Problem 4-23

a. Use ROSETTA (Schaap et al., 1998) to calculate the hydraulic parameters for the van Genuchten (1980) hydraulic model of the following particle sizes and bulk densities:

Table 4-7: Particle sizes and bulk densities for 4 soils

Soil #	Sand (%)	Silt (%)	ρ _b (g cm ⁻³)
1	20	70	1.2
2	40	50	1.3
3	60	20	1.4
4	80	5	1.5

The ROSETTA program can be downloaded free of charge from the US Salinity Laboratory's web site (http://www.ars.usda.gov/Services/docs.htm?docid=8953).

Answer:

The following table gives the van Genuchten model parameters for the four soils.

Soil	(cm ⁻¹)	n (-)	θ_{s} (cm ³ cm ⁻³)	θ_{r} (cm ³ cm ⁻³)
1	0.004	1.7	0.44	0.06
2	0.007	1.6	0.39	0.05
3	0.02	1.4	0.42	0.06
4	0.03	1.6	0.40	0.06

Table 4-8: van Genuchten parameters for 4 soils

b. What will be the corresponding parameters for the Brooks and Corey (1964) hydraulic model?

Answer:

The Brooks and Corey water retention model is:

$$\theta = (\theta_s - \theta_r) (\alpha_{BC} | h |)^{-\lambda} + \theta_r \qquad \text{for } \alpha_{BC} | h | > 1$$

To find the values of α_{BC} and λ for each soil listed in the table, use the van Genuchten parameters and the following van Genuchten water retention model to predict $\theta(h)$. Then use the predicted $\theta(h)$ in RETC to calculate the corresponding best-fit α_{BC} and λ values for each soil. For the first soil listed in the table, $\alpha_{BC} = 0.007 \text{ cm}^{-1}$ and $\lambda = 0.462$. van Genuchten model:

where
$$m = 1 - \frac{1}{n}$$

As visible in the following figure, the two models give nearly identical water retention curves using this approach except near saturation where the Brooks-Corey model reaches a plateau of saturation when the product of \Box_{BC} and absolute value of *h* exceeds one or when *h* exceeds the soil's air entry pressure head of -100 cm.

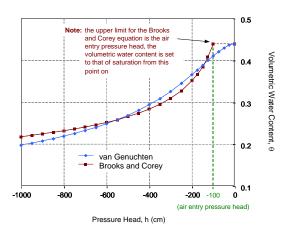


Fig. 4-19: Retention curves for two hydraulic models

© 2013 CATENA VERLAG GMBH, 35447 Reiskirchen, Germany