Modeling surface active solute transport with HYDRUS

Gilboa Arye and Jirka Šimunek

Ben-Gurion University, Israel
University of California, Riverside

Surface Active Solute

Surface Active Agent – Surfactant

Substance which reduces surface/interfacial tension between two phases

http://www.attension.com/critical-micelle-concentration

Young–Dupré equation

\[\gamma_{LV} \cos \omega = \gamma_{SV} - \gamma_{SL} \]

Young–Laplace equation

\[\Psi = \frac{2 \gamma \cos \omega}{\rho g r} \]

\[\frac{\Psi_1}{\gamma_1 \cos \theta_1 r_1} = \frac{\Psi_0}{\gamma_0 \cos \theta_0 r_0} \]

\[\Psi_1 = \Psi_0 \left(\frac{\gamma_1}{\gamma_0} \right) \left(\frac{\cos \theta_1}{\cos \theta_0} \right) \]
Capillary pressure vs. Surface tension/contact angle

\[\Psi = \Psi_0 \left(\gamma \left(\cos \theta_0 \right) \right) \cdot \frac{1}{a_0} \left[\frac{1}{S^{m_1 - 1}} \right] \]

Capillary pressure vs. contact angle

\[\Psi = \Psi_0 \left(\gamma \left(\cos \theta_0 \right) \right) \cdot \frac{1}{a_0} \left[\frac{1}{S^{m_1 - 1}} \right] \]

Surface tension vs. surfactant concentration

\[\frac{\gamma}{\gamma_0} = 1 - b \ln \left(\frac{c}{a} + 1 \right) \]

Unsaturated Transient Water Flow and Solute Transport

[Images and graphs related to water flow and surfactant concentration]
Viscosity vs. surfactant concentration

![Graph showing viscosity vs. surfactant concentration](Image)

\[\frac{D_1}{D_0} = 1 - B_1 \ln \left(\frac{C}{B_2} + 1 \right) \]

(Read and Gregory, 1997)

Solute transport dependent hydraulic properties

![Graph showing solute transport dependent hydraulic properties](Image)

\[\frac{\partial \psi}{\partial t} + \frac{\partial \psi}{\partial x} \left[k \left(\frac{\partial \psi}{\partial x} + \cos \omega \right) \right] = -S \]

\[S = \frac{\partial \psi}{\partial t} + \frac{\partial \psi}{\partial x} \left(1 + \frac{\partial \psi}{\partial x} \right) \]

\[K(S) = K_0 S^2 \left(1 - \left(1 - S^{1/4} \right)^2 \right) \]

\[\psi_i = \psi_0 \left[\left(\frac{C_i}{C_0} \right)^{\frac{1}{\gamma_i}} \left(\cos \theta_i \right) \right]^{1} \left[\frac{1}{S_i - 1} \right] \]

\[T_0 = 0, \quad T_1 = 0.0007, \quad T_2 = 0.05, \quad T_3 = 4.05, \quad T_4 = 300 \text{ sec} \]

Profile Information:

- **Pressure Head:**
 - T0: -10
 - T1: -5
 - T2: 0
 - T3: 15
 - T4: 30

- **Water Content:**
 - T0: 0
 - T1: 0.2
 - T2: 0.4
 - T3: 0.6
 - T4: 0.8

- **Hydraulic Conductivity:**
 - T0: 0
 - T1: 0.1
 - T2: 0.2
 - T3: 0.3
 - T4: 0.4

- **Concentration:**
 - T0: 0
 - T1: 0.1
 - T2: 0.2
 - T3: 0.3
 - T4: 0.4

Smith and Gillham (1994)
Future work:
- Incorporating additional empirical and/or physically-based equations to HYDRUS 1D
- Modification of HYDRUS 2D/3D

Implications:
- Root exudates, humic substances, DOM and commercial surfactants
- Rhizosphere
- Soil amendment with recycled biosolids
- Organic soilless media
- Drip irrigation
- Evaporation and/or transpiration

Thank you for your attention