

Background

• Oxygen supply is one of the biggest problems for optimizing plant growth in growing media

lochschule Osnabrüc

- Usual parameter: Air capacity (air content at container capacity CC; CC: water content at h = -10 hPa)
- Horticultural practice shows that this parameter is not sufficient to describe oxygen supply in growing media
- Air capacity: static conditions; Growing media: dynamic system
- Dynamic systems can be described with simulation models

HYDRUS Conference - Prague - 21./22.03.2013

HYDRUS Conference - Prague - 21./22.03.2013

Objectives of the Investigations

Hochschule Osnabrück University of Applied Sciences

- To describe physical parameters related to water and gas transport of different growing media
- To test HYDRUS-1D to describe water uptake and redistribution in growing media
- To use HYDRUS-1D to simulate oxygen movement and supply in growing media
- Final goal: to develop a (simple) system to describe water and oxygen supply in growing media, based on a simulation model, usable under practical growers conditions

<image><image><section-header>

Growing Media

White Peat

Seedling Substrate

Hochschule Osnabrück

niversity of Applied S

HYDRUS Conference - Prague - 21./22.03.2013

Chemical Properties

Some properties of the studied materials

Hochschule Osnabrück

			\frown	\frown	\frown
	pН	EC	DB	DP	OM
		(mS/m)	(g/cm³)	DP (g/cm³)	(g/g)
Seedling Substrate	5.5	25	0.139	1.63	0.886
White Peat	3.9	10	0.130	1.57	0.969

DB: Bulk Density; DP: Particle Density; OM: Organic Material

HYDRUS Conference - Prague - 21./22.03.2013

Physical properties

Hochschule Osnabrück University of Applied Sciences

Physical properties of the two materials

	\wedge		\bigwedge			\frown
	Total	Container	Air Capa-		Sat. Hydr.	Mean
Material	porosity (TP)	Capacity (CC)	city (AC)	Water (EAW)	Conductivity (Ks)	weight diameter
	cm³ cm⁻³	[at -10 hPa] CM ³ CM ⁻³	[at -10 hPa] CM ³ CM ⁻³	[-10 to -50 hPa] cm ³ cm ⁻³	cm s-1	mm
Seedling Substrate	0.91	0.88	0.03	0.44	0.097	1.15
White Peat	0.92	0.71	0.21	0.26	0.121	5.65
	$\overline{}$		$\overline{}$			$\overline{\mathbf{\nabla}}$

I) Hochschule Osnabrück Physical properties 100 90 80 Mean weight diameter: Fraction [%mas] 70 60 Seedling Substrate: 50 1.15 mm 40 • White Peat: 30 5.65 mm 20 10 0 10 20 0 30 40 Particle Size [mm]

van-Genuchten Parameters

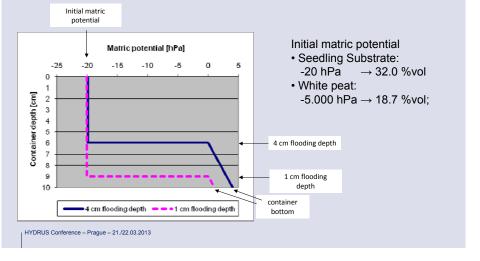
Parameter	White Peat	Seedling Substrate		
θ _s [cm ³ cm ⁻³]	0.920	0.910		
θ _r [cm³ cm-³]	0.187	0.373		
α _d	0.232	0.055		
n	1.411	3.022		
Air entry value [hPa]	-1	-8		
Largest Pore [mm]	3.0	0.4		

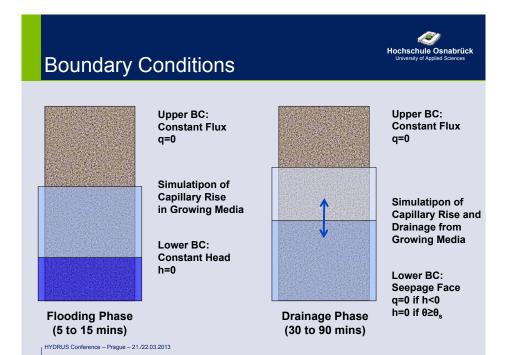
Hochschule Osnabrück

University of Applied Science

HYDRUS Conference - Prague - 21./22.03.2013

Initial Conditions


Initial conditions for the simulation (example for the seedling substrate)


Hochschule Osnabrück

I)

Hochschule Osnabrück

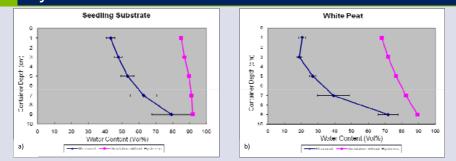
versity of Applied

Experimental container

Experimental container with 10 cm inner diameter and 15 cm height

Flooding tub with experimental containers

Flooding tub with experimental containers

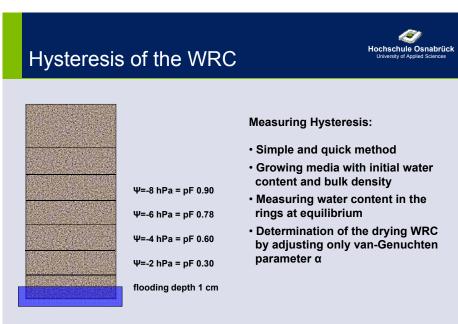


HYDRUS Conference - Prague - 21./22.03.2013

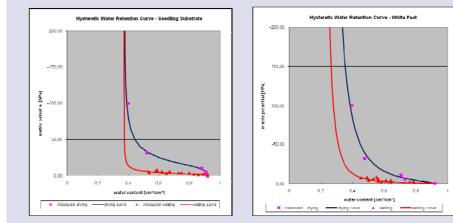
Results: Simulation without Hysteresis of the WRC

Hochschule Osnabrück University of Applied Sciences

Hochschule Osnabrück



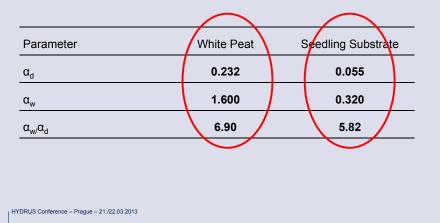
Water content (%vol) after 15 min of flooding, flooding depth 1 cm and after subsequent 90 min of drainage simulated without hysteresis for the seedling substrate (a) and the white peat (b)


Results:

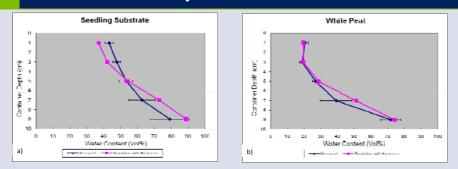
- · Model highly overestimates water uptaky by capillary rise
- Very poor simulation quality
- · Possible reason: Hysteresis of the WRC

HYDRUS Conference - Prague - 21./22.03.2013

Hysteresis of the WRC


Water retention curves (drying and wetting curves) for the seedling substrate and the white peat

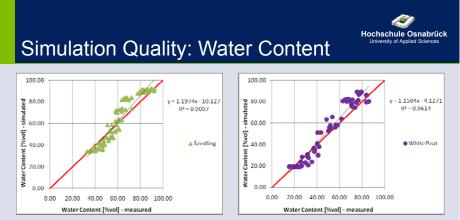
HYDRUS Conference - Prague - 21./22.03.2013


van-Genuchten Parameters

Hochschule Osnabrück University of Applied Sciences

Hysteretic van-Genuchten parameters for the water retention drying and wetting curves for the peat and the seedling substrate

Simulation with Hysteresis


Water content (%vol) after 15 min of flooding, flooding depth 1 cm and after subsequent 90 min of drainage simulated with hysteresis for the seedling substrate (a) and the white peat (b)

Results:

Water uptake is much smaller due to hysteresis

· Good simulation quality with minor deviations

HYDRUS Conference - Prague - 21./22.03.2013

Measured against simulated water content (%vol) for the seedling substrate (left) and the white peat (right)

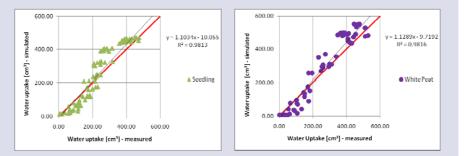
Results:

- high correlation coefficient (0.96 and 0.91)
- EF (Nash-Sutcliffe): 0.97 0.84 (Seedling Substrate); 0.83 0.70 (White Peat)
- Slope 1.15 and 1.20 indicate slight overestimation of high values and underestimation of low values

HYDRUS Conference - Prague - 21./22.03.2013

Simulation Quality: Water Content

measure	Seedling substrate			White peat		
	1 cm flooding depth	4 cm flooding depth	All	1 cm flooding depth	4 cm flooding depth	All
bias (%vol)	-0.32	-4.30	-2.31	-0.36	-4.44	-2.40
MAE (%vol)	2.66	7.15	4.90	5.72	6.63	6.18
RRMSE (%)	10.01	17.91	13.63	11.66	11.99	10.84
EF	0.973	0.844	0.905	0.827	0.698	0.766


MAE: mean absolute error; RRMSE: relative root mean squared error; EF: modeling efficiency (Nash-Sutcliffe)

HYDRUS Conference - Prague - 21./22.03.2013

Hochschule Osnabrück University of Applied Sciences

Hochschule Osnabrück

Simulation Quality: Water Uptake

Measured against simulated water uptake (cm³) for the seedling substrate (left) and the white peat (right)

Results:

- high correlation coefficient (0.98 both)
- EF (Nash-Sutcliffe): 0.99 0.95 (Seedling Substrate); 0.99 0.97 (White Peat)
- Slope 1.13 and 1.11 indicate slight overestimation of high values and underestimation of low values
 HYDRUS Conference - Prague - 21/22.03.2013

Simulation Quality: Water Uptake

measure	Seedling substrate			White peat		
	1 cm	4 cm	all	1 cm	4 cm	All
	flooding	flooding		flooding	flooding	
	depth	depth		depth	depth	
bias (cm³)	-12.65	-168.67	-90.66	-13.96	-174.24	-94.10
MAE (cm³)	25.27	168.67	96.97	38.96	174.24	106.60
RRMSE (%)	16.24	45.79	32.97	16.26	36.98	27.25
EF	0.994	0.948	0.958	0.994	0.966	0.975

Hochschule Osnabrück

Hochschule Osnabrück

MAE: mean absolute error; RRMSE: relative root mean squared error EF: modeling efficiency (Nash-Sutcliffe)

HYDRUS Conference – Prague – 21./22.03.2013

Summary and Conclusions

Hochschule Osnabrück

- Growing media show strong hysteresis of the water retention curve; hysteresis must be measured and taken into account for the simulation
- HYDRUS-1D is able to describe water uptake and redistribution in growing media under ebb-and-flow irrigation sufficiently well
- Possible reasons for differences could be the simplification of describing hysteresis only be changing the van-Genuchten parameter α
- HYDRUS-1D is a promising tool to overcome pure static descriptions of physical properties of growing media, such as air capacity, towards a dynamic description of water movement.

Outlook and Future Work

- We measured and modeled the dependency of the <u>oxygen</u> <u>diffusion coefficient</u> on air content for different growing media with different bulk densities (diffusion chambers)
- We measured <u>oxygen consumption</u> for different growing media, bulk densities and water contents (Isermeyer method)
- We measured <u>oxygen concentration profiles</u> under different irrigation situations (optical O₂ sensors)
- Next step: O₂ simulation with slightly modified HYDRUS source code

I am very much interested in contacts with colleagues working on the simulation of water and gas transport in growing media!!

Thank you for listening!