TRANSPORT OF WATER AND SOLUTES IN MACROPORES

edited by

MARTINUS TH. VAN GENUCHTEN, DENNIS E. ROLSTON and
PETER F. GERMANN

U.S. Salinity Laboratory, USDA - ARS, 4500 Glencoe Drive, Riverside, CA 92501 (U.S.A.)
Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (U.S.A.)
Department of Soils and Crops, Rutgers University, P.O. Box 231, New Brunswick, NJ 08903 (U.S.A.)

CONTENTS

Preface ... 1
Using morphometric expressions for macropores to improve soil physical analyses of field soils
J. Roques (Wageningen, The Netherlands) .. 3
Reevaluation of contructed and natural soil macropores using X-ray computed tomography
S.H. Anderson, R.L. Peyton and C.J. Gastritz (Columbus, Mo., U.S.A.) ... 13
Directional saturated hydraulic conductivity and macropore morphology of a soil-saprolite sequence
P. Schoeneberger and A. Amoregar (Raleigh, N.C., U.S.A.) ... 31
Preferential flow in a sandy vadose zone: 1. Field observation
K.-S. Kung (Madison, Wisc., U.S.A.) .. 51
Preferential flow in a sandy vadose zone: 2. Mechanism and implications
K.-S. Kung (Madison, Wisc., U.S.A.) .. 59
Effect of Lombricus terrestris L. burrows on hydrology of continuous no-till corn fields
W.M. Edwards, M.J. Shipitalo, L.B. Owens (Columbus, Ohio, U.S.A.) and L.D. Norton (West Lafayette, Ind., U.S.A.) 73
Preferential paths of flow under conventional and conservation tillage
M.S. Andreini and T.S. Streehuis (Ithaca, N.Y., U.S.A.) .. 85
Unsaturated solute transport through a forest soil during rain events
P.M. Jardine, G.V. Wilson and R.J. Loomis (Oak Ridge, Tenn., U.S.A.) ... 103
Hydrology of a forested hillslope during storm events
G.V. Wilson, P.M. Jardine, R.J. Loomis and J.B. Jones (Oak Ridge, Tenn., U.S.A.) ... 119
Physical and chemical controls of preferential path flow through a forested hillslope
R.J. Loomis, P.M. Jardine, G.V. Wilson, J.B. Jones (Oak Ridge, Tenn., U.S.A.) ... 139
Fluid flow in partially saturated, welded nonwelded tuff units
J.Y. Wang and T.N. Nataranjan (Berkeley, Calif., U.S.A.) ... 155
Modelling solute transport in structured soils: a review
M.L. Brusseau and P.S.C. Rao (Gainesville, Fl., U.S.A.) ... 169
A numerical model for preferential solute movement in structured soils
T.S. Streehuis, J.Y. Parlane and M.S. Andreini (Ithaca, N.Y., U.S.A.) ... 183
The Laplace Transform-Galerkin technique for efficient time-continuous solution of solute transport in double-porosity media
R.A. Sudicky (Waterloo, Ont., Canada) ... 209
Use of temporal moment analysis to study reactive solute transport in aggregated porous media
A.J. Valocchi (Urbana, Ill., U.S.A.) ... 233

Inferences about solute transport in macroporous forest soils from time series models
G.M. Hornberger (Charlottesville, Va., U.S.A.), J.J. Beven (Lancaster, U.K.) and
P.F. Germann (Bern, Switzerland) ... 240

Water movement through an aggregated, gravelly soil from Camaroon
P.R. Astrono, P. Nkedi-Kizza, W.G. Blue and J.B. Sartain (Gainsoville, Fla., U.S.A.) 283

Effect of solute application method on preferential transport of solutes in soil
G.J. Kijlstra and R. Horton (Ames, Iowa, U.S.A.) .. 283
Preface

This special issue of Geoderma consists of a collection of papers presented during a special Symposium on “Transport of Water and Solutes in Macropores” at the 80th Annual Meeting of the American Society of Agronomy in Anaheim, California (November 27–December 2, 1988). Main purpose of the Symposium was to review and discuss various experimental and theoretical approaches to quantifying the movement of water and dissolved constituents in macroporous soils.

The subject of solute transport in structured soils remains a significant and problematic area of research in soil science and hydrology. While the subject matter is certainly not new and has been studied for many decades, recent concern about the long-term quality of our soil and ground-water resources has motivated renewed studies of water and solute movement through soil macropores. For example, field and laboratory research now suggests that the standard equations predicting water flow and solute transport in homogeneous soils are largely inadequate for describing water and solute movement in structured (aggregated, macroporous, or fractured) field soils. Drying cracks in fine-textured soils, earthworm channels, gopher holes, decayed root channels, and interpedal voids in naturally aggregated soils and fractured rocks, provide an opportunity for water and dissolved chemicals or particulate matter to move preferentially from the soil surface through the vadose zone towards the ground-water table. The result is an increased potential for pollution of underlying ground-water systems by surface-applied or soil-incorporated fertilizers, pesticides and other chemicals intentionally or unintentionally released into the environment. Much laboratory and field evidence has been gathered over the last few years that demonstrates this preferential flow/transport process, alternatively termed also incomplete or partial mixing, macropore transport, fracture flow, preferred flow, short-circuiting, and non-Fickian transport.

The peer-reviewed papers in this special issue should give the reader an excellent comprehensive and multi-disciplinary view of the current state-of-the-art in research on solute transport in macroporous soils. We thank Geoderma for publishing this special issue and, hence, for facilitating a broad distribution of the symposium papers. We also acknowledge the Soil Science Society of America for permitting the papers to be published elsewhere. Finally, we hope that the material documented in this special issue will stimulate further discussions, as well indicate new opportunities of productive research on the problem of water and chemical transport in macroporous soils.

Martinus Th. van Genuchten
Dennis E. Rolston
Peter F. Germann
(Guest Editors)