Reactive transport modeling of subsurface flow CWs using the HYDRUS wetland module

Günter Langergraber¹ and Jirka Šimůnek²

¹ Institute of Sanitary Engineering and Water Pollution Control
² Department of Environmental Sciences, University of California Riverside

4th International Conference
HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems
21-22 March 2013, Prague, Czech Republic

Introduction

The HYDRUS software

- Software Package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media
- HYDRUS numerically solves the Richards equation for saturated/unsaturated water flow and the convection-dispersion equation for heat and solute transport.
- Graphical User Interface
- Version 2 released in May 2011
- HYDRUS Wetland module (Langergraber and Šimůnek, 2006, 2011)

Content

Introduction
- Treatment wetlands
- Models for wetlands

The Wetland Module of HYDRUS

Simulation results

1. Vertical flow constructed wetlands
2. Batch-fed CWs (Master thesis Tamás Pálfy, BOKU)
3. HF beds with peak loads (Poster Rizzo and Langergraber)
4. HF beds for tertiary treatment (Poster Sanchez-Ramos and Langergraber)
5. Nitrate dynamics in a rural headwater catchment: measurements and modelling (Poster Smethurst and Langergraber)

Summary and conclusion
Introduction
Types of wetlands (Fonder and Headley, 2010)

- **Natural wetlands** are those wetland areas that exist in the landscape due to natural processes rather than having been created either directly or indirectly as a result of anthropogenic influences.
- **Constructed wetlands** are man-made systems that are designed to mimic many of the conditions and/or processes that occur in natural wetlands.

Purpose of constructed wetlands:
- **Restored wetlands**: Areas which were formerly natural wetlands
- **Created wetlands**: Non-wetland areas which have been converted
- **Treatment wetlands**: Artificially created wetland systems designed to provide a specific water treatment function

3 characteristics can be identified which are typical of all TWs:
- The presence of *macrophytic vegetation* that typically grows within natural wetlands;
- The existence of *water-logged* or *saturated substrate* conditions for at least part of the time; and
- The inflow of *contaminated waters* with constituents that have to be removed.
Introduction

Models for wetlands

- In wetlands a large number of physical, chemical, and biological processes are active in parallel and mutually influence each other.
- Therefore wetlands are complex systems and for a long time have been often considered as "black boxes".
- Also models for wetlands for a long time have been using "black box" approaches only, i.e. the processes in wetlands have not been considered in detail.
- Still today most "models" for wetlands are using a "black box" approach
- The number of models describing processes in wetlands in detail is limited.

"Simple" models ("black-box" approach)
- correlations between influent and effluent concentrations
- first-order rate equations (used for design of TWs)
- artificial neural network models
- etc.

- Data from experiments needed to derive model equations

Trang et al. (2009)
Introduction
Models for wetlands

Process-based models

- Mathematical model equations based on processes in wetlands (with various degree of complexity) - includes balance equations for energy, mass, charge, ...

\[\frac{dm}{dt} = dC \cdot V \]

Typical mass balance equation

- Data are used for calibration and validation of model

- Better prediction is possible using these models

\[\rightarrow \] should be better applicable for design

Models describing wetland processes
Processes in wetlands

For a WETLAND MODEL a number of different processes have to be considered:

- The flow model (describing water flow)
- The transport model (describing transport of constituents as well as adsorption and desorption processes)
- The biokinetic model (describing biochemical transformation and degradation processes)
- The influence of plants (growth, decay, decomposition, nutrient uptake, root oxygen release, etc.)
- The description of clogging processes
- Physical re-aeration

HYDRUS wetland module
Processes available

For a WETLAND MODEL a number of different processes have to be considered:

- The flow model (describing water flow)
- The transport model (describing transport of constituents as well as adsorption and desorption processes)
- The biokinetic model (describing biochemical transformation and degradation processes)
- The influence of plants (nutrient uptake, root oxygen release)
- Physical re-aeration

- The influence of plants (growth, decay, decomposition)
- The description of clogging processes \[\rightarrow \] not available in HYDRUS

HYDRUS wetland module
General description

HYDRUS wetland module

- developed for SSF TWs
- includes two biokinetic model formulations:
 1. CW2D (Langergraber and Šimůnek, 2005)
 2. CWM1 (Constructed Wetland Model #1) (Langergraber et al., 2009).

<table>
<thead>
<tr>
<th>Model</th>
<th>CW2D</th>
<th>CWM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes</td>
<td>Aerobic and anoxic (9)</td>
<td>Aerobic, anoxic and anaerobic (17)</td>
</tr>
<tr>
<td>Constituents</td>
<td>Oxygen, organic matter, nitrogen and phosphorus (12)</td>
<td>Oxygen, organic matter, nitrogen and sulphur (16)</td>
</tr>
</tbody>
</table>
Simulation Results 1
Pilot-scale subsurface VF CW for wastewater treatment

Flow simulations

Microbial biomass

Tietz et al., 2007, Sci Total Environ 380(1-3), 163-172
Langergraber et al., 2007, Water Sci Technol 56(3), 233-240
Simulation Results 1
Outdoor CW (Ernsthofen, NÖ) for treatment of wastewater

3 parallel beds
surface area 20 m² each
organic loading of 20, 27, 40 g COD/(m².d)
⇒ resp. 4, 3, 2 m³/PE

Simulation Results 2
Master thesis Tamás Pálfy

- Goal: to verify the implementation of CWM1 in the HYDRUS Wetland Module
- Uses column experiment data made by a research group at Montana State University as reference outcome
- Compare with simulation results published by Mburu et al. (2012, Ecol Eng 42, 304-315) … CWM1 implemented in Aquasim
Simulation Results 2
Master thesis Tamás Pálfy

Experiments at MSU
- D=20cm, h=50 cm batch-operated columns filled with pea gravel
- Synthetic domestic wastewater
 - 490 ± 4.3 mg/L COD
 - 14 ± 0.5 mg/L SO₄⁻-S
 - 40 ± 1.2 mg/L TN
 - 8 ± 0.3 mg/L PO₄⁻-P
- Operated at 12, 16, 20 and 24°C
- 20 days incubation
- Sedge, bulrush and cattail plus unplanted column for each run

Simulation Results 3
Poster: A. Rizzo* and Langergraber

Simulation of peak loads for horizontal flow CWs - A first step towards modeling stochastic behavior of HF CW

Objective
- Compare simulation results for a HF CW subjected to sudden peak loads (Galvão and Matos, 2012, Ecol Eng 49, 123-129)
- Data from laboratory experiment using synthetic wastewater
- COD load was applied
 - Lines A 11.4 g/m²/day for 3.5 months, then +22% load for 2 week
 - Lines B 5.3 g/m²/day for 3.5 months, then +7% load for 2 week

Main assumptions
- parameters CWM1 biokinetic model (Langergraber, G., Šimůnek, J., 2012)
 - rate constant of lysis of fermenting bacteria (Xₕ) → 0.5
 - Fraction of inert particulate (Xᵢ) generated in biomass lysis → 0.01
- no O₂ inflow, no plants
- maximum time step → 0.001 d (ca. 1.5 min)
- new time step check to limit numerical disturbance (code correction was implemented in the new HYDRUS version)
- CODᵢ fractionation for synthetic wastewater
 - Sₕ=62% CODᵢ, Sₐ=10% CODᵢ, Sᵢ=3% CODᵢ, Xᵢ=20% CODᵢ, Xᵢ=5% CODᵢ
Simulation Results 3
Poster A. Rizzo* and Langergraber

Results 1
- COD outflows
 → adequately simulated

<table>
<thead>
<tr>
<th></th>
<th>AE<sub>COD,out</sub> (%)</th>
<th>Rem<sub>COD,meas</sub> (%)</th>
<th>Rem<sub>COD,sim</sub> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>B</td>
<td>16.7</td>
<td>66</td>
<td>70</td>
</tr>
</tbody>
</table>

Simulation Results 4
Poster: D. Sanchez-Ramos* and Langergraber

Modelling horizontal flow constructed wetlands treating effluents of wastewater treatment plants

Objective
- Tablas de Daimiel National Park (Spain):
- Floodplain wetland (1928 ha) connected with an important aquifer (5500 km²)
- Intensive pumping → disconnection → drying
- Treated Sewage Effluents from several WWTPs in the surroundings as possible solution for maintenance of TDNP until aquifer recovery
- Direct use of TSE unsafe → CW systems to polish WWTP effluents

* School of Civil Engineering, University of Castilla-La Mancha, Ciudad Real, Spain

Simulation Results 3
Poster A. Rizzo* and Langergraber

Results 1
- NH₄⁺ outflows
 → not adequately simulated

<table>
<thead>
<tr>
<th></th>
<th>AE<sub>COD,out</sub> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>83</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
</tr>
</tbody>
</table>
Simulation Results 4
Poster: D. Sanchez-Ramos* and Langergraber

Influent concentrations:
- 125 mg O2 L⁻¹ COD (mainly as slowly biodegradable particulate COD, XS)
- and 15 mg N L⁻¹ ammonium (SNH)

CWM1 parameters changed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CWM1 original value</th>
<th>Simulation value</th>
<th>Variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_n) (d⁻¹)</td>
<td>6</td>
<td>2.5</td>
<td>-58.33</td>
</tr>
<tr>
<td>(b_n) (d⁻¹)</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>(K_{SN}) (mg O₂/l)</td>
<td>0.2</td>
<td>0.4</td>
<td>100</td>
</tr>
<tr>
<td>(K_n) (d⁻¹)</td>
<td>3</td>
<td>2</td>
<td>-33.33</td>
</tr>
<tr>
<td>(f_{MXL}) (g CODₘX/g CODₘ)</td>
<td>0.1</td>
<td>0.02</td>
<td>-80</td>
</tr>
</tbody>
</table>

Simulation results
- Better treatment efficiency than expected in the design:
 - 66% COD removal
 - 39% NH₄ removal
- High HRT (19 cm d⁻¹) → important O₂ and COD supply in the inlet
- The high development of \(X_H \) has been the main difficulty on the simulation

Simulation Results 5
Poster: P. Smethurst* and Langergraber

Nitrate dynamics in a rural headwater catchment: measurements and modelling

* CSIRO Ecosystem Sciences, Hobart, Tasmania
SMZ plantation at 4 years of age

Simulation Results 5
Poster: P. Smethurst* and Langergraber

HYDRUS Wetland Modelling:
simulation of riparian buffer N dynamics

Important Capabilities:
• Denitrification
• Other organic C, N and P pools
• Rooting depth
• N uptake
• Rainfall, runoff, groundwater, and seepage
• Spatial and temporal flexibility

Main novel steps:
1. External spreadsheet: quick-flow/slow-flow analysis
2. HYDRUS: route slow-flow through HYDRUS as infiltration
3. External spreadsheet: recombine seepage as base-flow with quick-flow to estimate stream flow

Water and Nitrate:
hillslope modelling success at hourly and annual scales
Summary

Different applications of the biokinetic models CW2D and CWM1

| Biokinetic model | CW2D (Langergraber and Šimůnek, 2005) | CWM1 (Langergraber et al., 2009) |

Conclusions

The following conclusions can be drawn:

- Version 2 of the HYDRUS wetland module is the only publicly available implementation of the Constructed Wetland Model N°1 (CWM1).
- It is essential for modelling SSF CWs that fixed bacteria can be simulated.
- Since CWM1 is able to describe anaerobic processes, it is more suitable for modelling HF CWs.
- The influence of wetland plants on various biochemical transformation and degradation processes due to release of oxygen by plant roots in a HF bed is significant and therefore has to be considered.
- More experience still has to be gained in using the CWM1 biokinetic model.

Needs for improvement 1

(view of the Wetland module users)

- New time step adjustment linked with solute concentrations calculated in the wetland module
- Adjust default parameters for biokinetic models based on recent experiences
- Make limited outflow function again
- Particle transport and influence on hydraulic properties
- It is not possible to use physical non-equilibrium and chemical non-equilibrium at the same time (presentation Ania)
- Preferential flow is not possible while using the wetland module
- Implementation of flexible biokinetic model, i.e. addition of substances and processes to the wetland module should be possible by users

Needs for improvement 2

(view of the Wetland module users)

- Overland flow needs to be simulated by pre- and post-HYDRUS processing (hillslope application).
- For hillslope applications of HYDRUS, with or without the wetland module, it would be very useful to include outputs of pools and fluxes of both water and nitrate on a per area basis.
- Only one root type can be specified, wherever they are placed in the simulation domain (hillslope application).
- Preferential flow is not possible while using the wetland module.
- Implementation of flexible biokinetic model, i.e. addition of substances and processes to the wetland module should be possible by users.
Contact

Dr Guenter Langergraber

University of Natural Resources and Life Sciences, Vienna (BOKU)
Department of Water, Atmosphere and Environment
Institute of Sanitary Engineering and Water Pollution Control
Muthgasse 18, A-1190 Vienna, Austria
Tel.: +43 (0)1 47654-5814, Fax: +43 (0)1 47654-5803
Email: guenter.langergraber@boku.ac.at
http://www.wau.boku.ac.at/sig.html