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Abstract

Bayesian inference has found widespread application and use in science and engineering to reconcile Earth
system models with data, including prediction in space (interpolation), prediction in time (forecasting),
assimilation of observations and deterministic/stochastic model output, and inference of the model parame-
ters. Bayes theorem states that the posterior probability, p(H|Ỹ) of a hypothesis, H is proportional to the
product of the prior probability, p(H) of this hypothesis and the likelihood, L(H|Ỹ) of the same hypothesis
given the new observations, Ỹ, or p(H|Ỹ) ∝ p(H)L(H|Ỹ). In science and engineering, H often constitutes
some numerical model, F(x, ·) which summarizes, in algebraic and differential equations, state variables and
fluxes, all knowledge of the system of interest, and the unknown parameter values, x are subject to infer-
ence using the data Ỹ. Unfortunately, for complex system models the posterior distribution is often high
dimensional and analytically intractable, and sampling methods are required to approximate the target. In
this manual I review the building blocks of the DiffeRential Evolution Adaptive Metropolis (DREAM) algo-
rithm developed by Vrugt et al. (2008a, 2009a), and discuss its implementation within DREAM Suite. This
program provides scientists and engineers with an arsenal of options and utilities to solve posterior sampling
problems involving (among others) bimodality, high-dimensionality, summary statistics, bounded param-
eter spaces, dynamic simulation models, formal/informal likelihood functions (GLUE), diagnostic model
evaluation, data assimilation, Bayesian model averaging, distributed computation, and informative/nonin-
formative prior distributions. DREAM Suite supports parallel computing and includes convergence analysis
of the sampled chain trajectories and post-processing of the results.

Keywords: Bayesian inference, Markov chain Monte Carlo (MCMC) simulation, Random walk Metropolis
(RWM), Adaptive Metropolis (AM), Differential evolution Markov Chain (DE-MC), Prior distribution,
Likelihood function, Posterior distribution, Approximate Bayesian computation (ABC), Diagnostic model
evaluation, Residual analysis, Environmental modeling, Bayesian model averaging (BMA), Generalized
likelihood uncertainty estimation (GLUE), Multi-processor computing

Email address: jasper@uci.edu (Jasper A. Vrugt)
URL: http://faculty.sites.uci.edu/jasper (Jasper A. Vrugt),

http://scholar.google.com/citations?user=zkNXecUAAAAJ&hl=en (Jasper A. Vrugt)

Preprint submitted to Manual March 9, 2016



D
R

EA
M

SU
IT

E:
T

EC
H

N
IC

A
L

M
A

N
U

A
L

DISCLAIMER

This report documents version 1 of DREAM Suite, a software package for Bayesian inference
using Markov chain Monte Carlo simulation with DREAM. The software has been verified
against a large number of test cases. However, no warranty is given that the program is
completely error-free. If you do encounter problems with the code, find errors, or have
suggestions for improvement, please contact

Jasper A. Vrugt
Department of Civil and Environmental Engineering
University of California Irvine
Irvine, CA 92617
USA
Phone: (505)-231-2698
Email: jasper@uci.edu
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1. INTRODUCTION AND SCOPE

Continued advances in direct and indirect (e.g. geophysical, pumping test, remote sens-
ing) measurement technologies and improvements in computational technology and process
knowledge have stimulated the development of increasingly complex environmental mod-
els that use algebraic and (stochastic) ordinary (partial) differential equations (PDEs) to
simulate the behavior of a myriad of highly interrelated ecological, hydrological, and biogeo-
chemical processes at different spatial and temporal scales. These water, energy, nutrient,
and vegetation processes are often non-separable, non-stationary with very complicated and
highly-nonlinear spatio-temporal interactions (Wikle and Hooten, 2010) which gives rise to
complex system behavior. This complexity poses significant measurement and modeling
challenges, in particular how to adequately characterize the spatio-temporal processes of
the dynamic system of interest, in the presence of (often) incomplete and insufficient obser-
vations, process knowledge and system characterization. This includes prediction in space
(interpolation/extrapolation), prediction in time (forecasting), assimilation of observations
and deterministic/stochastic model output, and inference of the model parameters.

The use of differential equations might be more appropriate than purely empirical rela-
tionships among variables, but does not guard against epistemic errors due to incomplete
and/or inexact process knowledge. Figure 1 provides a schematic overview of most impor-
tant sources of uncertainty that affect our ability to describe as closely and consistently as
possible the observed system behavior. These sources of uncertainty have been discussed ex-
tensively in the literature, and much work has focused on the characterization of parameter,
model output and state variable uncertainty. Explicit knowledge of each individual error
source would provide strategic guidance for investments in data collection and/or model im-
provement. For instance, if input (forcing/boundary condition) data uncertainty dominates
total simulation uncertainty, then it would not be productive to increase model complexity,
but rather to prioritize data collection instead. On the contrary, it would be naive to spend a
large portion of the available monetary budget on system characterization if this constitutes
only a minor portion of total prediction uncertainty.
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Figure 1 Schematic illustration of the most important sources of uncertainty in environmental systems modeling, including (1)
parameter, (2) input data (also called forcing or boundary conditions), (3), initial state, (4) model structural, (5) output, and
(6) calibration data uncertainty. The measurement data error is often conveniently assumed to be known, a rather optimistic
approach in most practical situations. Question remains how to describe/infer properly all sources of uncertainty in a coherent
and statistically adequate manner.

Note that model structural error (label 4) (also called epistemic error) has received relatively
little attention, but is key to learning and scientific discovery (Vrugt et al., 2005; Vrugt and
Sadegh, 2013a).

The focus of this paper is on spatio-temporal models that may be discrete in time and/or
space, but with processes that are continuous in both. An algorithm and program are
described which can be used to derive the posterior parameter (and state) distribution,
conditioned on measurements of observed system behavior. At least some level of calibration
of these models is required to make sure that the simulated state variables, internal fluxes,
and output variables match the observed system behavior as closely and consistently as
possible. Bayesian methods have found widespread application and use to do so, in particular
because of their innate ability to handle, in a consistent and coherent manner parameter,
state variable, and model output (simulation) uncertainty.

If Ỹ = {ỹ1, . . . , ỹn} signifies a discrete vector of measurements at times t = {1, . . . , n}
which summarizes the response of some environmental system = to forcing variables U =
{u1, . . . ,un}. The observations or data are linked to the physical system

Ỹ← =(x∗) + ε, (1)

where x∗ = {x∗1, . . . , x∗d} are the unknown parameters, and ε = {ε1, . . . , εn} is a n-vector
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of measurement errors. When a hypothesis, or simulator, Y← F(x∗, ũ, ψ̃0) of the physical
process is available, then the data can be modeled using

Ỹ← F(x∗, Ũ, ψ̃0) + E, (2)

where ψ̃0 ∈ Ψ ∈ Rτ signify the τ initial states, and E = {e1, . . . , en} includes observation
error (forcing and output data) as well as error due to the fact that the simulator, F(·) may be
systematically different from reality, =(x∗) for the parameters x∗. The latter may arise from
numerical errors (inadequate solver and discretization), and improper model formulation
and/or parameterization.

By adopting a Bayesian formalism the posterior distribution of the parameters of the
model can be derived by conditioning the spatio-temporal behavior of the model on mea-
surements of the observed system response

p(x|Ỹ) = p(x)p(Ỹ|x)
p(Ỹ)

, (3)

where p(x) and p(x|Ỹ) signify the prior and posterior parameter distribution, respectively,
and L(x|Ỹ) ≡ p(Ỹ|x) denotes the likelihood function. The evidence, p(Ỹ) acts as a nor-
malization constant (scalar) so that the posterior distribution integrates to unity

p(Ỹ) =
∫
χ
p(x)p(Ỹ|x)dx =

∫
χ
p(x, Ỹ)dx, (4)

over the parameter space, x ∈ χ ∈ Rd. In practice, p(Ỹ) is not required for posterior
estimation as all statistical inferences about p(x|Ỹ) can be made from the unnormalized
density

p(x|Ỹ) ∝ p(x)L(x|Ỹ) (5)

The main culprit now resides in the definition of the likelihood function, L(x|Ỹ) used
to summarize the distance between the model simulations and corresponding observations.
If the error residuals are assumed to be uncorrelated then the likelihood of the n-vector of
error residuals can be written as follows

L(x|Ỹ) = fỹ1

(
y1(x)

)
× fỹ2

(
y2(x)

)
× . . .× fỹn

(
yn(x)

)
=

n∏
t=1

fỹt
(
yt(x)

)
, (6)

where fa(b) signifies the probability density function of a evaluated at b. If we further assume
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the error residuals to be normally distributed, et(x) D∼ N (0, σ̂2
t ) then Equation (6) becomes

L(x|Ỹ, σ̂2) =
n∏
t=1

1√
2πσ̂2

t

exp
[
−1

2

(
ỹt − yt(x)

σ̂t

)2
]
, (7)

where σ̂ = {σ̂1, . . . , σ̂n} is a n-vector with standard deviations of the measurement error
of the observations. This formulation allows for homoscedastic (constant variance) and
heteroscedastic measurement errors (variance dependent on magnitude of data).1 For rea-
sons of numerical stability and algebraic simplicity it is often convenient to work with the
log-likelihood, L(x|Ỹ, σ̂2) instead

L(x|Ỹ, σ̂2) = −n2 log(2π)−
n∑
t=1
{log(σ̂t)} −

1
2

n∑
t=1

(
ỹt − yt(x)

σ̂t

)2
. (8)

If the error residuals, E(x) = Ỹ −Y(x) = {e1(x), . . . , en(x)} exhibit temporal (or spatial)
correlation then one can try to take explicit account of this in the derivation of the log-
likelihood function. For instance, suppose the error residuals assume an AR(1)-process

et(x) = c+ φet−1(x) + ηt, (9)

with ηt D∼ N (0, σ̂2
t ), expectation E

[
et(x)

]
= c/(1−φ), and variance Var

[
et(x)

]
= σ̂2/(1−φ2).

This then leads to the following formulation of the log-likelihood (derivation in statistics
textbooks)

L(x|Ỹ, c, φ, σ̂2) = −n2 log(2π)− 1
2 log[σ̂2

1/(1− φ2)]− (e1(x)− [c/(1− φ)])2

2σ̂2
1/(1− φ2)

−
n∑
t=2
{log(σ̂t)} −

1
2

n∑
t=2

(
(et(x)− c− φet−1(x))

σ̂t

)2 (10)

where |φ| < 1 signifies the first-order autoregressive coefficient. If we assume c to be zero
(absence of long-term trend) then Equation (10) reduces, after some rearrangement, to

L(x|Ỹ, φ, σ̂2) = −n2 log(2π) + 1
2 log(1− φ2)− 1

2(1− φ2)σ̂−2
1 e1(x)2

−
n∑
t=2
{log(σ̂t)} −

1
2

n∑
t=2

(
(et(x)− φet−1(x))

σ̂t

)2

,
(11)

and the nuisance variables {φ,σ} are subject to inference with the model parameters, x

1If homoscedasticity is expected and the variance of the error residuals, s2 = 1
n−1

∑n

t=1

(
et(x)

)2
is taken as sufficient

statistic for σ2, then one can show that the likelihood function simplifies to L(x|Ỹ) ∝
∑n

t=1 |et(x)|−n

6
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using the observed data, Ỹ2

Equation (11) is rather simplistic in that it assumes a-priori that the error residuals
follow a stationary AR(1) process. This assumption might not be particularly realistic
for real-world studies. Various authors have therefore proposed alternative formulations of
the likelihood function to extend applicability to situations where the error residuals are
non-Gaussian with varying degrees of kurtosis and skewness (Schoups and Vrugt, 2010a;
Smith et al., 2010; Evin et al., 2013; Scharnagl et al., 2015). Latent variables can also
be used to augment likelihood functions and take better consideration of forcing data and
model structural error (Kavetski et al., 2006a; Vrugt et al., 2008a; Renard et al., 2011). For
systems with generative (negative) feedbacks, the error in the initial states poses no harm
as its effect on system simulation rapidly diminishes when time advances. One can therefore
take advantage of a spin-up period to remove sensitivity of the modeling results (and error
residuals) to state value initialization.

The process of investigating phenomena, acquiring new information through experimen-
tation and data collection, and refining existing theory and knowledge through Bayesian
analysis has many elements in common with the scientific method. This framework, graph-
ically illustrated in Figure 2 is adopted in many branches of the earth sciences, and seeks to
elucidate the rules that govern the natural world.

2A nuisance variable is a random variable that is fundamental to the probabilistic model, but that is not of particular
interest itself.

7
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Figure 2 The iterative research cycle for a soil-tree-atmosphere-continuum (STAC). The initial hypothesis is that this system can
be described accurately with a coupled soil-tree porous media model which simulates, using PDEs, processes such as infiltration,
soil evaporation, variably saturated soil water flow and storage, root water uptake, xylem water storage and sapflux, and leaf
transpiration. Measurements of spatially distributed soil moisture and matric head, sapflux, and tree trunk potential are used
for model calibration and evaluation. The model-data comparison step reveals a systematic deviation in the early afternoon
and night time hours between the observed (black circles) and simulated (solid red line) sapflux data. It has proven to be
very difficult to pinpoint this epistemic error to a specific component of the model. Ad-hoc decisions on model improvement
therefore usually prevail.

Once the prior distribution and likelihood function have been defined, what is left in
Bayesian analysis is to summarize the posterior distribution, for example by the mean, the
covariance or percentiles of individual parameters and/or nuisance variables. Unfortunately,
most dynamic system models are highly nonlinear, and this task cannot be carried out by
analytical means nor by analytical approximation. Confidence intervals construed from a
classical first-order approximation can then only provide an approximate estimate of the
posterior distribution. What is more, the target is assumed to be multivariate Gaussian
(`2-norm type likelihood function), a restrictive assumption. I therefore resort to Monte
Carlo (MC) simulation methods to generate a sample of the posterior distribution.

In a previous paper, we have introduced the DiffeRential Evolution Adaptive Metropolis
(DREAM) algorithm (Vrugt et al., 2008a, 2009a). This multi-chain Markov chain Monte
Carlo (MCMC) simulation algorithm automatically tunes the scale and orientation of the

8



D
R

EA
M

SU
IT

E:
T

EC
H

N
IC

A
L

M
A

N
U

A
L

proposal distribution en route to the target distribution, and exhibits excellent sampling effi-
ciencies on complex, high-dimensional, and multi-modal target distributions. DREAM is an
adaptation of the Shuffled Complex Evolution Metropolis (Vrugt et al., 2003) algorithm and
has the advantage of maintaining detailed balance and ergodicity. Benchmark experiments
[e.g. (Vrugt et al., 2008a, 2009a; Laloy and Vrugt, 2012a; Laloy et al., 2013; Linde and Vrugt,
2013; Lochbühler et al., 2014; Laloy et al., 2015)] have shown that DREAM is superior to
other adaptive MCMC sampling approaches, and in high-dimensional search/variable spaces
even provides better solutions than commonly used optimization algorithms.

In just a few years, the DREAM algorithm has found widespread application and use
in numerous different fields, including (among others) atmospheric chemistry (Partridge et
al., 2011, 2012), biogeosciences (Scharnagl et al., 2010; Braakhekke et al., 2013; Ahrens and
Reichstein, 2014; Dumont et al., 2014; Starrfelt and Kaste, 2014), biology (Coehlo et al.,
2011; Zaoli et al., 2014), chemistry (Owejan et al., 2012; Tarasevich et al., 2013; DeCaluwe
et al., 2014; Gentsch et al., 2014), ecohydrology (Dekker et al., 2011), ecology (Barthel et
al., 2011; Gentsch et al., 2014; Iizumi et al., 2014; Zilliox and Goselin, 2014), economics
and quantitative finance (Bauwens et al., 2011; Lise et al., 2012; Lise, 2013), epidemiology
(Mari et al., 2011; Rinaldo et al., 2012; Leventhal et al., 2013), geophysics (Bikowski et al.,
2012; Linde and Vrugt, 2013; Laloy et al., 2012b; Carbajal et al., 2014; Lochbühler et al.,
2014, 2015), geostatistics (Minasny et al., 2011; Sun et al., 2013), hydrogeophysics (Hinnell
et al., 2014), hydrologeology (Keating et al., 2010; Laloy et al., 2013; Malama et al., 2013),
hydrology (Vrugt et al., 2008a, 2009a; Shafii et al., 2014), physics (Dura et al., 2014; Horowitz
et al., 2012; Toyli et al., 2012; Kirby et al., 2013; Yale et al., 2013; Krayer et al., 2014),
psychology (Turner and Sederberg, 2012), soil hydrology (Wöhling and Vrugt, 2011), and
transportation engineering (Kow et al., 2012).

In this paper, I review the basic theory of Markov chain Monte Carlo (MCMC) simula-
tion, and summarize the different components of the DREAM algorithm as implemented in
DREAM Suite. This Windows program provides scientists and engineers with a compre-
hensive set of capabilities for Bayesian inference and posterior exploration. DREAM Suite
implements multi-core computing (if user desires) and includes tools for convergence anal-
ysis of the sampled chain trajectories and post-processing of the results. Recent extensions
of the program are described as well, and include (among others) built-in functionalities
that enable use of informal likelihood functions (Beven and Binley, 1992; Beven and Freer ,
2001), summary statistics (Gupta et al., 2008), approximate Bayesian computation (Nott et
al., 2012; Sadegh and Vrugt, 2013, 2014), diagnostic model evaluation (Vrugt and Sadegh,
2013a), and the limits of acceptability framework (Beven, 2006; Beven and Binley, 2014).

9
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These developments are in part a response to the emerging paradigm of model diagnostics
using summary statistics of system behavior. Recent work has shown that such approach
provides better guidance on model malfunctioning and related issues than the conventional
residual-based paradigm (Sadegh et al., 2015b; Vrugt, 2015b). The main capabilities of the
DREAM toolbox are demonstrated using seven different case studies involving (for instance)
bimodality, high-dimensionality, summary statistics, bounded parameter spaces, dynamic
simulation models, formal/informal likelihood functions, diagnostic model evaluation, data
assimilation, Bayesian model averaging, distributed computation, informative/noninforma-
tive prior distributions, and limits of acceptability. These example studies are easy to run
and adapt and serve as templates for other inference problems.

The remainder of this manual is organized as follows. Section 2 reviews the basic theory
of Monte Carlo sampling and MCMC simulation. This is followed in section 3 with a brief
discussion of adaptive single and multi-chain MCMC methods. Here, I discuss the DREAM
algorithm. This section is especially concerned with the input and output arguments of
DREAM Suite and the various functionalities, capabilities, and options available to the
user. Section 5 of this paper illustrates the practical application of DREAM Suite to seven
different case studies. These examples involve a wide variety of problem features, and
illustrate some of the main capabilities of the program. Finally, section 6 concludes this
manual with a summary of the work presented herein.

2. POSTERIOR EXPLORATION

A key task in Bayesian inference is to summarize the posterior distribution. When this
task cannot be carried out by analytical means nor by analytical approximation, Monte
Carlo simulation methods can be used to generate a sample from the posterior distribution.
The desired summary of the posterior distribution is then obtained from the sample. The
posterior distribution, also referred to as the target or limiting distribution, is often high
dimensional. A large number of iterative methods have been developed to generate sam-
ples from the posterior distribution. All these methods rely in some way on Monte Carlo
simulation. The next sections discuss several different posterior sampling methods.

2.1. Monte Carlo simulation

Monte Carlo methods are a broad class of computational algorithms that use repeated
random sampling to approximate some multivariate probability distribution. The simplest
Monte Carlo method involves random sampling of the prior distribution. This method is
known to be rather inefficient, which I can illustrate with a simple example. Lets consider
a circle with unit radius in a square of size x ∈ [−2, 2]2. The circle (posterior distribution)

10
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has an area of π and makes up π/16 ≈ 0.196 of the prior distribution. I can now use Monte
Carlo simulation to estimate the value of π. I do so by randomly sampling N = 10, 000
values of x from the prior distribution. The M samples of x that fall within the circle
are posterior solutions and indicated with the plus symbol in Figure 3. Samples that fall
outside the circle are rejected and printed with a dot. The value of can now be estimated
using π ≈ 16M/N which in this numerical experiment with N = 10, 000 samples equates to
3.0912.

-2 -1 0 1 2
-2

-1

0

1

2

 

 

accepted

rejected

Figure 3 Example target distribution: A square with unit radius (in black) centered at the origin. The Monte Carlo samples
are coded in dots (rejected) and plusses (accepted). The number of accepted samples can now be used to estimate the value of
π ≈ 3.0912.
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The target distribution is relatively simple to sample in the present example. It should
be evident however that uniform random sampling will not be particularly efficient if the
hypercube of the prior distribution is much larger. Indeed, the chance that a random sample
of x falls within the unit circle decreases rapidly (quadratically) with increasing size of the
prior distribution. If a much higher dimensional sample were considered then rejection
sampling would quickly need many millions of Monte Carlo samples to delineate reasonably
the posterior distribution and obtain an accurate value of π. What is more, in the present
example all solutions within the circle have an equal density. If this were not the case then
many accepted samples are required to approximate closely the distribution of the probability
mass within the posterior distribution. Indeed, methods such as the generalized likelihood
uncertainty estimation (GLUE) that rely on uniform sampling (such as rejection sampling)
can produce questionable results if the target distribution is somewhat complex and/or
comprises only a relatively small part of the prior distribution (Vrugt, 2015a). In summary,
standard Monte Carlo simulation methods are computationally inefficient for anything but
very low dimensional problems.

This example is rather simple but conveys what to expect when using simple Monte Carlo
simulation methods to approximate complex and high-dimensional posterior distributions.
I therefore resort to Markov chain Monte Carlo simulation to explore the posterior target
distribution.

2.2. Markov Chain Monte Carlo simulation

The basis of MCMC simulation is a Markov chain that generates a random walk through
the search space and successively visits solutions with stable frequencies stemming from a
stationary distribution, π(·)3. To explore the target distribution, π(·), a MCMC algorithm
generates trial moves from the current state of the Markov chain xt−1 to a new state xp.
The earliest MCMC approach is the random walk Metropolis (RWM) algorithm introduced
by Metropolis et al. (1953). This scheme is constructed to maintain detailed balance with
respect to π(·) at each step in the chain. If p(xt−1) (p(xp)) denotes the probability to find
the system in state xt−1 (xp) and q(xt−1 → xp) (q(xp → xt−1)) is the conditional probability
to perform a trial move from xt−1 to xp (xp to xt−1), then the probability pacc(xt−1 → xp)
to accept the trial move from xt−1 to xp is related to pacc(xp → xt−1) according to

p(xt−1)q(xt−1 → xp)pacc(xt−1 → xp) = p(xp)q(xp → xt−1)pacc(xp → xt−1) (12)

3This notation for the target distribution has nothing to do with the value of π = 3.1415... subject to inference in Figure 3
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If a symmetric jumping distribution is used, that is q(xt−1 → xp) = q(xp → xt−1), then it
follows that

pacc(xt−1 → xp)
pacc(xp → xt−1) = p(xp)

p(xt−1) (13)

This Equation does not yet fix the acceptance probability. Metropolis et al. (1953) made
the following choice

pacc(xt−1 → xp) = min
[
1, p(xp)
p(xt−1)

]
, (14)

to determine whether to accept a trial move or not. This selection rule has become the basic
building block of many existing MCMC algorithms. Hastings (1970) extended Equation (14)
to the more general case of non-symmetrical jumping distributions

pacc(xt−1 → xp) = min
[
1, p(xp)q(xp → xt−1)
p(xt−1)q(xt−1 → xp)

]
, (15)

in which the forward (xt−1 to xp) and backward (xp to xt−1) jump do not have equal
probability, q(xt−1 → xp) , q(xp → xt−1). This generalization is known as the Metropolis-
Hastings (MH) algorithm and broadens significantly the type of proposal distribution that
can be used for posterior inference.

The core of the RWM algorithm can be coded in just a few lines and requires only a
jumping distribution, a function to generate uniform random numbers, and a function to
calculate the probability density of each proposal. Note, for the time being I conveniently
assume the use of a noninformative prior distribution. This simplifies the Metropolis accep-
tance probability to the ratio of the densities of the proposal and the current state of the
chain. The use of an informative prior distribution will be considered at a later stage.

In words, assume that the points {x0, . . . ,xt−1} have already been sampled, then the
RWM algorithm proceeds as follows. First, a candidate point xp is sampled from a proposal
distribution q that depends on the present location, xt−1 and is symmetric, q(xt−1,xp) =
q(xp,xt−1). Next, the candidate point is either accepted or rejected using the Metropolis
acceptance probability (Equation 14). Finally, if the proposal is accepted the chain moves
to xp, otherwise the chain remains at its current location xt−1. Repeated application of
these three steps results in a Markov chain which, under certain regularity conditions, has a
unique stationary distribution with posterior probability density function, π(·). In practice,
this means that if one looks at the values of x sufficiently far from the arbitrary initial
value, that is, after a burn-in period, the successively generated states of the chain will be
distributed according to π(·), the posterior probability distribution of x. Burn-in is required
to allow the chain to explore the search space and reach its stationary regime.
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Figure 4 illustrates the outcome of the RWM algorithm for a simple d = 2-dimensional
multivariate normal target distribution with correlated dimensions. This target distribution
is given by ψ2(µ,Σ), where ψ(·) denotes the bivariate normal distribution with mean µ =
{µ1, µ2} and covariance matrix Σ. We assume a zero mean and d× d covariance matrix

Σ =
 1.0 0.8

0.9 1.0


The chain is initialized by sampling from U2[−10, 10], where Ud(a, b) denotes the d-variate
uniform distribution with lower and upper bounds a and b, respectively. The left graph
presents a scatter plot of the bivariate posterior samples using a total of T = 50, 000 function
evaluations and burn-in of 50%. The contours depict the 68, 90, and 95% uncertainty
intervals of the target distribution. The right graph displays a plot of the generation number
against the value of parameter, x1 and x2 at each iteration. This is also called a traceplot.
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Figure 4 (A) bivariate scatter plots of the RWM derived posterior samples. The green, black and blue contour lines depict the
true 68, 90 and 95% uncertainty intervals of the target distribution, respectively. (B,C) traceplot of the sampled values of x1
(top) and x2 (bottom).

Perhaps not surprisingly, the bivariate samples of the RWM algorithm nicely approximate
the target distribution. The acceptance rate of 23% is somewhat lower than considered
optimal in theory but certainly higher than derived from Monte Carlo simulation. The
posterior mean and covariance are in excellent agreement with their values of the target
distribution (not shown).

This simple example just serves to demonstrate the ability of RWM to approximate the
posterior target distribution. The relative ease of implementation of RWM and its theoretical
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underpinning have led to widespread application and use in Bayesian inference. However, the
efficiency of the RWM algorithm is determined by the choice of the proposal distribution, q(·)
used to create trial moves (transitions) in the Markov chain. When the proposal distribution
is too wide, too many candidate points are rejected, and therefore the chain will not mix
efficiently and converge only slowly to the target distribution. On the other hand, when
the proposal distribution is too narrow, nearly all candidate points are accepted, but the
distance moved is so small that it will take a prohibitively large number of updates before
the sampler has converged to the target distribution. The choice of the proposal distribution
is therefore crucial and determines the practical applicability of MCMC simulation in many
fields of study (Owen and Tribble, 2005).

3. AUTOMATIC TUNING OF PROPOSAL DISTRIBUTION

In the past decade, a variety of different approaches have been proposed to increase the
efficiency of MCMC simulation and enhance the original RWM and MH algorithms. These
approaches can be grouped into single and multiple chain methods.

3.1. Single-chain methods

The most common adaptive single chain methods are the adaptive proposal (AP) (Haario
et al., 1999), adaptive Metropolis (AM) (Haario et al., 2001) and delayed rejection adap-
tive metropolis (DRAM) algorithm (Haario et al., 2006), respectively. These methods
work with a single trajectory, and continuously adapt the covariance, Σ of a Gaussian
proposal distribution, qt(xt−1, ·) = Nd(xt−1, sdΣ) using the accepted samples of the chain,
Σ = cov(x0, . . . ,xt−1)+ϕId. The variable sd represents a scaling factor (scalar) that depends
only on the dimensionality d of the problem, Id signifies the d-dimensional identity matrix,
and ϕ = 10−6 is a small scalar that prevents the sample covariance matrix to become sin-
gular. As a basic choice, the scaling factor is chosen to be sd = 2.382/d which is optimal for
Gaussian target and proposal distributions (Gelman et al., 1996; Roberts et al., 1997) and
should give an acceptance rate close to 0.44 for d = 1, 0.28 for d = 5 and 0.23 for large d.

Single-site updating of x (Haario et al., 2005) is possible to increase efficiency of AM
for high-dimensional problems (large d). In addition, for the special case of hierarchical
Bayesian inference of hydrologic models, Kuczera et al. (2010) proposed to tune Σ using a
limited-memory multi-block pre-sampling step, prior to a classical single block Metropolis
run.

Another viable adaptation strategy is to keep the covariance matrix fixed (identity matrix)
and to update during burn-in the scaling factor, sd until a desired acceptance rate is achieved.
This approach differs somewhat from the AM algorithm but is easy to implement.
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Whether a specific adaptation scheme of the scaling factor (also called jump rate) works
well in practice depends on the properties of the target distribution. Some tuning is hence
required to achieve adequate results. Practical experience suggests that covariance matrix
adaptation (AM) is preferred over scaling factor adaptation. The proposals created with
the AM algorithm will more rapidly behave as the target distribution.

The use of a multivariate normal proposal distribution with adaptive covariance matrix
or jump rate works well for Gaussian-shaped target distributions, but does not converge
properly for multimodal distributions with long tails, possibly infinite first and second mo-
ments (as demonstrated in section . Experience further suggests that single chain methods
are unable to traverse efficiently complex multi-dimensional parameter spaces with multiple
different regions of attraction and numerous local optima. The use of an overly dispersed pro-
posal distribution can help to avoid premature convergence, but with a very low acceptance
rate in return. With a single chain it is also particularly difficult to judge when convergence
has been achieved. Even the most powerful diagnostics that compare the sample moments
of the first and second half of the chain cannot guarantee that the target distribution has
been sampled. Indeed, the sample moments of both parts of the chain might be identical
but the chain is stuck in a local optimum of the posterior surface or traverses consistently
only a portion of the target distribution (Gelman and Shirley, 2009). In fact, single chain
methods suffer many similar problems as local optimizers and cannot guarantee that the full
parameter space has been explored adequately in pursuit of the target distribution.

3.2. Multi-chain methods: DE-MC

Multiple chain methods use different trajectories running in parallel to explore the pos-
terior target distribution. The use of multiple chains has several desirable advantages, par-
ticularly when dealing with complex posterior distributions involving long tails, correlated
parameters, multi-modality, and numerous local optima (Gilks et al., 1994; Liu et al., 2000;
ter Braak, 2006; ter Braak and Vrugt, 2008; Vrugt et al., 2009a; Radu et al., 2009). The use of
multiple chains offers a robust protection against premature convergence, and opens up the
use of a wide arsenal of statistical measures to test whether convergence to a limiting distri-
bution has been achieved (Gelman and Rubin, 1992). One popular multi-chain method that
has found widespread application and use in hydrology is the Shuffled Complex Evolution
Metropolis algorithm (SCEM-UA, Vrugt et al., 2003). Although the proposal adaptation of
SCEM-UA violates Markovian properties, numerical benchmark experiments on a diverse
set of multi-variate target distributions have shown that the method is efficient and close
to exact. The difference between the limiting distribution of SCEM-UA and the true target
distribution is negligible in most reasonable cases and applications. The SCEM-UA method
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can be made an exact sampler if the multi-chain adaptation of the covariance matrix is re-
stricted to the burn-in period only. In a fashion similar to the AP (Haario et al., 1999) and
AM algorithm, the method then derives an efficient Gaussian proposal distribution for the
standard Metropolis algorithm. Nevertheless, I do not consider the SCEM-UA algorithm
herein.

ter Braak (2006) proposed a simple adaptive RWM algorithm called Differential Evolu-
tion Markov chain (DE-MC). DE-MC uses differential evolution as genetic algorithm for
population evolution with a Metropolis selection rule to decide whether candidate points
should replace their parents or not. In DE-MC, N different Markov chains are run simul-
taneously in parallel. If the state of a single chain is given by the d-vector x, then at each
generation t − 1 the N chains in DE-MC define a population, X which corresponds to an
N × d matrix, with each chain as a row. Then multivariate proposals, Xp are generated on
the fly from the collection of chains, X = {x1

t−1, . . . ,xNt−1} using differential evolution (Storn
and Price, 1997; Price et al., 2005)

Xi
p = γd(Xa −Xb) + ζd, a , b , i, (16)

where γ denotes the jump rate, a and b are integer values drawn without replacement from
{1, . . . , i−1, i+1, . . . , N}, and ζ D∼ Nd(0, c∗) is drawn from a normal distribution with small
standard deviation, say c∗ = 10−6. By accepting each proposal with Metropolis probability

pacc(Xi → Xi
p) = min[1, p(Xi

p)/p(Xi)], (17)

a Markov chain is obtained, the stationary or limiting distribution of which is the posterior
distribution. The proof of this is given in ter Braak and Vrugt (2008). Thus, if pacc(Xi → Xi

p)
is larger than some uniform label drawn from U(0, 1) then the candidate point is accepted
and the ith chain moves to the new position, that is xit = Xi

p, otherwise xit = xit−1.
Because the joint pdf of the N chains factorizes to π(x1|·) × . . . × π(xN |·), the states

x1 . . .xN of the individual chains are independent at any generation after DE-MC has become
independent of its initial value. After this burn-in period, the convergence of a DE-MC run
can thus be monitored with the R̂-statistic of Gelman and Rubin (1992). If the initial
population is drawn from the prior distribution, then DE-MC translates this sample into
a posterior population. From the guidelines of sd in RWM the optimal choice of γ =
2.38/

√
2d. With a 10% probability the value of γ = 1, or p(γ=1) = 0.1 to allow for mode-

jumping (ter Braak, 2006; ter Braak and Vrugt, 2008; Vrugt et al., 2008a, 2009a) which
is a significant strength of DE-MC as will be shown later. If the posterior distribution
consists of disconnected modes with in-between regions of low probability, covariance based
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MCMC methods will be slow to converge as transitions between probability regions will be
infrequent.

The DE-MC method solves an important practical problem in RWM, namely that of
choosing an appropriate scale and orientation for the jumping distribution. Earlier ap-
proaches such as (parallel) adaptive direction sampling (Gilks et al., 1994; Roberts and Gilks,
1994; Gilks and Roberts, 1996) solved the orientation problem but not the scale problem.

To demonstrate the advantages of DE-MC over single chain methods please consider
Figure 5 that presents histograms of the posterior samples derived from AM (left plot) and
DE-MC (right plot) for a simple univariate target distribution consisting of a mixture of two
normal distributions,

p(x) = 1
6ψ(−8, 1) + 5

6ψ(10, 1), (18)

where ψ(a, b) denotes the probability density function (pdf) of a normal distribution with
mean a and standard deviation b. The initial state of the Markov chain(s) is sampled from
U [−20, 20] (see Figure 5).
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Figure 5 Histogram of the posterior distribution derived from the (A) AM (single chain), and (B) DE-MC (multi-chain)
samplers. The solid black line displays the pdf of the true mixture target distribution.

The AM algorithm produces a spurious approximation of the bimodal target distribu-
tion. The variance (width) of the proposal distribution is insufficient to enable the chain to
adequately explore both modes of the target distribution. A simple remedy to this problem
is to increase the (default) initial variance of the univariate normal proposal distribution.
This would allow the AM sampler to take much larger steps and jump directly between
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both modes, but at the expense of a drastic reduction in the acceptance rate and search effi-
ciency. Indeed, besides the occasional successful jumps many other proposals will overshoot
the target distribution, receive a nearly zero density, and consequently be rejected.

This rather simple univariate example illustrates the dilemma of RWM how to determine
an appropriate scale and orientation of the proposal distribution. Fortunately, the histogram
of the posterior samples derived with the DE-MC algorithm matches perfectly the mixture
distribution. Periodic use of γ = 1 enables the N = 10 different Markov chains of DE-MC to
transition directly between the two disconnected posterior modes (e.g. ter Braak and Vrugt
(2008); Vrugt et al. (2008a); Laloy and Vrugt (2012a)) and rapidly converge to the exact
target distribution. The initial states of the DE-MC chains should be distributed over the
parameter space so that both modes can be found. What is more the use of N trajectories
allows for a much more robust assessment of convergence.

In previous work (Vrugt et al., 2008a, 2009a) we have shown that the efficiency of DE-MC
can be enhanced, sometimes dramatically, by using adaptive randomized subspace sampling,
multiple chain pairs for proposal creation, and explicit consideration of aberrant trajectories.
This method, entitled DiffeRential Evolution Adaptive Metropolis (DREAM) maintains
detailed balance and ergodicity and has shown to exhibit excellent performance on a wide
range of problems involving nonlinearity, high-dimensionality, and multimodality. In these
and other papers [e.g (Laloy and Vrugt, 2012a)] benchmark experiments have shown that
DREAM outperforms other adaptive MCMC sampling approaches, and, in high-dimensional
search/variable spaces, can even provide better solutions than commonly used optimization
algorithms.

3.3. Multi-chain methods: DREAM

The DREAM algorithm has it roots within DE-MC but uses subspace sampling and out-
lier chain correction to speed up convergence to the target distribution. Subspace sampling
is implemented in DREAM by only updating randomly selected dimensions of x each time
a proposal is generated. If A is a subset of d∗-dimensions of the original parameter space,
Rd∗ ⊆ Rd, then a jump, dXi in the ith chain, i = {1, . . . , N} at iteration t = {2, . . . , T}
is calculated from the collection of chains, X = {x1

t−1, . . . ,xNt−1} using differential evolution
(Storn and Price, 1997; Price et al., 2005)

dXi
A = ζd∗ + (1d∗ + λd∗)γ(δ,d∗)

δ∑
j=1

(
Xaj

A −Xbj
A

)
dXi

,A = 0,
(19)
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where γ = 2.38/
√

2δd∗ is the jump rate, δ denotes the number of chain pairs used to generate
the jump, and a and b are vectors consisting of δ integers drawn without replacement from
{1, . . . , i− 1, i+ 1, . . . , N}. The default value of δ = 3, and results, in practice, in one-third
of the proposals being created with δ = 1, another third with δ = 2, and the remaining third
using δ = 3. The values of λ and ζ are sampled independently from Ud∗(−c, c) andNd∗(0, c∗),
respectively, the multivariate uniform and normal distribution with, typically, c = 0.1 and
c∗ small compared to the width of the target distribution, c∗ = 10−6 say. Compared to
DE-MC, p(γ=1) = 0.2 to enhance the probability of jumps between disconnected modes of
the target distribution. The candidate point of chain i at iteration t then becomes

Xi
p = Xi + dXi, (20)

and the Metropolis ratio of Equation (17) is used to determine whether to accept this
proposal or not. If pacc(Xi → Xi

p) ≥ U(0, 1) the candidate point is accepted and the ith
chain moves to the new position, that is xit = Xi

p, otherwise xit = xit−1. The default equation
for γ should, for Gaussian and Student target distribution, result in optimal acceptance
rates close to 0.44 for d = 1, 0.28 for d = 5, and 0.23 for large d (please refer to section 7.84
of Roberts and Casella (2004) for a cautionary note on these references acceptance rates).

The d∗-members of the subset A are sampled from the entries {1, . . . , d} (without replace-
ment) and define the dimensions of the parameter space to be sampled by the proposal. This
subspace spanned by A is construed in DREAM with the help of a crossover operator. This
genetic operator is applied before each proposal is created and works as follows. First, a
crossover value, cr is sampled from a geometric sequence of nCR different crossover proba-
bilities, CR = { 1

nCR
, 2
nCR

, . . . , 1} using the discrete multinomial distribution, M(CR,pCR)
on CR with selection probabilities pCR. Then, a d-vector z = {z1, . . . , zd} is drawn from
a standard multivariate normal distribution, z D∼ Ud(0, 1). All those values j which satisfy
zj ≤ cr are stored in the subset A and span the subspace of the proposal that will be sampled
using Equation (19). If A is empty, one dimension of {1, . . . , d} will be sampled at random
to avoid the jump vector to have zero length.

The use of a vector of crossover probabilities enables single-site Metropolis (A has one
element), Metropolis-within-Gibbs (A has one or more elements) and regular Metropolis
sampling (A has d elements), and constantly introduces new directions in the parameter
space that chains can take outside the subspace spanned by their current positions. What
is more, the use of subspace sampling allows using N < d in DREAM, an important ad-
vantage over DE-MC that requires N = 2d chains to be run in parallel (ter Braak, 2006).
Subspace sampling as implemented in DREAM adds one extra algorithmic variable, nCR
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to the algorithm. The default setting of nCR = 3 has shown to work well in practice, but
larger values of this algorithmic variable might seem appropriate for high-dimensional tar-
get distributions, say d > 50, to preserve the frequency of low-dimensional jumps. Note,
more intelligent subspace selection methods can be devised for target distributions involving
many highly correlated parameters. These parameters should be sampled jointly in a group,
otherwise too many of the (subspace) proposals will be rejected and the search can stagnate.
This topic will be explored in future work.

To enhance search efficiency the selection probability of each crossover value, stored in
the nCR-vector pCR, is tuned adaptively during burn-in by maximizing the distance traveled
by each of the N chains. This adaptation is described in detail in Vrugt et al. (2008a, 2009a).

The DREAM algorithm described above differs in several important ways from the DE-
MC algorithm presented in section 3.2. These added features enhance significantly the
convergence speed of the sampled chains to a limiting distribution. The DREAM algorithm
does implement outlier handling to patch a critical vulnerability of multi-chain MCMC
methods such as SCEM-UA, DE-MC, and DREAM (Vrugt et al., 2003; ter Braak and Vrugt,
2008; Vrugt et al., 2008a, 2009a). The performance of these methods is impaired if one or
more of their sampled chains have become trapped in an unproductive area of the parameter
space while in pursuit of the target distribution. The state of these outlier chains will not only
contaminate the jumping distribution of Equation (19) and thus slow down the evolution and
mixing of the other "good" chains, what is much worse, dissident chains make it impossible
to reach convergence to a limiting distribution. For as long as one of the chains samples a
disjoint part of the parameter space, the R̂-diagnostic of Gelman and Rubin (1992) cannot
reach its stipulated threshold of 1.2 required to officially declare convergence.

The problem of outlier chains is well understood and easily demonstrated with an example
involving a posterior response surface with one or more local area of attractions far removed
from the target distribution. Chains that populate such local optima can continue to persist
indefinitely if the size of their jumps is insufficient to move the chain outside the space
spanned by this optima (see Figure 2 of ter Braak and Vrugt (2008)). Dissident chains will
occur most frequent in high-dimensional target distributions, as they require the use of a
large N , and complex posterior response surfaces with many areas of attraction.

DREAM suite implements a function called check to remedy dissident chains. The mean
log density of the samples stored in the second half of each chain is used as proxy for the
"fitness" of each trajectory, and these N data points are examined for anomalies using an
outlier detection test. Those chains (data points) that have been labeled as outlier will
relinquish their dissident state and move to the position of one of the other chains (chosen
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at random). Details of this procedure can be found in Vrugt et al. (2009a). DREAM Suite
implements four different outlier detection methods the user can choose from. Details will
be presented in the next section.

Those proficient in statistics, computer coding and numerical computation, will be able to
code the DREAM algorithm and personalize this method for their own applications. Yet, for
others we have developed a C++ program of the algorithm. This program is called DREAM
Suite and implements many built-in functionalities that are easy to use in practice. The
next sections will introduce the various elements of DREAM Suite, and use several examples
to illustrate how the package can be used to solve a wide variety of Bayesian inference
problems involving (among others) simple functions, dynamic simulation models, formal
and informal likelihood functions, informative and noninformative prior distributions, limits
of acceptability, summary statistics, diagnostic model evaluation, low and high-dimensional
parameter spaces, and distributed computing.

Numerical experiments with a large and diverse set of test functions have shown that the
parallel implementation of DREAM Suite enhances convergence to the posterior distribution
for numerical models that require at least 2 seconds to run.

4. IMPLEMENTATION OF DREAM

The source code of DREAM Suite was originally written in MATLAB in 2006 and many
new functionalities and options have been added to the source code in recent years due to
continued research developments and to support the needs of a growing group of users. In
2015 we have developed a C++ code of the MATLAB toolbox, which is called DREAM
Suite. This version is compiled for Windows and has a Graphical User Interface (GUI) to
simplify implementation and use of the DREAM algorithm.

The DREAM code can be executed by the user from the GUI. This requires the user to
specify the input arguments of DREAM. I now discuss all these input variables - that can
be defined in the different tabs of the GUI. If the main function call to DREAM is given by

[chain,output,fx] = DREAM(model,DREAMPar,Par_info,Meas_info),options

then the input arguments are model (plugin written by user), DREAMPar, Par_info, Meas_info
and options are input arguments defined by the user in the GUI, and chain, output and fx
are output variables computed by the C++ function of DREAM and returned to the user in
binary or text files and their content is visualized in tables and figures by the postprocessor
of DREAM Suite. I will now discuss each of the five input variables and their content and
usage.
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4.1. Input argument 1: model

The variable model is perhaps the most important input argument of the C++ code
as this constitutes the model or function plugin written by the user. model could be as
simple as a simple statistical distribution that is used to test DREAM, or as complex as
a CPU-intensive numerical model that solves differential equations in time and space. I
conveniently write the model operator as follows

Y = model(x) (21)

where x (input argument) is a 1×d vector of parameter values sampled by DREAM, and Y is
a return argument whose content is either a likelihood, log-likelihood, or vector of simulated
values or summary statistics, respectively. The content of the function model needs to be
written by the user - but the syntax and function call is universal. The user is responsible
for their own plugin. The DREAM suite manual clarifies how to setup the model program
with DREAM Suite.

4.2. Input argument 1: DREAMPar

The DREAM algorithm has a number of algorithmic variables that determine the per-
formance and efficiency of the algorithm. Some of these variables are case study dependent,
whereas others should be kept at their default values. Table 1 summarizes the algorithmic
variables of DREAM.
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Table 1 Main algorithmic variables of DREAM: Mathematical symbols, corresponding fields in DREAM Suite, and default
settings. Note, the default settings have been determined in previous work and shown to work well for a range of target
distributions.

Symbol Description Field DREAMPar Default

Problem dependent

d number of parameters d ≥ 1
N number of Markov chains N ≤ 2δ + 1
T number of generations T ≥ 1
L(x|Ỹ) likelihood function lik [1, 2], [11− 17], [21− 23], [31− 34]

Default variables†

ncr number of crossover values nCR 3
δ number chain pairs proposal delta 3
λ ‡ randomization lambda 0.1
ζ § ergodicity zeta 10−12

p(γ=1) probability unit jump rate p_unit_gamma 0.2
outlier detection test outlier ’iqr’

K thinning rate thinning 1
adapt crossover probabilities? adapt_pCR ’yes’

G £ shaping factor GLUE > 0
β0
¶ scaling factor jump rate beta0 1

† A change to the default values of DREAM will affect the convergence (acceptance) rate
‡ λ

D∼ Ud∗(−lambda, lambda)
§ ζ

D∼ Nd∗(0, zeta)
£ For pseudo-likelihood functions of GLUE (Beven and Binley, 1992)
¶ Multiplier of the jump rate, γ = β0γ, default β0 = 1

The values of the algorithmic parameters stored in DREAMPar can be defined by the user
in the GUI of DREAM Suite. Most fields of DREAMPar appear in the "DREAM algorithm"
tab.
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Figure 6 Screenshot of "DREAM algorithm" tab of the GUI of DREAM Suite. Note that the field "Number of different BMA
models" applies only to example 19 of the program manager

The field d of DREAMPar appears on the "Parameter space" tab of the GUI, and the field
lik and G on the "Likelihood function" tab, of which more later.

The field names of DREAMPar match exactly the symbols (letters) used in the (mathe-
matical) description of DREAM in Equations (19) and (20). The values of the fields d, N,
T depend on the dimensionality of the target distribution. These variables are problem de-
pendent and should hence be specified by the user in the GUI. Default settings are assumed
in Table 1 for the remaining fields of DREAMPar with the exception of GLUE and lik whose
values will be discussed in the next two paragraphs. To create proposals with Equation (19),
the value of N should at least be equivalent to 2δ+ 1 or N = 7 for the default of δ = 3. This
number of chains is somewhat excessive for low dimensional problems involving just a few
parameters. One could therefore conveniently set δ = 1 for small d. The default settings of
DREAMPar are easy to modify by the user in the GUI, yet this is generally not recommended.

The DREAM algorithm can be used to sample efficiently the behavioral solution space
of informal and likelihood functions used within GLUE (Beven and Binley, 1992; Beven
and Freer , 2001). In fact, as will be shown later, DREAM can also solve efficiently the
limits of acceptability framework of Beven (2006). For now it suffices to say that the field
GLUE of DREAMPar stores the value of the shaping factor used within the (pseudo)likelihood
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functions of GLUE. I will revisit GLUE and informal Bayesian inference at various places
in the remainder of this manual. The content of the field lik of DREAMPar defines the choice
of likelihood function used to compare the output of the model plugin with the available
calibration data. Table 2 lists the different options for lik the user can select from. These
likelihood functions appear under the "Likelihood function" tab of the GUI. The choice of
likelihood function depends in large part on the content of the return argument Y of the
users model plugin which is either a (log)-likelihood, a vector with simulated values, or a
vector with summary statistics, respectively.

Table 2 Built-in likelihood functions of DREAM Suite. The value of field lik of DREAMPar depends on the content of the return
argument Y from the model plugin of the user; [1] likelihood, [2] log-likelihood, [11-17] vector of simulated values, [21-23] vector
of summary statistics, and [31-34] vector of simulated values. The mathematical formulation of each likelihood function is
given in Appendix A. The likelihood functions appear under the "Likelihood function" tab of the GUI.

lik Description References

User-free likelihood functions

1 Likelihood, L(x|Ỹ) e.g. Equation (7)
2 Log-likelihood, L(x|Ỹ) e.g. Equations (8), (10) and (11)

Formal likelihood functions

11 Gaussian likelihood: measurement error integrated out Thiemann et al. (2001); see footnote 1
12 † Gaussian likelihood: homos/heteroscedastic data error Equation (7)
13 †‡ Gaussian likelihood: with AR-1 model of error residuals Equations (10) and (11)
14 § Generalized likelihood function Schoups and Vrugt (2010a)
15 Whittle’s likelihood (spectral analysis) Whittle (1953)
16 † Laplacian likelihood: homos/heteroscedastic data error Laplace (1774)
17 § Skewed Student likelihood function Scharnagl et al. (2015)

ABC - diagnostic model evaluation

21 ¶ Noisy ABC: Gaussian likelihood Turner and Sederberg (2012)
22 ¶U ABC: Boxcar likelihood Sadegh and Vrugt (2014)

GLUE - limits of acceptability

23 U Limits of acceptability Vrugt (2015a)

GLUE - informal likelihood functions

31 £ Inverse error variance with shaping factor Beven and Binley (1992)
32 £ Nash and Sutcliffe efficiency with shaping factor Freer et al. (1996)
33 £ Exponential transform error variance with shaping factor Freer et al. (1996)
34 £ Sum of absolute error residuals Beven and Binley (1992)

† Measurement data error in field Sigma of Par_info or inferred jointly with parameters
‡ First-order autoregressive coefficient is nuisance variable
§ Nuisance variables for model bias, correlation, non-stationarity and nonnormality residuals
¶ ε delineates behavioral space: see "Summary Statistics" tab in GUI
U Uses a modified Metropolis selection rule to accept proposals or not (see Page 41)
£ Shaping factor, G defined in field GLUE of DREAMPar (default G = 10)

The likelihood function can be chosen by the user in the GUI of DREAM Suite under
the "Likelihood function" tab.

26



D
R

EA
M

SU
IT

E:
T

EC
H

N
IC

A
L

M
A

N
U

A
L

Figure 7 Screenshot of "Likelihood function" tab of the GUI of DREAM Suite.

If the return argument, Y of the model plugin of the user, called model is equivalent to
a likelihood or log-likelihood then field lik of DREAMPar should be set equivalent to 1 or 2,
respectively. This choice is appropriate for problems involving some prescribed multivariate
probability distribution whose density can be evaluated directly. Examples of such functions
are presented in project manager of the GUI of DREAM suite (example 1, 2, 3, 8, 10, 11).
Option 1 and 2 also enable users to evaluate their own preferred likelihood function directly
in the model script. In principle, these two options are therefore sufficient to apply the
DREAM code to a large suite of problems. Nevertheless, to simplify implementation and
use, the DREAM package contains 14 different built-in likelihood functions.

Likelihood functions 11-17 and 31-34 are appropriate if the output of model plugin con-
sists of a vector of simulated values of some variable(s) of interest (see examples 4-7, 9,
12-14 and 16-19 of the project manager of the GUI of DREAM suite). Some of these like-
lihood functions (e.g., 12-14, 16, 17) contain extraneous variables (nuisance coefficients)
whose values need to be inferred jointly with the model parameters, x (see examples 14
and 17 of the project manager of the GUI of DREAM suite). Likelihood functions 21 and
22 are appropriate if the return argument Y of model plugin consists of one or more sum-
mary statistics of the simulated data (see examples 8 and 14 of the project manager of the
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GUI of DREAM suite). These two likelihood functions allow use of approximate Bayesian
computation and diagnostic model evaluation (Vrugt and Sadegh, 2013a; Sadegh and Vrugt,
2014; Vrugt, 2015b). Finally, likelihood function 23 enables use of the limits of acceptability
framework (Beven, 2006; Beven and Binley, 2014; Vrugt, 2015a) (see examples 20, 21, 22,
23 of the project manager of the GUI of DREAM suite). Appendix A provides the mathe-
matical formulation of each of the likelihood functions listed in Table 2. Note, likelihood 22
and 23 use a modified Metropolis selection rule to accept proposals or not (see Page 41).

The generalized likelihood (GL) function of Schoups and Vrugt (2010a) (14) is most
advanced in that it can account explicitly for bias, correlation, non-stationarity, and non-
normality of the error residuals trough the use of nuisance coefficients. In a recent paper,
Scharnagl et al. (2015) has introduced a skewed student likelihood function (17) as modi-
fication to the GL formulation (14) to describe adequately heavy-tailed error residual dis-
tributions. Whittle’s likelihood (Whittle, 1953) (15) is a frequency-based approximation of
the Gaussian likelihood and can be interpreted as minimum distance estimate of the dis-
tance between the parametric spectral density and the (nonparametric) periodogram (see
examples 9 of the project manager of the GUI of DREAM suite). It also minimizes the
asymptotic Kullback-Leibler divergence and, for autoregressive processes, provides asymp-
totically consistent estimates for Gaussian and non-Gaussian data, even in the presence of
long-range dependence (Montanari and Toth, 2007). Likelihood function 16, also referred
to as Laplace or double exponential distribution, differs from all other likelihood functions
in that it assumes a `1-norm of the error residuals. This approach weights all error residuals
equally and the posterior inference should therefore not be as sensitive to outliers.

Likelihood functions 11-17 and 31-34 represent a different school of thought. Formula-
tions 11-17 are derived from first-order statistical principles about the expected probabilistic
properties of the error residuals, E(x) = Ỹ−Y(x). These functions are also referred to as
formal likelihood functions. For example if the error residuals are assumed to be independent
(uncorrelated) and normally distributed then the likelihood function is simply equivalent to
formulation 11 or 12, depending on whether the measurement data error is integrated out
(11) or explicitly considered (12).

The second class of likelihood functions, 31-34, avoids over-conditioning of the likelihood
surface in the presence of epistemic and other sources, and their mathematical formulation
is guided by trial-and-error, expert knowledge, and commonly used goodness-of-fit criteria
(Beven and Binley, 1992; Freer et al., 1996; Beven and Freer , 2001). These informal like-
lihood functions enable users to implement the GLUE methodology of Beven and Binley
(1992). The use of DREAM enhances, sometimes dramatically, the computational efficiency
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of GLUE (Blasone et al., 2008).
The field thinning of DREAMPar allows the user to specify the thinning rate of each Markov

chain to reduce memory requirements for high-dimensional target distributions. For in-
stance, for a d = 100 dimensional target distribution with N = 100 and T = 10, 000, one
would need a staggering 100-million bytes of memory to store all the samples of the joint
chains. Thinning applies to all the sampled chains, and stores only every Kth visited state.
This option reduces memory storage with a factor of T/K, and also decreases the autocor-
relation between successively stored chain samples. A default value of K = 1 (no thinning)
is assumed in DREAM. Note, large values for K (K >> 10) can be rather wasteful as many
visited states are not used in the computation of the posterior moments and/or plotting of
the posterior parameter distributions.

Multi-chain methods can suffer convergence problems if one or more of the sampled chains
have become stuck in a local area of attraction while in pursuit of the target distribution.
This fallacy has been addressed in the function check of the C++ code and is used to
detect and resolve aberrant trajectories. Dissident chains are more likely to appear if the
target distribution is high-dimensional and the posterior response surface is non-smooth
with many local optima and regions of attraction. These non-ideal properties are often
the consequence of poor model numerics (Clark and Kavetski, 2010; Schoups et al., 2010b)
and hinder convergence of MCMC simulation methods to the target distribution. The field
outlier of DREAMPar lists (in quotes) the name of the outlier detection test that is used to
expose dissident chains. Options available to the user include the ’iqr’ (Upton and Cook,
1996), ’grubbs’ (Grubbs, 1950), ’peirce’ (Peirce, 1852), and ’chauvenet’ (Chauvenet, 1960)
method. These nonparametric methods diagnose dissident chains by comparing the mean
log-density values of each of the N sampled trajectories. The premise of this comparison
is that the states visited by an outlier chain should have a much lower average density
than their counterparts sampling the target distribution. Those chains diagnosed as outlier
will give up their present position in the parameter space in lieu of the state of one of
the other N − 1 chains, chosen at random. This correction step violates detailed balance
(irreversible transition) but is necessary in some cases to reach formally convergence to a
limiting distribution. Numerical experiments have shown that the default option (outlier
= ’iqr’) works well in practice. Note, the problem of outlier chains would be resolved if
proposals are created from past states of the chains as used in DREAM(ZS), DREAM(DZS)

and MT-DREAM(ZS). Dissident chains can then sample their own position and jump directly
to the mode of the target if γ = 1 (ter Braak and Vrugt, 2008; Laloy and Vrugt, 2012a). We
will revisit this issue in section 7 of this paper.
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The field adapt_pCR of DREAMPar defines whether the crossover probabilities, pcr are
adaptively tuned during a DREAM run so as to maximize the normalized Euclidean distance
between two successive chain states. The default setting of ’yes’, can be set to ’no’ and thus
switched off by the user in the GUI. The selection probabilities are tuned only during burn-in
of the chains to not destroy reversibility of the sampled chains.

The default choice of the jump rate in DREAM is derived from the value of sd = 2.382/d

in the RWM algorithm. This setting should lead to optimal acceptance rates for Gaussian
and Student target distributions, but might not yield adequate acceptance rates for real-
word studies involving complex multivariate posterior parameter distributions. The field
beta0 of DREAMPar allows the user to increase (decrease) the value of the jump rate, γ =
2.38β0/

√
2δd∗, thereby improving the mixing of the individual chains. This β0-correction is

applied to all sampled proposals, with the exception of the unit jump rate used for mode
jumping. Values of β0 ∈ [1/4, 1/2] have shown to work well for parameter-rich groundwater
and geophysical models (e.g. Laloy et al. (2015)).

4.3. Input argument 3: Par_info

The variable Par_info stores all necessary information about the parameters of the tar-
get distribution, for instance their prior uncertainty ranges (for bounded search problems),
starting values (initial state of each Markov chain), prior distribution (defines Metropolis
acceptance probability) and boundary handling (what to do if out of feasible space), respec-
tively. Table 3 lists the different fields of Par_info and summarizes their content, default
values and variable types.

Table 3 DREAM input argument Par_info: Different fields, their default settings and variable types. These variables appear
under the "Parameter space" or "Prior distribution" tab of the GUI.

Field Par_info Description Options Default Type

initial Initial sample ’uniform’/’latin’/’normal’/’prior’ string
min Minimum values -∞d 1× d-vector
max Maximum values ∞d 1× d-vector
boundhandling Boundary handling ’reflect’/’bound’/’fold’/’none’ ’none’ string
mu Mean ’normal’ 1× d-vector
cov Covariance ’normal’ d× d-matrix
prior Prior distribution

† Multiplicative case: Each cell of the d-array contains a different marginal prior pdf.
‡ Multivariate case: An anonymous function with prior pdf is provided by user.

Most of the variables of Par_info can be set by the user in the GUI of DREAM Suite
under the "Parameter space" tab.
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Figure 8 Screenshot of "Parameter space" tab of the GUI of DREAM Suite for example 14 of the project manager.

The field initial of Par_info specifies with a string enclosed between quotes how to sample
the initial state of each of theN chains. Options available to the user include (1) ’uniform’ (2)
’latin’ (3) ’normal’ and (4) ’prior’, and they create the initial states of the chains by sampling
from (1) a uniform prior distribution, (2) a Latin hypercube (McKay et al., 1979), (3) a
multivariate normal distribution, and (4) a user defined prior distribution. The first three
options assume the prior distribution to be noninformative (uniform/flat), and consequently
the posterior density of each proposal to be directly proportional to its likelihood. On the
contrary, if the option ’prior’ is used and a non-flat (informative) prior distribution of the
parameters is specified by the user, then the density of each proposal becomes equivalent to
the product of the (multiplicative) prior density and likelihood derived from the output of
model plugin.

Option (1) and (2) require specification of the fields min and max of Par_info. These
fields contain in a 1× d-vector the lower and upper bound values of each of the parameters,
respectively. If option (3) ’normal’ is used then the fields mu (1 × d-vector) and cov (d ×
d-matrix) of Par_info should be defined by the user. These fields store the mean and
covariance matrix of the multivariate normal distribution. We will revisit the option ’prior’
at the end of this section.
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The fields min and max of the Par_info serve two purposes. First, they define the feasible
parameter space from which the initial state of each of the chains is drawn if ’uniform’ random
or ’latin’ hypercube sampling is used. Second, they can define a bounded search domain for
problems involving one or more parameters with known physical/conceptual ranges. This
does however require the bound to be actively enforced during chain evolution. Indeed,
proposals generated with Equations (19) and (20) can fall outside the hypercube defined by
min and max even if the initial state of each chain are well within the feasible search space.
The field boundhandling of Par_info provides several options what to do if the parameters
are outside their respective ranges. The four different options that are available are (1)
’bound’, (2) ’reflect’, (3) ’fold’, and (4) ’none’ (default). These methods are illustrated
graphically in Figure 9 and act on one parameter at a time.

x 1 

x 
2

 

‘bound’ ‘reflect’ ‘fold’ 

x 
2

 

x 
2

 

x 1 x 1 

Figure 9 Different options for parameter treatment in bounded search spaces in the DREAM package. a) set to bound, b)
reflection, and c) folding. The option folding is the only boundary handling approach that maintains detailed balance.

The option ’bound’ is most simplistic and simply sets each parameter value that is out
of bound of equal to its closest bound. The option ’reflect’ is somewhat more refined and
treats the boundary of the search space as a mirror through which each individual param-
eter value is reflected backwards into the search space. The reflection step size is simply
equivalent to the "amount" of boundary violation. The ’bound’ and ’reflect’ options are used
widely in the optimization literature in algorithms concerned only with finding the minimum
(maximum, if appropriate) of a given cost or objective function. Unfortunately, these two
proposal correction methods violate detailed balance in the context of MCMC simulation. It
is easy to show for both boundary handling methods that the forward (correction step) and
backward jump cannot be construed with equal probability. The third option ’fold’ treats
the parameter space as a continuum representation by simply connecting the upper bound
of each dimension to its respective lower bound. This folding approach does not destroy the
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Markovian properties of the N sampled chains, and is therefore preferred statistically. How-
ever, this approach can provide "bad" proposals (reduced acceptance rate) if the posterior
distribution is located at the edges of the search domain. Then, the parameters can jump
from one side of the search domain to the opposite end.

The option ’bound’ is least recommended in practice as it collapses the parameter values
to a single point. This not only relinquishes unnecessarily sample diversity but also inflates
artificially the solution density (probability mass) at the bound. The loss of chain diversity
also causes a-periodicity (proposal and current state are similar for selected dimensions) and
distorts convergence to the target distribution. A simple numerical experiment with a trun-
cated normal target distribution will demonstrate the superiority of the folding approach.
This results in an exact inference of the target distribution whereas a reflection step over-
estimates the probability mass at the bound. For most practical applications, a reflection
step will provide accurate results unless too many dimensions of the target distribution find
their highest density in close vicinity of the bound.

What is left is a discussion of the use of ’prior’ as initial sampling distribution of the
chains. This option is specifically implemented to enable the use of an informative (non-
flat) prior distribution. The user can select among two choices for the prior distribution,
that is the use of a multiplicative prior or multivariate prior distribution. These options are
available in the GUI on the "Prior distribution" tab and appear if the user selects the option
"Use prior distribution" on the "Parameter space" tab.
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Figure 10 Screenshot of "Prior distribution" tab of the GUI of DREAM Suite for example 7 of the project manager.

In the multiplicative case each parameter has its own prior distribution. For instance,
we can use a normal distribution with mean -2 and standard deviation of 4, N (−2, 4) for
the first parameter, a t-distribution with 10 degrees of freedom for the second parameter,
T (10), and a uniform distribution between -10 and 20 for the third parameter, U(−10, 20).
The GUI allows the user to define each of these distributions. The prior density of some
parameter vector is then simply equivalent to the product of the individual pdfs specified by
the user in the GUI. The user can select from the following list of built-in density functions
in DREAM Suite: F, gamma, normal, T, and uniform.
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Figure 11 Screenshot of the "Prior distribution" tab of the GUI of DREAM Suite. This shot shows the different univariate
prior distributions available to the user

The use of a multiplicative prior assumes the parameters of the prior distribution to be
uncorrelated, an assumption that might not be justified for some inference problems. The
GUI therefore also implements a second option where the user can select a multivariate prior
distribution. Two options are available to the user including a d-variate normal distribution,
and a d-variate Student t-distribution. For a multivariate normal distribution, Nd(a, b) the
user has to define the mean, a of the d parameter values and the d×d covariance distribution,
b. Alternatively, the user can implement a multivariate t-distribution, Td(a, b) with degrees
of freedom a and correlation matrix, b. The values of a and b for both distributions can be
entered in the GUI (see below).
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Figure 12 Screenshot of the "Prior distribution" tab of the GUI of DREAM Suite for example 10 of the program manager.

Note, the user can work with an informative prior distribution for each of the d param-
eters, and still sample the initial state of each Markov chain from the prior ranges of the
parameters defined in the fields min and max of Par_info. This approach might be favored
over sampling the initial states from the prior directly as it will allow DREAM to explore
more thoroughly, at least in the first generations, the parameter space outside the prior pdf.

4.4. (Optional) input argument 4: Meas_info

The fourth input argument Meas_info of the C++ code of DREAM is mandatory if the
output of model constitutes a vector of simulated values or summary metrics of one or more
entities of interest. Table 4 describes the different fields of Meas_info, their content and
type. These fields and their values appear in DREAM Suite under the "Measurement data"
tab of the GUI.
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Table 4 Content of (optional) input Meas_info. This fourth input argument of DREAM is required if the return argument of
model constitutes a vector of simulated values (or summary statistics) of one or more variables. The field of Meas_info appear
under the "Measurement data" tab and "Summary statistics" tab of the GUI.

Field Meas_info Description Type Tab of GUI

Y Measurement data n× 1-vector "Measurement data"
Sigma Measurement error scalar or n× 1-vector "Measurement data"
S Summary statistics (ABC) m× 1-vector "Summary statistics"

Two of the variables of Meas_info can be defined by the user in the GUI of DREAM
Suite under the "Measurement data" tab.

Figure 13 Screenshot of "Measurement data" tab of the GUI of DREAM Suite for example 13 of the project manager.

The field Y of Meas_info stores the n ≥ 1 observations of the calibration data, Ỹ against
which the output, Y of model is compared. The n-vector of error residuals, E(x) = Ỹ−Y(x)
is then translated into a log-likelihood value using one of the formal (11-17) or informal (31-
34) likelihood functions listed in Table 2 and defined by the user in field lik of DREAMPar.

The field Sigma of Meas_info stores the measurement error of each entry of the field Y.
This data error is necessary input for likelihood functions 12, 13 and 16. A single value for
Sigma suffices if homoscedasticity of the data error is expected, otherwise n-values need to
be declared and specify the heteroscedastic error of the observations of Y.
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In case the measurement error of the data Y is unknown, three different approaches
can be implemented. The first option is to select likelihood function 11. This function
is derived from Equation (7) by integrating over (out) the data measurement error. Field
Sigma of Meas_info can then be left blank (empty). The second option uses likelihood
function 12, 13, or 16 and estimates the measurement data error along with the model
parameters using nuisance variables. The user can then implement a homoscedastic or
heteroscedastic measurement error model. Both appear under "Measurement error function"
of the "Measurement data" tab and allow the user to implement a constant measurement
error ("Homoscedastic error" in GUI), or Sigma = sig_0, and a measurement error that
increases with magnitude of the data ("Heteroscedastic error" in GUI), or Sigma = sig_0 +
sig_1 × Y. The ranges of sig_0 and sig_1 can be defined by the user - yet their values
should be strictly positive. If not, the measurement error can become smaller than zero.
The nuisance variables sig_0 and sig_1 are jointly inferred with the parameters, x of the
model plugin defined by the user.

The third and last option that can be used if the measurement data error is unknown,
uses likelihood function 14 (Schoups and Vrugt, 2010a) or 17 (Scharnagl et al., 2015). These
functions do not use field Sigma (can be left empty) but rather use their own built-in mea-
surement error model. The coefficients of the error models are part of a larger set of nuisance
parameters that allow these likelihood functions to adapt to nontraditional error residual
distributions. Appendix A summarizes the different likelihood functions and their nuisance
variables.

The field S of Meas_info stores m ≥ 1 summary statistics of the data, and is mandatory
input for likelihood functions 21, 22, 23 used for ABC, diagnostic model evaluation, and
limits of acceptability. The number of elements of Y and S should match exactly the output
of the script model written by the user. The summary statistics can be defined by the user
in the "Summary statistics" tab in the GUI of DREAM Suite.
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Figure 14 Screenshot of "Summary statistics" tab of the GUI of DREAM Suite for example 23 of the project manager.

4.5. (Optional) input argument 5: options

The variable options is optional and passed as fifth input argument to DREAM. The
fields of this variable can activate (among others) file writing, distributed multi-core calcula-
tion, storage of the model output simulations, ABC, diagnostic model evaluation, diagnostic
Bayes, and the limits of acceptability framework. Table 5 summarizes the different fields
of options and their default settings. The different variables that are stored in options
appear in the GUI under different tabs. These tabs are listed in the last column.

Table 5 Content of (optional) input options. This fifth input argument of the main DREAM code is required to activate
several of its built-in capabilities such as distributed multi-processor calculation, ABC, diagnostic model evaluation, diagnostic
Bayes and limits of acceptability. The variables of input argument options appear under different tabs in the GUI, listed in
the last column.

Field options Description Tab of GUI

parallel Distributed multi-core calculation? "Calculation"
DB Diagnostic Bayes? "Likelihood function"
epsilon ABC cutoff threshold "Summary statistics "
rho ABC distance function "Summary statistics"

Multi-core calculation takes advantage of the Message Passing Interface (MPI) and eval-
uates the N different proposals created with Equations (19) and (20) on a different processor
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and/or thread. Parallel computing is built-in DERAM Suite and automatically activated -
unless the user deactivates this option in the "Calculation" tab of the GUI.

Figure 15 Screenshot of "Calculation" tab of the GUI of DREAM Suite for example 4 of the project manager.

Distributed calculation can significantly reduce the run time of DREAM Suite for CPU-
demanding forward models. For simple models that require only a few seconds to run the
time savings of a parallel run is usually negligible due to latency (transport delay) of the
hardware and operating system.

For ABC or diagnostic model evaluation the fields rho and epsilon of variable options
need to be specified unless their default settings are appropriate. The field rho specifies
the mathematical formulation of the distance function between the simulated and observed
summary statistics. In practice, a simple difference operator rho = (A - B)) (in GUI)
between the observed and simulated observed summary statistics suffices. The field epsilon
of options stores a small positive value which is used to truncate the behavioral (posterior)
parameter space.

If ABC is used then the user can select two different implementations to solve for the
target distribution. The first approach, adopted from Turner and Sederberg (2012), uses
likelihood function 21 to transform the distance function between the observed and simulated
summary metrics in a probability density that DREAM uses to derive the target distribution.
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This approach can produce nicely bell-shaped marginal distributions, but does not guarantee
that the posterior summary metrics fall within epsilon of their observed values. A more
viable and powerful approach was introduced recently by Sadegh and Vrugt (2014) and
uses likelihood function 22 with the following modified Metropolis acceptance probability to
decide whether to accept proposals or not

pacc(Xi → Xi
p) =

I
(
f(Xi

p) ≥ f(Xi)
)

if f(Xi
p) < 0

1 if f(Xi
p) ≥ 0

, (22)

where I(a) is an indicator function that returns one if a is true, and zero otherwise. The
mathematical expression of the fitness (likelihood) function 22 is given in Table ?? (in
Appendix A). Equation (22) is implemented in an extension of DREAM called DREAM(ABC)

and rapidly guides the posterior summary metrics to lie within epsilon of their observed
counterparts.

4.6. Convergence diagnostics & burn-in

From MCMC theory, the chains are expected to eventually converge to a stationary
distribution, which should be the desired target distribution. But, how do we actually
assess that convergence has been achieved in practice, without knowledge of the actual
target distribution?

One way to check for convergence is to see how well the chains are mixing, or moving
around the parameter space. For a properly converged MCMC sampler, the chains should
sample, for a sufficiently long period, the approximate same part of the parameter space, and
mingle readily and in harmony with one another around some fixed mean value. This can
be inspected visually for each dimension of x separately, and used to diagnose convergence
informally.

Another proxy for convergence monitoring is the acceptance rate. A value between 15
- 30% is usually indicative of good performance of a MCMC simulation method. Much
lower values usually convey that the posterior surface is difficult to traverse in pursuit of
the target distribution. A low acceptance rate can have different reasons, for instance poor
model numerics, or the presence of multi-modality and local optima. The user can enhance
the acceptance rate by declaring a value for β0 < 1 in field beta0 of structure DREAMPar
(see Table 1). This multiplier will reduce the jumping distance, dX in Equation (19) and
thus proposals will remain in closer vicinity of the current state of each chain. This should
enhance the acceptance rate and mixing of individual chains. Note, the acceptance rate
can only diagnose whether a MCMC method such as DREAM is achieving an acceptable
performance, it cannot be used to determine when convergence has been achieved.

41



D
R

EA
M

SU
IT

E:
T

EC
H

N
IC

A
L

M
A

N
U

A
L

The C++ code of DREAM includes various non-parametric and parametric statistical
tests to determine when convergence of the sampled chains to a limiting distribution has
been achieved. The most powerful of these convergence tests is the univariate, R̂-statistic of
Gelman and Rubin (1992) and the multivariate R̂d statistic of Brooks and Gelman (1998).
The univariate R̂-statistic compares for each parameter j = {1, . . . , d} the within-chain

Wj = 2
N(T − 2)

N∑
r=1

T∑
i=bT/2c

(xri,j − xrj)2 xrj = 2
T − 2

T∑
i=bT/2c

xri,j (23)

and between-chain variance

Bj/T = 1
2(N − 1)

N∑
r=1

(xrj − xj)2 xj = 1
N

N∑
r=1

xrj (24)

using

R̂j =

√√√√N + 1
N

σ̂
2(j)
+

Wj

− T − 2
NT

, (25)

where T signifies the number of samples in each chain, b·c is the integer rounding operator,
and σ̂2(j)

+ is an estimate of the variance of the jth parameter of the target distribution

σ̂
2(j)
+ = T − 2

T
Wj + 2

T
Bj. (26)

To official declare convergence, the value R̂j ≤ 1.2 for each parameter, j ∈ {1, . . . , d},
otherwise the value of T should be increased and the chains run longer. As the N different
chains are launched from different starting points, the R̂-diagnostic is a relatively robust
estimator.

The C++ code also computes the multivariate R̂-statistic, also referred to R̂d-diagnostic.
This metric is defined in Brooks and Gelman (1998) and assesses convergence of the d pa-
rameters simultaneously by comparing their within and between-sequence covariance matrix.
Convergence is achieved when a rotationally invariant distance measure between the two ma-
trices indicates that they are "sufficiently" close. Then, the multivariate R̂d-statistic achieves
a value close to unity, otherwise its value is larger than one. In fact, the R̂ and R̂d-statistic
take on a very similar range of values, hence simplifying analysis of when convergence has
been achieved. Practically experience suggests that the R̂d-statistic is particularly useful for
high-dimensional target distributions involving complicated multi-dimensional parameter
interactions.

The traceplots of the R̂ and R̂d-convergence diagnostics appear in the postprocessor of
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DREAM Suite (see next section) and can be used to determine when convergence has been
achieved and thus which samples of chain to use for posterior estimation and analysis. The
other samples can simply be discarded from the chains as burn-in.

The C++ code of DREAM also computes several within-chain diagnostics. Their values
are not listed by the postprocessor, but instead saves to a binary or text file if activated by the
user in the "Calculation" tab of the GUI. The within-chain diagnostics file contains several
convergence diagnostics including, the autocorrelation function, the Geweke (1992), and
Raftery and Lewis (1992)-diagnostics. These three within-chain diagnostics are calculated
for each of the N chains and d parameters separately.

The autocorrelation function for each parameter j = {1, . . . , d} is defined as

ρrj,k =
∑T−k
i=1 (xri,j − xrj)(xri+k,j − xrj)∑T

i=1(xri,j − xrj)2 , (27)

and returns the correlation between two samples k iterations apart in the rth chain, r =
{1, . . . , N}. Compared to rejection sampling which, per construction, produces uncorrelated
samples, MCMC chain trajectories exhibit autocorrelation as the current state of the chain is
derived from its previous state. This correlation is expected to decrease with increasing lag
k. The autocorrelation function is a useful proxy to assess sample variability and mixing, but
does not convey when convergence has been achieved. A high autocorrelation, say |ρ| > 0.8,
at lags, say k ≥ 5, simply demonstrates a rather poor mixing of the individual chains.

The Geweke (1992)-diagnostic compares the means of two nonoverlapping parts of the
Markov chain using a standard Z-score adjusted for autocorrelation. The Raftery and Lewis
(1992)-statistic calculates the number of iterations, T and length of burn-in necessary to
satisfy the condition that some posterior quantile of interest, say q has a probability, p of
lying within interval [q − r, q + r]. Default values are q = 0.025, p = 0.95, and r = 0.01,
respectively. Details of how to compute and interpret these two statistics is found in the
cited references.

Altogether, joint interpretation of the different diagnostics should help assess convergence
of the sampled chain trajectories. Of all these metrics, the R̂-statistic provides the best guid-
ance on exactly when convergence has been achieved. This happens as soon as this statistic
drops below the critical threshold of 1.2 for all d parameters of the target distribution. Sup-
pose this happens at T ∗ iterations (generations) then the first (T ∗−1) samples of each chain
are simply discarded as burn-in and the remaining N(T −T ∗) samples from the joint chains
are used for posterior analysis. Note, I always recommend to verify convergence of DREAM
by visually inspecting the mixing of the different chain trajectories.
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In practice, one has to make sure that a sufficient number of chain samples is available
for the inference, otherwise the posterior estimates can be biased. For convenience, I list
here the total number of posterior samples, N(T − T ∗) (in brackets) one would need for a
reliable inference with DREAM for a given dimensionality of the target distribution: d = 1
(500); d = 2 (1,000); d = 5 (5,000); d = 10 (10,000); d = 25 (50,000); d = 50 (200,000);
d = 100 (1,000,000); d = 250 (5,000,000). These listed numbers are only a rough guideline,
and based on several assumptions such as a reasonable acceptance rate ( > 10%) and not
too complicated shape of the posterior distribution. In general, the number of posterior
samples required increases with rejection rate and complexity of the target distribution.

4.7. Output arguments

I now briefly discuss the three output (return) arguments of DREAM including chain,
output and fx. These three variables summarize the results of the DREAM algorithm and
are used for convergence assessment, posterior analysis and plotting.

The variable chain is a matrix of size T×d+2×N . The first d columns of chain store the
sampled parameter values (state), whereas the subsequent two columns list the associated
log-prior and log-likelihood values respectively. If thinning is applied to each of the Markov
chains then the number of rows of chain is equivalent to T/K + 1, where K ≥ 2 denotes
the thinning rate. If a non-informative (uniform) prior is used then the values in column
d+ 1 of chain are all zero and consequently, p(x|Ỹ) ∝ L(x|Ỹ). With an informative prior,
the values in column d+ 1 are non-zero and the posterior density, p(x|Ỹ) ∝ p(x)L(x|Ỹ).

The content of chain can be used to calculate the posterior statistics, such as the max-
imum a-posteriori density (MAP) solution, the posterior mean, the posterior median, and
the posterior standard deviation.
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Figure 16 Screenshot of "Postprocessing-Tables" tab of the GUI of DREAM Suite for example 12 of the project manager.

The variable output contains important (diagnostic) information about the progress of
the DREAM algorithm. The field RunTime (scalar) stores the wall-time (seconds), R_stat
(matrix), MR_stat, AR (matrix) and CR (matrix) list for a given number of generations
the R̂ convergence diagnostic for each individual parameter of the target distribution, the
R̂d convergence diagnostic as function of number of generations, the average acceptance
rate, and the selection probability of each of the nCR crossover values, respectively. All
the variables provide insights about the performance and convergence rate of the DREAM
algorithm.

The R̂ and R̂d-statistics appear in the "Postprocessing-Charts" tab of the DREAM Suite
GUI.
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Figure 17 Screenshot of "Postprocessing-Charts" tab of the GUI of DREAM Suite for example 21 of the project manager.
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Figure 18 Screenshot of "Postprocessing-Charts" tab of the GUI of DREAM Suite for example 12 of the project manager.

The acceptance rate is also plotted in the by the postprocessor in the GUI.
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Figure 19 Screenshot of "Postprocessing-Charts" tab of the GUI of DREAM Suite for example 7 of the project manager.

Finally, the matrix fx stores the output Y of model. If this return argument constitutes a
vector of simulated values (summary metrics) then fx is of size NT ×n (NT ×m), otherwise
fx is a vector of NT ×1 with likelihood or log-likelihood values. If thinning is used then this
applies to fx as well and the number of rows of fx becomes equivalent to NT/K+1;K ≥ 2.

All the output of the DREAM algorithm is visualized by the postprocessor of DREAM
Suite. The output data can also be saved to different binary or text files using the "Calcu-
lation" tab of the GUI (see below).
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Figure 20 Screenshot of "Calculation" tab of the GUI of DREAM Suite for example 4 of the project manager.

5. Miscellaneous

In this section I discuss a few methods that can be used with DREAM Suite.

6. Diagnostic Bayes

A recurrent issue with the application of ABC is self-sufficiency of the summary metrics,
S(Ỹ). In theory, S(·) should contain as much information as the original data itself, yet
complex systems rarely admit sufficient statistics. Vrugt (2015b) therefore proposed in
another recent article a hybrid approach, coined diagnostic Bayes, that uses the summary
metrics as prior distribution and the original data in the likelihood function, or p(x|Ỹ) ∝
p(x|S(Ỹ))L(x|Ỹ). This approach guarantees that no information is lost during the inference.
The use of summary metrics as prior distribution is rather unorthodox and arguments for
this approach are given by Vrugt (2015b).

Diagnostic Bayes is easily setup and executed within DREAM Suite. The user has to
select the option "Diagnostic Bayes" under the "Likelihood function" tab of the GUI. The
observations of the calibration data are stored under the tab "Measurement data" and related
summary statistics are stored in the tab "Summary statistics".
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6.1. Joint Parameter and State Estimation

The return argument Y of the function script model usually involves the output of some
model, Y ← F(x, ·). The computation in this script can involve state estimation as well.
The return argument of model then involves a time-series of forecasts derived from the
Kalman filter. This approach, assumes time-invariant parameter values and is at the heart
of SODA and particle-DREAM (Vrugt et al., 2005, 2013b).

6.2. `Ω-Norm of Error Residuals

Likelihood functions play a key role in statistical inference of the model parameters.
Their mathematical formulation depends on the assumptions that are made about the prob-
abilistic properties of the error residuals. The validity of these assumptions can be verified
a-posteriori by inspecting the actual error residual time series of the posterior mean sim-
ulation. Likelihood functions based on a `2-norm (squared residuals) are most often used
in practical applications, despite their relative sensitivity to peaks and outlier data points.
Their use is motivated by analytic tractability - that is - with relatively little ease confi-
dence intervals of the parameters can be construed from a classical first-order approximation
around the optimum. This attractive feature of a `2-type likelihood function was of immi-
nent importance in past eras without adequate computational resources but is a far less
desirable quality nowadays with availability of powerful computing capabilities and efficient
algorithms. Indeed, methods such as DREAM can solve for likelihood functions with any
desired norm, Ω ∈ N+. For instance, the Laplacian likelihood (see Table ??) uses a `1 norm
of the error residuals and therefore should be less sensitive to peaks and outliers. Unless
there are very good reasons to adopt a `2-type likelihood function, their use might otherwise
be a historical relic (Beven and Binley, 2014).

7. THE DREAM FAMILY OF ALGORITHMS

In the past years, several other MCMC algorithms have appeared in the literature with
a high DREAM pedigree. These algorithms use DREAM as their basic building block but
include special extensions to simplify inference (among others) of discrete and combinatorial
search spaces, and high-dimensional and CPU-intensive system models. These algorithms
are described in detail in the literature. I refer the reader to Vrugt (2016) for a summary
of these methods. We are planning to include these methods in the C++ code in the near
future.
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8. SUMMARY

In this manual I have reviewed the basic theory of Markov chain Monte Carlo (MCMC)
simulation, and have introduced the basic elements of the C++ code of DREAM. The input
variables of DREAM have been discussed and their implementation in the GUI of DREAM
Suite. The DREAM algorithm provides scientists and engineers with an arsenal of options
and utilities to solve posterior sampling problems involving (amongst others) bimodality,
high-dimensionality, summary statistics, bounded parameter spaces, dynamic simulation
models, formal/informal likelihood functions, diagnostic model evaluation, data assimilation,
Bayesian model averaging, distributed computation, and informative/noninformative prior
distributions. DREAM Suite supports parallel computing and includes tools for convergence
analysis of the sampled chain trajectories and post-processing of the results. The output of
DREAM is visualized in tables and figures by the postprocessor of DREAM Suite.
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Appendix A. Mathematical formulation of built-in likelihood functions

The mathematical formulations of the built-in likelihood functions of DREAM in Table
2 are given in Table A.1 below. For convenience, E(x) = {e1(x), . . . , en(x)} signifies the
n-vector of residuals, S̃ = {S1(Ỹ), . . . , Sm(Ỹ)} and S = {S1(Y(x)), . . . , Sm(Y(x))} are m-
vectors with observed and simulated summary statistics, respectively, and A = {a1, . . . , an}
is a n-vector of filtered residuals in likelihood function 14 using an autoregressive model with
coefficients, φ = {φ1, . . . , φ4}.
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Table A.1 Mathematical formulation of built-in likelihood functions of DREAM Suite. Option (1) and (2) return directly a
likelihood and log-likelihood value, respectively, and their formulation is defined in the model script by the user.

lik Mathematical formulation Latent variables Note

Formal likelihood functions

11 L(x|Ỹ) = −n2 log
{ n∑
t=1

et(x)2} none

12 L(x|Ỹ) = −n2 log(2π)−
n∑
t=1
{log(σt)} − 1

2

n∑
t=1

(
et(x)
σt

)2
σt; t ∈ {1, . . . , n} †

13 L(x|Ỹ) = −n2 log(2π)− 1
2 log

(
σ2

1
(1−φ2)

)
− 1

2 (1− φ2)
(
e1(x)
σ1

)2
−

n∑
t=2
{log(σt)} − 1

2

n∑
t=2

(
(et(x)−φet−1(x))

σt

)2
σt, φ; t ∈ {1, . . . , n} †

14 L(x|Ỹ) ' n log
(
ωβ

2σξ
(ξ+ξ−1)

)
−

n∑
t=1
{log(σt)} − cβ

n∑
t=1
|aξ,t|2/(1+β)

+(λBC − 1)
∑n

t=1(ỹt +KBC) σ0, σ1, β, ξ, µ1,φ,KBC, λBC ‡§

15 L(x|Ỹ) =
bn/2c∑
j=1

{
log
(
fF (λj ,x) + fE(λj ,Φ)

)
+ g(λj)

fF (λj ,x)+fE(λj ,Φ)

}
none ¶

16 L(x|Ỹ) = −
n∑
t=1
{log(2σt)} −

n∑
t=1

( |et(x)|
σt

)
σt; t ∈ {1, . . . , n} †

17 L(x|Ỹ) =
n∑
t=2

{
log
(

2c2Γ
(
(ν + 1)/2

)√
ν/(ν − 2)

)
− log

((
κ+ κ−1)Γ(ν/2)√πν√(1− φ2)σt

)
−
(
(ν + 1)/2

)
log
(

1 +
(
1/(ν − 2)

)( c1+c2η
t

κ
sign(c1+c2ηt

)

)2
)}

σa, σb, σc, σd, φ, ν, κ §U

ABC - diagnostic model evaluation

21 L(x|Ỹ) = −m2 log(2π)−m log(ε)− 1
2 ε
−2

m∑
j=1

ρ
(
Sj(Ỹ), Sj(Y(x))

)2 none £]

22 L(x|Ỹ) = min
j=1:m

(
εj − ρ

(
Sj(Ỹ), Sj(Y(x))

))
none £]

GLUE - limits of acceptability

23 L(x|Ỹ) =
∑m

j=1

{
I
(
|Sj(Ỹ)− Sj(Y(x))| ≤ εj

)}
none ♣]

GLUE - informal likelihood functions

31 L(x|Ỹ) = −G log
{

Var[E(x)]
}

none ♦
32 L(x|Ỹ) = G log

(
1− Var[E(x)]

Var[Ỹ]

)
none ♦

33 L(x|Ỹ) = −GVar[E(x)] none ♦

34 L(x|Ỹ) = − log
{ n∑
t=1
|et(x)|

}
none ♦

† Measurement error, σt defined in field Sigma of Meas_info or inferred jointly with x
‡ Measurement error defined as σt = σ0 + σ1yt(x); Scalars ωβ , σξ and cβ derived from values of ξ and β; φ =
{φ1, . . . , φ4} stores coefficients autoregressive model of error residuals
§ User is free to select exact formulation (depends on selection nuisance variables)
¶ Fourier frequencies, λj , spectral density function, fE(·) and periodogram, g(·) defined in Whittle (1953)
U Scalars c1 and c2 computed from ν > 2 and κ > 0; η signifies (n−1)-vector of restandardized first-order decorrelated
residuals; Γ(·) and sign denote the gamma and signum function, respectively
£ ABC distance function, ρ

(
S(Ỹ), S(Y(x))

)
specified as field rho of options

] ε (scalar or m-vector) stored in field epsilon of options
♣ Variable I(a) returns one if a is true, zero otherwise
♦ Shaping factor, G defined in field GLUE of DREAMPar. Default setting of G = 10
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The generalized likelihood function of Schoups and Vrugt (2010a) allows for bias correc-
tion, which is applied to the first or higher order filtered residuals prior to calculation of the
likelihood. I refer to Schoups and Vrugt (2010a) and Scharnagl et al. (2015) for an exact
derivation and detailed analysis of likelihood functions 14 and 17, respectively, and Whittle
(1953) for an introduction to likelihood 15. The ABC likelihood functions 21 and 22 are
described and discussed in detail by Turner and Sederberg (2012) and Sadegh and Vrugt
(2014), whereas the limits of acceptability function 23 is introduced and tested in Vrugt
(2015a). The pseudo-likelihoods in 31, 32, 33 and 34 are explicated in the GLUE papers of
Beven and coworkers (Beven and Binley, 1992; Freer et al., 1996; Beven and Freer , 2001;
Beven, 2006). The derivation and explanation of the remaining likelihood functions, 11,
12, 13, and 16 can be found in introductory textbooks on time-series analysis and Bayesian
inference.

Likelihood functions 14 and 17 extend the applicability of the other likelihood functions
to situations where residual errors are correlated, heteroscedastic, and non-Gaussian with
varying degrees of kurtosis and skewness. For instance, consider Figure A.1 which plots
the density of the generalized likelihood function for different values of the skewness, β and
kurtosis, ξ. The density is symmetric for ξ = 1, positively skewed for ξ > 1 and negatively
skewed for ξ < 1. If ξ = 1, then for β = -1(0)[1] this density reduces to a uniform (Gaussian)
[double-exponential] distribution.
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Figure A.1 Densities of the generalized likelihood function of Schoups and Vrugt (2010a) for different values of the kurtosis (β)
and skewness (ξ).

The Student likelihood function, 17, of Scharnagl et al. (2015) is designed in part to
better mimic residual distributions with heavy tails (see Figure ??).
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Figure A.2 Densities of the skewed Student likelihood function of Scharnagl et al. (2015) for different values of the skewness
(κ) and kurtosis (ξ).

Table A.2 summarizes several commonly used formal likelihood functions in hydrologic
modeling applications and lists how likelihood function 14 can be reduced to these by making
specific assumptions about the error residuals (see also Schoups and Vrugt (2010a)).

Table A.2 Relationship of likelihood functions used/proposed in the hydrologic literature and the likelihood function 14 of
DREAM Suite.

Reference Implementation using 14

Standard least squares φ1 = 0; φ2 = 0; φ3 = 0; φ4 = 0; σ1 = 0; ξ = 1; β = 0
Sorooshian and Dracup (1980): Equation (20) φ2 = 0; φ3 = 0; φ4 = 0; σ1 = 0; ξ = 1; β = 0
Sorooshian and Dracup (1980): Equation (26) φ1 = 0; φ2 = 0; φ3 = 0; φ4 = 0; ξ = 1; β = 0
Kuczera (1983) β = 0
Bates and Campbell (2001) β = 0
Thiemann et al. (2001) φ1 = 0; φ2 = 0; φ3 = 0; φ4 = 0

By fixing some of the values of the nuisance variables the likelihood function can be
simplified to a specific family of probability distributions.

I am now left to describe how to setup the joint inference of the model and nuisance
parameters. This is actually quite simple in DREAM Suite. The nuisance variables will
appear automatically once a likelihood function is selected by the user.
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Figure A.3 Screenshot of GUI of DREAM Suite after selection of likelihood 14.

The user can select whichever nuisance variable is deemed appropriate for inference -
along with its ranges. Those nuisance variables that are kept fixed will assume default
values. These values are listed in the GUI but can be changed by the user.

For other likelihood functions with nuisance variables (13 and 17) a similar approach and
setup is used. For instance, for likelihood 13 the user has to define the ranges of the nuisance
variable ρ (or fix this variable to one value), and for likelihood 17, the nuisance variables
σa, σb, σc, σd, φ, ν, κ need to be defined (or fixed) along with the values of the anchor points
x1, x2, x3, and x4 to be used with piecewise cubic hermite interpolation (Scharnagl et al.,
2015).
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