Single- and double porosity modeling of solute transport in intact soil columns – effects of texture, slurry placement, and intermittent irrigation

Nadia Glæsner
Horst H. Gerke
ZALF, Leibniz Centre for Agricultural Landscape Research, Germany
University of Copenhagen, Denmark
University of Aarhus, Denmark

Animal Manure Application Techniques

Comparing surface application and injection of dairy cattle slurry
- Effect of soil texture (Glæsner et al. 2011a, Glæsner et al. 2011b)
- Effect of intermittent irrigation (Glæsner et al. 2011c)

Experimental Setup
- Intact soil columns 20 cm dia., 20 cm high from plow layer
- Irrigation rate irrigation 4.8 cm day$^{-1}$
- Unsaturated conditions (suction of -5 hPa at lower boundary)

Analysis
- 3H$_2$O transport (applied with irrigation water)
- Br transport (mixed with slurry)
- (Phosphorus transport)

Modeling with HYDRUS-1D – Exchange of solutes

1. Effect of injection (texture)
2. Effect of intermittent irrigation (loam)
Model Approach – Soil hydraulic parameters

Testing 2 parameter sets
- RETC from retention data of small (100 cm³) intact cores
- Rosetta from texture

x: Retention of small cores
O: Measured water contents of large columns

Model Approach – Solute transport parameters

CXTFIT (STANMOD) – continuous irrigation
before slurry application
flow conditions

HYDRUS-1D – parameters for continuous irrigation – **variables**

Compare:
- single porosity
- double porosity

Model Approach – Initial and boundary conditions

Lower boundary: seepage face

Slurry injection – double porosity MIM

Lower boundary: seepage face
Results - Bromide leaching – slurry placement

<table>
<thead>
<tr>
<th></th>
<th>Br Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface applied</td>
<td>Injected</td>
</tr>
<tr>
<td>Loamy sand</td>
<td>85.2 (12.1) 79.0 (9.3)</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>73.6 (8.5) 73.7 (4.5)</td>
</tr>
<tr>
<td>Loam</td>
<td>80.6 (6.3) 60.2 (2.3)</td>
</tr>
</tbody>
</table>

Single and double porosity MIM models: Decreased cumulative solute exchange from immobile to mobile regions with injection in loam.

Results - Bromide leaching – intermittent irrigation

<table>
<thead>
<tr>
<th></th>
<th>Br Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>45.5 (2.5)</td>
</tr>
<tr>
<td>Intermittent</td>
<td>59.3 (5.2)</td>
</tr>
</tbody>
</table>

Double porosity MIM model: Increased cumulative solute mass exchange from immobile to mobile regions with intermittent irrigation.

Conclusions

- The models described the data reasonably well.
- Slurry injection decreased solute mass exchange in loam.
 - Protection of slurry compounds when placed inside the soil matrix in fine-textured soils compared with placement of slurry at the soil surface.
- Introducing rainfall interruptions might increase mass exchange of slurry solutes placed within the soil matrix from immobile to mobile pore regions.
 - Might lead to higher leaching compared with steady flow conditions.

Thank you for your attention.