of streamside management zones: Smethurst et al. (2009, 2010).
6 Input data

6.1 The 'options.in' input file

An additional option, namely limited effluent flow rates, can be specified in the additional input file 'options.in'.

The 'options.in' input file is not supported by the graphical user interface of the HYDRUS software. It needs to be created manually and placed in the temporary working directory created by HYDRUS (Šimůnek et al., 2011). If this input file does not exist, then HYDRUS does not consider this additional option (note that this file was more extensive in the past, but a lot of the special options in version 1 have become standard features in version 2).

The definition of variables used in 'options.in' is given in Table 6.1, and an example of the file is given below:

```plaintext
Input file "Options.in"
lSeepLimit   qSLimit (positive)
f   0.
```

Table 6.1: Description of variables used in the 'options.in' input file.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lSeepLimit</td>
<td>logical</td>
<td>-</td>
<td>= true: use the maximum effluent flow rate for a seepage face BC; = false: normal seepage face BC</td>
</tr>
<tr>
<td>qSLimit</td>
<td>float</td>
<td>[L/T]</td>
<td>Maximum allowed seepage face flux (positive)</td>
</tr>
</tbody>
</table>
7 Output data

7.1 Format of the 'effluent.out' output file

An additional output-file 'effluent.out' is created that contains information about effluent concentrations along the outflow boundary. If multiple outflow boundaries exist, only the concentration value for the first boundary from this list (free drainage boundary, seepage face boundary, variable flux boundary, and constant flux boundary) is printed. This file is printed during the simulation run.

All solute fluxes and cumulative solute fluxes are positive out of the region

<table>
<thead>
<tr>
<th>Time</th>
<th>cEff(1)</th>
<th>cEff(2)</th>
<th>...</th>
<th>cEff(12)</th>
<th>cEff(13)</th>
<th>TempEff</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0000010</td>
<td>.870194E+01</td>
<td>.227306E+00</td>
<td>...</td>
<td>.162806E+01</td>
<td>.138496E+01</td>
<td>20.0000</td>
</tr>
<tr>
<td>.0009541</td>
<td>.870195E+01</td>
<td>.227296E+00</td>
<td>...</td>
<td>.162805E+01</td>
<td>.138496E+01</td>
<td>20.0000</td>
</tr>
<tr>
<td>.0033000</td>
<td>.870198E+01</td>
<td>.227269E+00</td>
<td>...</td>
<td>.162804E+01</td>
<td>.138496E+01</td>
<td>20.0000</td>
</tr>
</tbody>
</table>

The 'effluent.out' output file can be found in the temporary working directory created by HYDRUS (Šimůnek et al., 2011).
8 List of examples

For CW2D

For the description of the CW2D examples see Langergraber and Šimůnek (2006).

a) Wetland1

A pilot-scale vertical flow constructed wetland (PSCW, chapter 5.1 in Langergraber and Šimůnek, 2006); an example of flow and reactive transport simulations.

b) Wetland2

A two-stage vertical flow constructed wetland (SSP, chapter 5.2 in Langergraber and Šimůnek, 2006); an example of reactive transport simulations.

c) Wetland3

A lab-scale vertical flow constructed wetland for treatment of combined sewer overflow (CSOCW, chapter 5.3 in Langergraber and Šimůnek, 2006); an example for controlled effluent rate.

d) Wetland5

An experimental HF CW described by Headley et al. (2005); an example for simulating the influence of wetland plants (see chapter 5.2 of this manual).

For CWM1

e) Wetland4

Same as Wetland 1 but using the CWM1 biokinetic model; an example of how to start a simulation using the new CWM1 biokinetic model (see chapter 5.1 of this manual).
References

