The HPx reactive transport models: A short overview of development and possibilities

D. Jacques(1), J. Šimůnek(2), D. Mallants(3), M.Th. van Genuchten(4)

(1) SCK•CEN, Belgium, (2) UCR, CA, USA, (3) CSIRO, Adelaide, Australia, (4) Federal University of Rio de Janeiro, Brazil
djacques@sckcen.be

4th International HYDRUS Conference
Prague, March 21-22, 2013

Outline

- HPx
 - Flow – Transport
 - Geochemistry

- Recent examples
 - Diffusion in gas phase
 - Two-dimensional flow and transport
 - Inverse optimisation of flow, transport and geochemical parameters
 - Coupling geochemical variables – transport parameters
 - Benchmarking

HPx

Process

- Variable-saturated water flow
 - Richards’ equation with root water uptake

- Convection-dispersion equation for solute transport

- Heat transport

- Thermodynamic equilibrium

- Kinetic Reactions
Water flow and solute transport models
Uniform flow and transport model

- Three phase system
 - Aqueous, solid and gas phase

- Transport
 - Water flow
 - Heat transport
 - Advection-dispersion in aqueous phase
 - Diffusion in gas phase

- Homogeneous sink/source terms S
 - Root water uptake $S_{r,w}$
 - Solute root uptake $S_{r,s,i}$
 - Degradation/decay/transformation $S_{d,i}$

- Heterogeneous mass exchange Γ
 - Aqueous – solid phase Γ_{ws}
 - Aqueous – air phase Γ_{wa}

Water flow and solute transport models
Uniform flow and MIM transport model

- Three phase system
 - Aqueous, solid and gas phase

- Two domains
 - Mobile / Immobile

- Transport
 - Water flow
 - Heat transport
 - Advection-dispersion in aqueous phase
 - Diffusion in gas phase
 - Solute exchange Γ_i

- Homogeneous sink/source terms S
 - Root water uptake $S_{r,w}$
 - Solute root uptake $S_{r,s,i}$
 - Degradation/decay/transformation $S_{d,i}$

- Heterogeneous mass exchange Γ
 - Aqueous – solid phase $\Gamma_{ws,m}$
 - Aqueous – air phase Γ_{wa}
 - In both mobile and immobile domain

Water flow and solute transport models
Dual-porosity model water flow and solute transport

- Three phase system
 - Aqueous, solid and gas phase

- Two domains
 - Mobile / Immobile

- Transport
 - Water flow
 - Heat transport
 - Advection-dispersion in aqueous phase
 - Diffusion in gas phase
 - Solute exchange Γ_i

- Homogeneous sink/source terms S
 - Root water uptake $S_{r,w}$
 - Solute root uptake $S_{r,s,i}$
 - Degradation/decay/transformation $S_{d,i}$

- Heterogeneous mass exchange Γ
 - Aqueous – solid phase $\Gamma_{ws,m}$
 - In both mobile and immobile domain
 - Aqueous – air phase Γ_{wa}

Geochemical processes
Thermodynamic equilibrium

- Aqueous speciation with different activity correction models (Davies, Debye–Hückel, B-Dot, PITZER, SIT)
- Multiple sites
- Linked to equilibrium phases or kinetic reactants
- Surface complexation (no-electrostatic model, diffuse double layer, CD_MUSIC) with different options to calculate composition double layer
- Minerals in equilibrium with the aqueous phase
- Solid solution (multiple ideal solid solution, binary non-ideal solid solution)
- Exchange with gas phase
Geochemical processes
Kinetic processes

- Kinetic dissolution & precipitation of minerals
- Kinetic sorption & desorption processes
- Kinetic degradation (first order (e.g. radionuclides) or Monod, Michaelis-Menten kinetics)

Geochemical processes
Kinetic processes

- Kinetic reaction networks

Geochemical processes
Kinetic processes

- Including ‘bio’processes

Geochemical processes
Kinetic processes

- Including ‘bio’processes and root interaction processes
Conceptual geochemical model
Mercury speciation in soil

Organic matter degradation
Water content and temperature dependency

Porporato et al. 2003

\[\frac{dC_i}{dt} = k_i + k_2 C_h - k_i C_i \]
\[\frac{dC_h}{dt} = r_b k_3 C_i C_h - k_i C_i C_h \]
\[\frac{dC_i}{dt} = (1 - r_r - r_r^2) k_3 C_i C_i + (1 - r_r) k_i C_i C_h - k_i C_h \]
\[\frac{dC_b}{dt} = r_b k_4 C_i C_i - s_i C_b \]

\[f(s) = \begin{cases} 0 & s \leq s_B \\ \frac{s - s_B}{s_r - s_B} & s_B < s \leq s_r \\ 1 & s > s_r \end{cases} \]

\[f(T) = \frac{47.9}{1 + \exp \left(\frac{106}{T + 18.3} \right)} \]
Organic matter degradation

Organic and inorganic C pools

Transport below Mill Tailing pile

High infiltration
Low infiltration

Acid water
Rain water

Constant head (400 cm)
Soil water

Constant head (1200 cm)
Soil water

HP2

Inverse optimisation – Flow, Transport, Exchange

Water absorption and cation exchange in horizontal cores

pH
U
Calcite
Geochemical variables – transport properties

- HP1 allows dynamic updates of porosity, soil hydraulic properties, tortuosity in the aqueous and gaseous phase, dispersivity, heat conductivity and heat dispersivity.

- User has great flexibility in implementing any porosity-parameter relationships via BASIC-functions in input file.

Example – Diffusive leaching of concrete

Portlandite front (Rain W):
- \(\sim 1.4 \text{ mm/y}^{0.5} \)
 - 100 y -> 1.4 cm.
 - 400 y -> 2.8 cm

Leaching Rain W > Leaching Soil

In case of higher concentration of major anions and cations -> hydrotalcite precipitation

In case of higher \(\text{CO}_2 \) -> calcite precipitation

\(\Rightarrow \) Porosity clogging \(\Rightarrow \) decrease in tortuosity factor
Geochemical variables – transport properties
Example – Diffusive leaching of concrete

Benchmarking
E.g. pyrite oxidation due to Oxygen intrusion

- International Benchmark
- Example: oxygen diffusion, pyrite oxidation with ground water table at 2.5 m.
- Three codes
 - Solid: MIN3P
 - Dotted: HP1
 - Dash-dot: FLOTRAN