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 DISCLAIMER 
 

 This report documents versions 1.0 and 2.0 of STANMOD, a software package for 

evaluating solute transport in porous media using analytical solutions of the convection-dispersion 

equation. The software has been verified against a large number of test cases. However, no warranty 

is given that the program is completely error-free. If you do encounter problems with the code, find 

errors, or have suggestions for improvement, please contact one of the authors at 

 
  U. S. Salinity Laboratory 
  USDA, ARS 
  450 West Big Springs Road 
  Riverside, CA  92507 
 
  Tel. 909-369-4865 (J. Simunek) 
  Tel. 909-369-4846 (M. Th. van Genuchten) 
  Fax. 909-342-4964 
  E-mail jsimunek@ussl.ars.usda.gov 
   rvang@ussl.ars.usda.gov 
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 ABSTRACT 
 

Simunek, J., M. Th. van Genuchten, M. Sejna, N. Toride, F. J. Leij,  1999.  The STANMOD 

Computer Software for Evaluating Solute Transport in Porous Media Using Analytical Solutions of 

Convection-Dispersion Equation, Versions 1.0 and 2.0, U.S. Salinity Laboratory, USDA, ARS, 

Riverside, California. 

 

 This report documents versions 1.0 and 2.0 of STANMOD (STudio of ANalytical 

MODels), a Windows based computer software package for evaluating solute transport in porous 

media using analytical solutions of the convection-dispersion solute transport equation. Version 1.0 

of STANMOD includes at present the following models: CXTFIT 2.0 [Toride et al., 1995], CFITM 

[van Genuchten, 1980], CFITIM [van Genuchten, 1981], and CHAIN [van Genuchten, 1985]. 

Version 2.0 of STANMOD, to be released in the spring of 2000, will also include the models 

3DADE [Leij and Bradford, 1994] and N3DADE [Leij and Toride, 1997]. The original manuals of 

all models included in STANMOD accompany this report. 

The software package includes a modified and updated version of the CXTFIT code of 

Toride et al. [1995] for estimating solute transport parameters using a nonlinear least-squares 

parameter optimization method. This code may be used to solve the inverse problem by fitting a 

variety of mathematical solutions of theoretical transport models, based upon the one-dimensional 

convection-dispersion (or advection-dispersion) equation (CDE), to experimental results. The 

program may also be used to solve the direct or forward problem to determine concentrations as a 

function of time and/or position. Three different one-dimensional transport models are considered: 

(i) the conventional CDE; (ii) the chemical and physical nonequilibrium CDEs; and (iii) a 

stochastic stream tube model based upon the local-scale equilibrium or nonequilibrium CDE.  

STANMOD also includes an updated version of the CFITM code of van Genuchten [1980] 

for analyzing observed column effluent data using analytical solutions of the one-dimensional 

equilibrium convective-dispersive transport equations. The code considers analytical solutions for 

both semi-finite and finite columns. The model provides an easy to use, efficient and accurate 

means of determining various transport parameters by optimizing observed column effluent data. 

CFITM represents a simple alternative to the much more comprehensive, but also more complex, 

CXTFIT model. 
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STANMOD also contains an updated version of the CFITIM code of van Genuchten 

[1981] for analyzing observed column effluent data using analytical solutions of the one-

dimensional equilibrium and nonequilibrium convective-dispersive transport equations. The code 

includes analytical solutions for semi-finite columns. The nonequilibrium solutions for bicontinuum 

model, the two-region flow model for physical nonequilibrium and the two-site sorption model for 

chemical nonequilibrium. The model provides an easy to use, efficient and accurate means of 

determining various transport parameters by optimizing column effluent data. 

In addition, STANMOD 1.0 includes the modified and updated CHAIN code of van 

Genuchten [1985] for analyzing the convective-dispersive transport of solutes involved in sequential 

first-order decay reactions. Examples are the migration of radionuclides, in which the chain 

members form first-order decay reactions, and the simultaneous movement of various interacting 

nitrogen or organic species. 

STANMOD 2.0 includes the 3DADE code of Leij and Bradford [1994] for evaluating 

analytical solutions for three-dimensional equilibrium solute transport in the subsurface. The 

analytical solutions pertain to selected cases of three-dimensional solute transport during steady 

unidirectional water flow in porous media having uniform flow and transport properties. The 

transport equation contains terms accounting for solute movement by convection and dispersion, as 

well as for solute retardation, first-order decay, and zero-order production. The 3DADE code can be 

used to solve the direct problem, i.e., the concentration is calculated as a function of time and space 

for specified model parameters, and the indirect (inverse) problem in which the program estimates 

selected parameters by fitting one of the analytical solutions to specified experimental data. 

               Finally, STANMOD 2.0 incorporates the N3DADE code of Leij and Toride [1997] for 

evaluating analytical solutions for a three-dimensional nonequilibrium solute transport in porous 

media. The analytical solutions pertain to three-dimensional solute transport during steady 

unidirectional water flow in porous media in systems of semi-infinite length in the longitudinal 

direction, and of infinite length in the transverse direction. The solutions can be applied also to one- 

and two-dimensional problems. The flow and transport properties of the medium are again assumed 

to be macroscopically uniform.  Nonequilibrium solute transfer can occur between two domains in 

either the liquid or the absorbed phase. The transport equation contains terms accounting for solute 

movement by advection and dispersion, as well as for solute retardation, first-order decay, and zero-

order production. 
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1.  INTRODUTION 
 

 The fate and transport of dissolved substances in soils and groundwater is generating 

considerable interest because of concerns for the quality of the subsurface environment. The 

behavior of solutes over relatively long spatial and temporal scales must generally be assessed with 

the help of theoretical models since it is usually not feasible to carry out experimental studies over 

sufficiently long distances and/or time periods. Mathematical models are often also used to predict 

solute concentrations before management strategies are implemented. Advances in software and 

hardware now permit the simulation of subsurface transport using sophisticated mathematical 

models. Unfortunately, it is generally difficult to obtain reliable values for transport parameters such 

as the pore-water velocity, the retardation factor, the dispersion coefficient, and/or degradation or 

production parameters. 

 A large number of computer programs now exists for evaluating solute transport in porous 

media using analytical solutions of the convection-dispersion equation. The purpose of this project 

was to integrate the most widely used models into a one software package. We developed for this 

purpose a suite of analytical models STANMOD (Versions 1.0) that includes, at present, the 

following models for one-dimensional transport: CFITM [van Genuchten, 1980], CFITIM [van 

Genuchten, 1981], CHAIN [van Genuchten, 1985], and CXTFIT (2.0) [Toride et al., 1995]. The 

models 3DADE [Leij and Bradford, 1994] and N3DADE [Leij and Toride, 1997] for multi-

dimensional transport problems will be available in version 2.0 of STANMOD to be released in the 

spring of 2000. In this report we briefly describe the different analytical models included in 

STANMOD and review some typical examples that were included with the software. Detailed 

descriptions of all models are given in the original manuals, which are included as PDF files on the 

STANMOD CD. The manuals provide the governing transport equations, boundary and initial 

conditions, the derived analytical solutions, as well as description of several illustrative examples. 

 The graphics-based user-interface of STANMOD is for the MS Windows environment and 

is largely based on libraries developed for the HYDRUS-1D and HYDRUS-2D software packages 

[Simunek et al., 1998, 1999].  All computational programs were written in FORTRAN, and the 

graphic interface in MS Visual C++. 
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2.  OVERVIEW OF INCLUDED MODELS  

 
2.1.  CFITM 

 

The CFITM code of van Genuchten [1980] can be used for analyzing observed column 

effluent data using analytical solutions of the one-dimensional equilibrium convection-dispersion 

transport equations. The code includes analytical solutions for both infinite and finite columns. The 

model provides a convenient, efficient and accurate means of determining transport parameters by 

fitting analytical solutions to observed column effluent data. The unknown parameters include the 

column Peclet number, P, the retardation factor, R, and the dimensionless pulse time, T0. CFITM 

represents an easy to use, simple alternative to the more complex CXTFIT model reviewed in 

section 2.4. 

 

2.2.  CFITIM 

 

The CFITIM code of van Genuchten [1981] can be used for analyzing observed column 

effluent data using analytical solutions for one-dimensional equilibrium and nonequilibrium 

convective-dispersive transport. The code includes analytical solutions for infinite columns. The 

nonequilibrium models are based on the assumption that, either for physical or chemical reasons, 

adsorption does not proceed at an equal rate in all parts of the soil medium. The model provides an 

easy to use, efficient and accurate means of fitting various transport parameters to observed column 

effluent data. Depending upon the exact form of the transport model, the program allows up to five 

different parameters to be estimated simultaneously. The unknown parameters include the column 

Peclet number, P, the retardation factor, R, the dimensionless pulse time, T0, and the dimensionless 

parameters β (a nonequilibrium partitioning coefficient), and ω (a transfer coefficient).  
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2.3.  CHAIN 

 

The CHAIN code of van Genuchten [1985] can be used to analyze the convective-

dispersive transport of solutes involved in sequential first-order decay reactions. The problem of 

solute transport involving sequential first-order decay reactions frequently occurs in soil systems. 

Examples are the migration of radionuclides in which the chain members form first-order decay 

reactions, and the simultaneous movement of various interacting nitrogen [Cho, 1972] or organic 

(e.g., pesticide) species. CHAIN is based on analytical solutions of the CDE that describe the 

simultaneous convective-dispersive transport of up to four species involved in such consecutive 

chain reactions. This program only considers the forward problem.  

 

2.4.  CXTFIT 

 

The program CXTFIT 2.1 may be used to estimate parameters in several analytical models 

for solute transport during steady one-dimensional flow by fitting analytical solutions for the models 

to observed laboratory or field solute transport data. The inverse problem is solved by minimizing 

an objective function that consists of the sum of the squared differences between observed and fitted 

concentrations. The objective function is minimized using a nonlinear least-squares inversion 

method according to Marquardt [1963]. In addition, CXTFIT 2.1 may be used for the direct 

problem to predict solute distributions versus time and/or space for specified model parameters. 

CXTFIT 2.1 is an extension and update of earlier versions published by van Genuchten 

[1979, 1981], Parker and van Genuchten [1984] and Toride et al. [1995]. CXTFIT 2.1, as before, 

uses the convection-dispersion equation, but with a larger number of analytical solutions pertaining 

to various initial, boundary, and production value problems. The nonequilibrium transport models 

also contain terms for zero-order production and first-order decay. Considerably more attention is 

being paid to the use of stream tube models for simulating transport in heterogeneous fields, thus 

reflecting the growing popularity of stochastic approaches for modeling field-scale solute transport. 

A bivariate lognormal probability density function is used to quantify stochastic pore-water velocity 
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and either stochastic dispersion, adsorption, or nonequilibrium solute transfer. Solute concentrations 

across the field can be either in the resident mode or in two different types of flux-averaged modes.  

 

2.5.  3DADE 

 

The 3DADE code of Leij and Bradford [1994] is intended for evaluating analytical 

solutions for three-dimensional equilibrium solute transport in the subsurface. The analytical 

solutions pertain to selected cases of three-dimensional solute transport during steady unidirectional 

water flow in porous media having uniform flow and transport properties. The transport equation 

contains terms to account for solute movement by convection and dispersion, as well as for solute 

retardation, first-order decay, and zero-order production. The 3DADE code can be used to solve the 

direct problem, i.e., the concentration is calculated as a function of time and space for specified 

model parameters, and the indirect (inverse) problem in which the program estimates selected 

parameters by fitting one of the analytical solutions to specified experimental data. Transient 

analytical solutions are evaluated for five different transport scenarios (three boundary value 

problems and two initial value problems) in either a Cartesian or cylindrical coordinate system.  

Simple steady-state solutions are also provided for three initial value problems.  

 

2.6.  N3DADE 

 

The N3DADE code of Leij and Toride [1997] can be used to evaluate analytical solutions 

for three-dimensional nonequilibrium solute transport in porous media. The analytical solutions 

hold for three-dimensional solute transport during steady unidirectional water flow in porous media 

of semi-infinite length in the longitudinal direction, and of infinite length in the transverse 

directions. The solutions can be also applied to one and two-dimensional problems. The flow and 

transport properties of the medium are assumed to be macroscopically uniform. Nonequilibrium 

solute transfer can occur between two domains in either the liquid or the absorbed phase. The 

transport equation contains terms accounting for solute movement by advection and dispersion, as 

well as for solute retardation, first-order decay, and zero-order production. Unlike 3DADE, the 
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N3DADE code can be used only to solve the direct problem, i.e., concentrations are calculated as a 

function of time and space for specified model parameters. A comprehensive set of specific 

solutions is presented using Dirac, Heaviside and exponential functions to describe a variety of 

initial, boundary and production profiles. A rectangular or circular inflow area is specified for the 

boundary value problem, while for the initial and production value problems the respective initial 

and production profiles are defined for parallelepipedal, cylindrical, or spherical regions of the soil. 

Solutions are given for volume-averaged or resident concentrations, as well as for flux-averaged or 

flowing concentrations. 
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3.  EXAMPLES 
 

 STANMOD is installed with numerous examples that are divided into eight groups 

(workspaces): CFITM, CFITIM, CHAIN, Direct, Inverse, Stochast, 3DADE, and N3DADE. The 

first three workspaces CFITM, CFITIM, and CHAIN contain examples of the corresponding 

models. The next three workspaces Direct, Inverse, and Stochast contain examples of the direct, 

inverse, and stochastic problems solved with the CXTFIT model. The last two workspaces 3DADE 

and N3DADE contain examples of the 3DADE and N3DADE models. Users are advised to select 

an example closest to their particular problem, copy this example and then simply modify the input 

data. A list of all examples, together with brief descriptions, is given in Table 1 at the end of this 

chapter. 

 

3.1.  Examples of the CFITM model 

 

 The CFITM workspace contains two examples for the CFITM model. Both examples 

pertain to the transport of chromium through a sand [Wierenga, 1980, unpublished data; van 

Genuchten, 1980]. Observed effluent data from a 5-cm long soil column are fitted using an 

analytical solution of the convection-dispersion solute transport equation. Example1 uses the 

analytical solution for a semi-infinite system, while Example2 holds for a finite system. Peclet 

numbers, P, and retardation factors, R, were fitted in both examples.  

 

3.2.  Examples of the CFITIM model 

 

 The CFITIM workspace includes five examples for the CFITIM model. Example1 

demonstrates the used of CFITIM on a generated data set using the assumption of physical non-

equilibrium solute transport (Figure 1 of van Genuchten [1980]). Four parameters (the Peclet 

number, P, the retardation factor, R, and the dimensionless coefficients β (a nonequilibrium 

partitioning coefficient) and ω (transfer coefficient)) were fitted simultaneously using the generated 

effluent curve for a 30-cm long soil column. Example2 and Example3 consider the movement of 

tritiated water through a Glendale clay loam in a 30-cm long column. The nonequilibrium transport 
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model with five fitted parameters (P, R, β, ω, and the dimensionless pulse time, T0) was considered 

for Example2 (Figure 1 of van Genuchten [1980]), while the linear equilibrium adsorption model 

with three fitted parameters (P, R, and T0) was used for Example3. Examples Fig79a (Figure 7.9a of 

Toride et al. [1995]) and Fig79b (Figure 5 of van Genuchten [1980] and Figure 7.9b in Toride et al. 

[1995]) consider the transport of tritiated water and boron, respectively, through Glendale clay loam 

in a 30-cm long column. In both examples, parameters of the non-equilibrium transport model are 

optimized against the effluent curves.  

 

3.3.  Examples of the CHAIN model 

 

 Two examples are presented here to illustrate typical results that can be obtained with the 

program. The first example (Nitrogen) applies to the three-species nitrification chain (NH4
+ - NH2

- - 

NH3
-) (Figure 1 of van Genuchten [1985]). The second example deals with the radionuclide decay 

chain (238Pu - 234U - 230Th - 226Ra) (Figure 2 of van Genuchten [1985]), which serves as an 

illustration of modeling subsurface radionuclide transport.  

 

3.4.  Examples of the CXTFIT model 

 

 Examples of the CXTFIT model are divided into three workspaces. The first group (Direct) 

contains direct problems, the second group (Inverse) involves inverse problems, and the third group 

(Stochast) contains stochastic examples. Most examples were taken from the original CXTFIT 

manual [Toride et al., 1995], several other examples from a book chapter by van Genuchten and 

Cleary [1979], and two examples from a book chapter by Leij and Toride [1998]. 

 

3.4.1.  Direct problems 

 

 The first 2 examples (Fig51 and Fig52) were taken from a book chapter by Leij and Toride 

[1998], the next 9 examples (Fig71 through Fig78) from the original CXTFIT manual [Toride et al., 

1995], and the last 15 examples (Fig105 through Fig1012b) from a book chapter by van Genuchten 

and Cleary [1979]. 
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 Examples Fig51 and Fig52 demonstrate the use of the nonequilibrium solute transport 

options in the CXTFIT code. Examples Fig51 (Figure 5.1 of Leij and Toride [1998]) and Fig52 

(Figure 5.2 of Leij and Toride [1998]) use the first-order physical nonequilibrium model to calculate 

concentrations in the mobile and immobile phases as a function of time at a depth of 50 cm for a 2-d 

pulse input at the soil surface. Four different combinations of the mobile water content (β = θm/θ = 

0.25, 0.5, 0.75, and 0.99) and the transfer rate (ω = 0.2, 1, 5, 1000) are used in example Fig51, while 

five different fractions of sorption sites (f = 0, 0.25, 0.5, 0.75, 1) that equilibrate with the mobile 

region are used in example Fig52. 

 

3.4.1.1.  Examples taken from Toride et al. [1995] 

 

 The first two examples (Fig71 and Fig72) deal with solutions of the direct problem for 

equilibrium transport. Example Fig71 (Figure 7.1 of Toride et al. [1995]) illustrates the effect of 

the first-order decay constant, µ (=0, 0.25, 0.5, 1 d-1) on solute distribution. Resident concentrations 

at t =7.5 d were calculated for a single pulse input of duration 5 d starting at t = 0 to a solute-free 

soil profile. Examples Fig72a and Fig72b (Figures 7.2a and 7.2b of Toride et al. [1995]) calculate 

flux (cf) and resident (cr) concentrations for two values of the Peclet number, P (= 2, 10), 

respectively, as a function of relative distance when solute-free water is applied to a soil having a 

stepwise initial resident distribution. 

 The next four examples (Fig75 and Fig78) deal with solutions of the direct problem for 

nonequilibrium transport. Examples Fig75 and Fig76 were included to demonstrate differences 

between the one-site and two-site nonequilibrium sorption models. Example Fig75 (Figure 7.5 of 

Toride et al. [1995]) show the effects of the first-order mass transfer rate coefficient, α (= 0.08, 0.2, 

10, 1000 d-1), on breakthrough curves in terms of the flux-averaged concentration, as a result of 

applying a Dirac delta input function to an initially solute free soil. Example Fig76 (Figure 7.6 of 

Toride et al. [1995]) calculates breakthrough curves according to the two-site nonequilibrium CDE 

for four values of the fraction of sorption sites (f = 0, 0.3, 0.7, and 0.999), and using the same initial 

and boundary conditions as for Fig75. Values of 0.08 and 0.2 d-1 for the first-order mass transfer 

rate, α, were used in Fig76a and Fig76b, respectively. Examples Fig77a and Fig77b (Figures 7.7a 

and 7.7b of Toride et al. [1995]) calculate breakthrough curves using different sets of R, α, and f 

values in the two-site nonequilibrium CDE for Dirac delta input and pulse input, respectively. The 
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last example (Fig78) involving a direct problem concerns deterministic nonequilibrium transport as 

described by an initial value problem. This case calculates equilibrium and nonequilibrium resident 

concentrations and total concentration profiles at T = 1 for three values of the partitioning 

coefficient β (= 0.1, 0.5, and 0.9). 

 

3.4.1.2.  Examples adopted from van Genuchten and Cleary [1979] 

 

 Examples Fig105 and Fig105a (Figure 10.5 of van Genuchten and Cleary [1979]) 

demonstrate the effect of the first-order decay coefficient µ (= 0, 0.1, 0.2, 0.35) on Picloram 

movement through Norge loam using either a pulse or step input, respectively, and assuming 

applicability of the equilibrium CDE. Example Fig108 (Figure 10.8 of van Genuchten and Cleary 

[1979]) demonstrates the effect of the dimensionless mass transfer coefficient ω (= 0.001, 0.28, 0.7, 

1.7, 2.8, 7.0, 1000000) on calculated effluent curves for 2,4,5-T movement through Glendale clay 

loam using the two-region physical nonequilibrium CDE model). Example Fig109 (Figures 10.9a 

and 10.9b of van Genuchten and Cleary [1979]) demonstrates the effect of the dimensionless 

partitioning coefficient β (= 0.2, 0.35, 0.5, 0.65, 0.80, 0.99) on calculated effluent curves from, and 

spatial concentration distributions in, an aggregated sorbing medium, respectively, assuming two-

region physical nonequilibrium transport. Example Fig1010 (Figures 10.10a and 10.10b of van 

Genuchten and Cleary [1979]) demonstrates the effect of the retardation factor R (= 1.0, 1.75, 2.5, 

3.5, and 5.0) on calculated effluent curves from, and spatial concentration distributions in, an 

aggregated sorbing medium, respectively, again assuming two-region physical nonequilibrium 

transport. Example Fig1011 (Figures 10.11a and 10.11b of van Genuchten and Cleary [1979]) 

calculates solute concentration versus time and distance for an aggregated sorbing medium, 

respectively, assuming two-region physical nonequilibrium model, as affected by the dimensionless 

mass transfer coefficient ω (= 0.02, 0.2, 0.5, 1.5, 7.5, 1000). Finally, Example Fig1012 (Figures 

10.12a and 10.12b of van Genuchten and Cleary [1979]) demonstrates the effect of the Peclet 

number P (= 5, 15, 40, 100, 10000) on calculated effluent curves from, and spatial concentration 

distribution in, an aggregated sorbing medium, respectively, assuming two-region physical 

nonequilibrium transport. 
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3.4.2.  Stochastic problems 

 

 Examples presented in this group demonstrate the use of the stochastic stream tube model in 

the CXTFIT code. The first two example (Fig45a and Fig45b) calculates field-scale resident 

concentrations, cr, versus depth resulting from the instantaneous application of a solute to the 

surface as a BVP (variable mass) and an IVP (constant mass) (Figure 4.5 of Toride et al. [1995]). 

The next two examples (Fig47a and Fig47b) calculate field-scale resident concentrations versus 

depth as a result of a pulse-type solute application of constant duration (Figure 4.7 of Toride et al. 

[1995]).  

The next example (Fig710) demonstrates the effect of variability in the pore-water velocity, 

v, on the field-scale resident concentration profile and the distribution of the variance for cr in the 

horizontal plane (Figure 7.10 of Toride et al. [1995]). This example calculates the mean resident 

concentration and its variance as a function of depth at t = 3 d for three values of σv (=0.1, 0.3, 0.5) 

as a result of a 2-d solute application to a solute-free soil. Examples Fig711a, Fig711b, and Fig711c 

calculate the breakthrough curves for three types of field-scale concentration modes (Figure 7.11 in 

Toride et al. [1995]). 

Example Fig713 demonstrates the effect of correlation (ρvKd = -1, 0, +1) between the pore-

water velocity, v, and the distribution coefficient, Kd, on calculated field-scale resident 

concentration, cr, profiles (Figure 7.13 of Toride et al. [1995]). Field-scale concentrations at t = 5 d 

resulting from a Dirac delta input at t = 0 are calculated versus depth for either perfect or no 

correlation between v and Kd. Finally, examples Fig714a and Fig714b calculate field-scale resident 

and total concentrations, respectively, assuming stochastic nonequilibrium solute transport. Both 

examples assume a negatively correlated v and Kd (ρvKd = -1) using three values of the mass transfer 

coefficient ω (Figure 7.14 of Toride et al. [1995]).  

 

3.4.3.  Inverse problems 

 

 The parameter estimation option of the CXTFIT model is demonstrated with seven 

examples. The first three examples (Fig73a, Fig73b, and Fig74) deal with equilibrium solute 

transport, and the next two examples (Fig79a and Fig79b) with nonequilibrium solute transport. 

Two additional examples (Fig712 and Fig715) consider field-scale stochastic solute transport. 
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In the first two examples (Fig73a and Fig73b), the pore-water velocity, v, and dispersion 

coefficient, D, are estimated from breakthrough curves measured at three different depths (11, 17, 

and 23 cm) with four-electrode electric conductivity sensors. Breakthrough curves were a result of 

(a) continuous application of a 0.001 M NaCl solution to an initially solute-free saturated sand, and 

(b) leaching with solute free water during unsaturated conditions, respectively. In the third inverse 

example (Fig74), the pore-water velocity, v, dispersion coefficient, D, and the duration of the KCl 

application for a pulse input, t0, to an undisturbed sandy soil are estimated from breakthrough curves 

measured at a depth of 10 cm with a TDR probe. 

 The two examples of nonequilibrium solute transport (Fig79a corresponding to Figure 7.9a 

of Toride et al. [1995], and Fig79b corresponding to Figure 5 of van Genuchten [1980] and Figure 

7.9b of Toride et al. [1995]) consider transport of tritiated water and boron, respectively, through 

Glendale clay loam in a 30-cm long column. In both examples parameters of the non-equilibrium 

transport model were optimized against effluent curves. The same examples are also considered 

using the CFITIM model. 

 The stochastic option of CXTFIT, together with parameter estimation, is demonstrated with 

examples Fig712 and Fig715. The first example (Figure 7.12 of Toride et al. [1995]) pertains to 

resident concentrations in a 0.64-ha field to which a bromide pulse was applied for 1.69 d followed 

by leaching with solute-free water [Jury et al., 1982]. The stream tube model was used to estimate 

the mean pore-water velocity <v>, the mean dispersion coefficient <D>, and their standard 

deviations σv and σD, respectively. The second example (Figure 7.15 of Toride et al. [1995]) 

demonstrates the estimation of parameters in the stream tube model for reactive transport using a 

hypothetical data set. The standard deviation, σKd, and the coefficient of correlation between v, and 

Kd, i.e., ρvKd, were fitted to the hypothetical data, while keeping <v>, σv, and <Kd> constant. 

 

3.5.  Examples of the 3DADE model 

 

 Nine examples (Example1 through Example9) are presented here to illustrate the use of the 

3DADE model. The first five examples (Example1 through Example5) solve direct problems, while 

the last four examples (Example6 through Example9) inverse parameter estimation problems. 

Example1 calculates steady-state concentration profiles for a diffuse solute source in one 

quadrant of the soil surface (Figure 2a of Leij et al. [1991]). Example2 and Example 3 calculate 
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transient concentration profiles for transport from a rectangular solute source at the surface using 

either a first- or third-type boundary condition (Figure 4 of Leij et al. [1991]), respectively. 

Example4 calculates transient concentration profiles for transport from a parallelepipedal initial 

distribution (Figure 3 of Leij et al. [1991]). Finally, Example5 calculates transient concentration 

profiles for transport from a circular solute source at the surface using a third-type boundary 

condition (Figure 7 of Leij et al. [1991]). 

Inverse problems are demonstrated using four examples (Example6 through Example9). The 

first example (Example6) considers (similarly to Example1) solute application in one quadrant of 

the soil surface. The parameters R, Dx, and Dy (retardation factor, and dispersion coefficients in the 

x- and y-directions, respectively) are fitted using a breakthrough curve at a specified position and the 

steady-state profile at a selected transect. The second inverse example (Example7) involves the 

estimation of the parameters R, µ, λ, Dx, Dy, and Dz (retardation factor, first-order rate coefficient for 

decay, zero-order rate coefficient for production, and dispersion coefficients in the x-, y- and z-

directions, respectively) for solute transport from a parallelepipedal initial distribution. 

Breakthrough curves at ten positions along the x coordinate and two transverse profiles were used 

for the problem. This optimization example was repeated (Example8) for a data set in which errors 

of ±10 % were imposed on the transverse concentration profiles (Figure 2 of Leij et al. [1994]). The 

final example (Example9) concerns the application of a solute pulse from a circular area at the soil 

surface. Parameters t0, Dx, and Dr (pulse time, and dispersion coefficients in the x- and r-directions, 

respectively) were estimated using concentrations at several spatial locations at a specific time. 

 

3.6.  Examples of the N3DADE model 

 

 Five examples are presented here to illustrate the use of the N3DADE model for calculating 

concentration profiles using the nonequilibrium solute transport CDE. The first two examples 

demonstrate the use of N3DADE to solve boundary value problems (BVP), the next two examples  

initial value problems (IVP), and the last example a production value problem (PVP). 

The first example (Figures 6, 7a, and 7b of Leij and Toride [1997]) calculates breakthrough 

curves at a depth of 50 cm (Exampl1a) and the flux-averaged spatial concentration distribution 

(Exampl1b) for instantaneous solute application from a disk having radius of 2.5 cm at the soil 

surface. The problem involves a circular geometry. The second example (Exampl2a and Exampl2b, 
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Figures 8 and 9 of Leij and Toride [1997]) pertain to flux-averaged concentration profiles resulting 

from the continuous application of solute to a rectangular surface area (-2.5 < y < 2.5, -2.5 < z < 

2.5). Exampl2a calculates equilibrium, nonequilibrium and total concentrations versus longitudinal 

distance at three different times, while Exampl2b calculates concentrations in the transverse plane at 

two longitudinal positions. 

The third example (Example3, Figure 10 of Leij and Toride [1997]) considers an initial 

value problem (rectangular) with solute initially located in the regions 5 < x < 15 (c = 1) and 25 < x 

< 35 (c = 0.5) for 15 < y < 25 and -100 < z < 100. The fourth example (Example4, Figure 11 of Leij 

and Toride [1997]), which also pertains to an initial value problem (in this case spherical), assumes 

that the solute has initially a maximum value at the point given by x=5, y=0, and z=5, and that the 

solute concentration decreases exponentially from the maximum. 

The last example (Example5, Figure 12 of Leij and Toride [1997]) involves solute 

production in a cylindrical region of the soil (0 < x < 10 and 0 < r < 2.5). The problem is modeled as 

a production value problem (PVP) with a heaviside function for the longitudinal and transversal 

directions, with production in the equilibrium phase equal to 0.5, and in the nonequilibrium phase 

equal to 1. 
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Table 1. Summary of examples included in STANMOD. 
 

 
 
Model/Workspace 

 
Name 

 
Brief Description 
 

 
CFITM/CFITM 

 
Example1 
Example2 

 
Example 2A: Chromium (Column Number 4) - Semi-Finite System 
Example 2B: Chromium (Column Number 4) - Finite System 
 

 
CFITIM/CFITIM 

 
Example1 
Example2 
Example3 
Fig79a 
Fig79b 

 
Generated data, Nonequilibrium model 
Example 2D: Tritiated water (EXP. 5-2); Nonequilibrim model 
Example 2H: Tritiated water (EXP. 5-2); Linear adsorption model 
Tritium effluent curve from Glendale clay loam; Nonequilibrim model 
Boron effluent [exp. 3-1, van Genuchten, 1974]; Nonequilibrim model 
 

 
CHAIN/CHAIN 

 
Nitrogen 
Radionuc 

 
Nitrogen chain [Cho, 1972] 
Radionuclide transport 
 

 
CXTFIT/Direct 

 
Fig51 
Fig52 
Fig71 
Fig72a 
Fig72b 
Fig75 
Fig76a 
Fig76b 
Fig77a 
Fig77b 
Fig78 
Fig105 
Fig105a  
Fig108 
Fig109 
Fig109a 
Fig109b 
Fig1010 
Fig1010a 
Fig1010b 
Fig1011 
Fig1011a 
Fig1011b 
Fig1012 
Fig1012a 
Fig1012b 
 

 
First-order nonequilibrium model, effect of β and ω 
First-order nonequilibrium model, effect of β and f 
Fig.7-1: The deterministic CDE (BVP+PVP) 
Fig.7-2a: Flux vs. (resident) conc. for the IVP, Cf(Z) (a) P=2 (b) P=10 
Fig.7-2b: (Flux) vs. resident conc. for the IVP, Cf(Z) (a) P=2  (b) P=10 
Fig.7-5: Nonequilibrium one-site CDE (β=1/R, ω=0.08, 0.2, 1.0, 10) 
Fig.7-6a: Two-site CDE (ω =0.08, f=0, 0.3, 0.7,0.99875) 
Fig.7-6b: Two-site CDE (ω =0.2, f =0, 0.3, 0.7,0.99875) 
Fig.7-7a: Two-site CDE for βR=0.22 - Dirac input 
Fig.7-7b: Two-site CDE for βR=0.22 - pulse input 
Fig.7-8: IVP for the nonequilibrium CDE 
Equilibrium model, Effect of first-order decay, Step Input 
Equilibrium model, Effect of first-order decay, Pulse Input 
One-Site Model, Effect of mass-transfer coefficient 
Two-site model, Effect of mobile/immobile water ratio, Cf(T) 
Two-site model, Effect of mobile/immobile water ratio, Cf(Z) 
Two-site model, Effect of mobile/immobile water ratio, Cr(Z) 
Two-site model, Effect of retardation factor, Cf(T) 
Two-site model, Effect of retardation factor, Cf(Z) 
Two-site model, Effect of retardation factor, Cr(Z) 
Two-site model, Effect of mass transfer coefficient, Cf(T) 
Two-site model, Effect of mass transfer coefficient, Cf(Z) 
Two-site model, Effect of mass transfer coefficient, Cr(Z) 
Two-site model, Effect of Peclet number, Cf(T) 
Two-site model, Effect of Peclet number, Cf(Z) 
Two-site model, Effect of Peclet number, Cr(Z) 
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Table 1.  (continued). 
 

 
 
Model/Workspace 

 
Name 

 
Brief Description 
 

 
CXTFIT/Inverse 

 
Fig73a 
Fig73b 
Fig74 
Fig79a 
Fig79b 
Fig712 
Fig715 
 

 
Fig.7-3a: Steady saturated flow in a sand column 
Fig.7-3b: Steady saturated flow in a sand column 
Fig.7-4: Estimation of duration time (MASS = 1 in Block B) 
Fig.7-9a: Tritium effluent curve from Glendale clay loam 
Fig.7-9b: Boron effluent curve (exp. 3-1, van Genuchten, 1974) 
Fig.7-12: Field-scale bromide movement (after Jury at al., 1982) 
Fig.7-15: Hypothetical field-scale reactive solute transport 
 

 
CXTFIT/Stochast 

 
Fig45a 
Fig45b 
Fig47a 
Fig47b 
Fig710 
Fig711a 
Fig711b 
Fig711c 
Fig713 
Fig714a 
Fig714b 
 

 
Fig4-5: Stream tube model (STM) with random v, BVP vs. (IVP) 
Fig4-5: Stream tube model (STM) with random v, (BVP) vs. IVP 
Fig4-7: STM with random v, Constant and (variable) duration 
Fig4-7: STM with random v, (Constant) and variable duration 
Fig.7-10: STM with random v, Effect of σv 
Fig.7-11: STM with random v, ensemble-averaged flux conc.  
Fig.7-11: STM with random v, field-scale flux conc. 
Fig.7-11: STM with random v, field-scale resident conc. 
Fig.7-13: STM with random v and Kd, effect of ρvKd 
Fig.7-14: Nonequilibrium field-scale transport, field-scale cr 
Fig.7-14: Nonequilibrium field-scale transport, field-scale ct 
 

 
3DADE/3DADE 

 
Example1 
Example2 
Example3 
Example4 
Example5 
Example6 
Example7 
Example8 
Example9 

 
Figure 2A: Diffuse source in semi-infinite region of surface, Steady-state. 
Figure 4: Rectangular source at surface, First-type BC. 
Figure 4: Rectangular source at surface, Third-type BC. 
Figure 3B: Parallelepipedal initial distribution, Third-type BC. 
Figure 7: Circular source at surface, Third-type BC. 
Inverse: Diffuse source in semi-infinite region of surface, First-type BC. 
Inverse: Parallelepipedal initial distribution, Third-type BC. 
Inverse: Parallelepipedal initial distribution, Third-type BC. 
Inverse: Circular source at surface, First-type BC. 
 

 
N3DADE/N3DADE 

 
Exampl1a 
Exampl1b 
Exampl2a 
Exampl2b 
Example3 
Example4 
Example5 

 
BVP: Fig. 6: Instantaneous application from disc (cm,d) 
BVP: Fig. 7: Instantaneous application from disc (cm,d) 
BVP: Fig. 8: Heaviside application finite rectangle 
BVP: Fig. 9: Heaviside application finite rectangle 
IVP: Fig. 10: Heaviside initial, Finite rectangle 
IVP: Fig. 11: Exponential distribution about (5,0,0), Spherical coordinate 
PVP: Fig. 12: Heaviside production, Circular coordinate 
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4. USERS MANUAL 
 

The computational modules of the STANMOD software package (i.e., CFITM, CFITIM, 

CHAIN, CXTFIT, 3DADE, N3DADE) were all written in FORTRAN. However, the interactive 

graphics-based interface for the MS Windows environment was written in C++. In addition to 

information given in this chapter and the original manuals of the different codes, extensive context-

sensitive on-line help is made part of the interface. By pushing the F1 button, or clicking on the 

Help button while working in any window, the user obtains information about the window content. 

In addition, context-sensitive help is available using the "SHIFT+F1" help button. In this mode the 

mouse cursor changes to a help cursor (a combination of arrow + question mark), and the user can 

proceed by clicking on the object for which help is needed (i.e., a menu item, toolbar button, or 

other feature). At this point a help file will be displayed, giving information about the item on which 

the user clicked. 

STANMOD is the main program unit defining the overall computational environment of the 

system. This module controls execution of the program and determines which other optional 

modules are necessary for a particular application. The module contains a project manager and both 

the pre-processing and post-processing units. The pre-processing unit includes specification of all 

necessary parameters to successfully run the FORTRAN codes. The post-processing unit consists of 

simple x-y plots for graphical presentation of the results and a dialog window that displays an 

ASCII output file.  

The work for a new project should begin by opening the Project Manager, and giving a 

name and brief description of the new project. Users must also decide where to save the project's 

data (to which workspace). After clicking OK, the user has to select the specific program (e.g., 

CXTFIT or CFTM) for which the input is to be created. Then select the Type of Problem command 

from the Input Menu. From this point on the program will navigate the user through the entire 

process of entering input files. The user may either select particular commands from a menu, or 

allow the interface to lead him/her through the process of entering input data by repeatedly selecting 

the Next button. Alternatively, clicking the Previous button will return the user to the previous 

window. 

A Project Manager is used to manage data of existing projects, and to help locate, open, 

copy, delete and/or rename desired projects or their input or output data. A "project" represents any 
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particular problem to be solved by STANMOD. The project name (8 letters maximum), as well as a 

brief description of the project, helps to locate a particular problem. Input and output data for each 

project are placed in a subdirectory with the same name as the project. Projects are represented by a 

file project_name.cxt and the project_name subdirectory. 

 The Project Manager gives users considerable freedom in terms of organizing his/her 

projects.  The projects are grouped into Workspaces that can be placed anywhere in accessible 

memory, i.e., on local and/or network hard drives. The Workspace can be any existing accessible 

subdirectory (folder). STANMOD is installed together with several default workspaces. For 

example, the Direct, Inverse, and Stochast workspaces located in the STANMOD subdirectory 

contain test examples for, respectively, direct, inverse, and stochastic problems that can be analyzed 

with the CXTFIT program. We suggest that the user creates his/her own workspaces, e.g., the 

MyDirect and MyInverse workspaces, and keeps the provided examples intact for further reference. 

Projects can be copied with the Project Manager only within a particular workspace. Users can 

copy projects between workspaces using standard file managing software, e.g., Windows Explorer. 

In that case users must copy both the subdirectory of a particular project and the project_name.cxt 

file. Another way of copying a project between Workspaces is to first open the project and then 

using the command Save as to save this project to a new location. 
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