Introduction

- Nete catchment area: 1540 km²

Existing MODFLOW groundwater model

- 9644 active cells
- 400 x 400 m
- 16 layers

Challenging geometry:
- thickness 0 to 200 m
- wedging out layers
Coupling to improve the groundwater recharge

- Current model: uniform recharge 280 mm y\(^{-1}\)
 - calculated with HYDRUS-1D for a typical soil profile, grass cover
- Goal of HYDRUS-MODFLOW coupling is to improve the estimation of the recharge (spatial and temporal)

HYDRUS-MODFLOW

- Zone definition for a Hydus simulation:
 - number of zones is a compromise:
 - averaging gw levels & fluxes
 - CPU
 - 3 criteria were chosen:
 - gw depth from calibrated steady-state model
 - soil type
 - land use
 - preliminary results: 1 soil type (typical podzol) & 1 land cover assumed on whole catchment (grass)

Issues during practical implementation (1)

- Warming-up: example with 6 zones
 - GW level not yet stabilized after 1 yr
 - => need to warm up model several years

- Warming-up: example with 10 zones
Issues during practical implementation (2)

- Oscillatory behaviour, possibly leading to chaotic behaviour and non-convergence
 - solved by forcing MODFLOW time steps ≤ 1 day (= HYDRUS time step)
 - but oscillations remain (here with 3 time steps per day until 60 d after)

Issues during practical implementation (3)

- Seepage:
 - due to averaging effect and shallow groundwater, MODFLOW heads sometimes exceeds ground level

Results with 20 zones

(no calibration; only based on gw depth; 1 soil, 1 land use)

- 10 years warm-up, then 10 years simulation

Results with 20 zones

(no calibration; only based on gw depth; 1 soil, 1 land use)

- Nete catchment: average simulated recharge = 274 mm y⁻¹
 - average seepage = 32 mm y⁻¹ (mainly in zone 1)
 - Net simulated recharge = 242 mm y⁻¹
Results with 20 zones
(no calibration; only based on gw depth; 1 soil, 1 land use)

Comparison with piezometer observations

Summary

Current model:

- **20 zones**
 (1 soil, 1 land cover)

Future challenges

- Different soil types & land covers (i.e. more zones)
- Optimize CPU:
 - sensitivity to # zones
 - automation of zone def. (e.g. using std. dev. of gw depths)
- Calibration vs. piezometer data
- Seepage
- Closely examine coupling (heads and fluxes)

Copyright © 2013 - SCK-CEN

PLEASE NOTE!
This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK-CEN. If this has been obtained, please reference it as a "personal communication. By courtesy of SCK-CEN."