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ABSTRACT are still often raised regarding parameter identifiability
and their uniqueness for particular methods.Inverse problems for hydrological processes in the vadose zone

While various laboratory and field methods for evalu-are often perceived as being ill posed and intractable. Consequently,
ating soil hydraulic properties are relatively well estab-solutions to the inverse problems are frequently subject to skepticism.

In this paper, we examine the necessary and sufficient conditions for lished, several major problems remain. Most laboratory
the inverse problems to be well posed and discuss difficulties associ- methods are applied to samples ranging from 100 to
ated with solving the inverse problems. We subsequently explain the about 500 cm3. The scale of field methods generally does
need for a stochastic conceptualization of inverse problems of the not extend beyond a plot of 1 m2 and depths of one to
vadose zone. Principles of geostatistically based inverse approaches, several meters. There is an urgent need to develop meth-
which rely on stochastic concepts, are then illustrated, including cok-

ods that characterize hydraulic properties of the vadoseriging, a sequential linear estimator, and a successive linear estimator.
zone on a much larger scale. Recently developed geo-We then discuss applications involved in the approaches to classical
physical methods such as electrical resistivity tomogra-vadose zone inversion problems (using observed pressure heads, mois-
phy (ERT) (Daily et al., 1992; Zhou et al., 2001) andture contents, concentrations, and arrival times), hydraulic tomogra-

phy, and electrical resistivity tomography for vadose zone character- ground-penetrating radar (GPR) (Binley et al., 2001),
ization and monitoring. Finally, we present a stochastic information coupled with geostatistically based inverse methods (Liu,
fusion technology that assimilates information from both unsaturated 2001; Yeh et al., 2002) appear to be promising tools for
hydraulic tomography and electrical resistivity tomography. Prelimi- monitoring large-scale vadose zones. Combining these
nary results suggest that this fusion technology is a promising tool new tools with a three-dimensional hydrologic inverse
for effectively characterizing heterogeneity, monitoring processes in

model (e.g., Hughson and Yeh, 2000), a detailed three-the vadose zone, and quantifying uncertainties associated with vadose
dimensional characterization of the vadose zone on azone characterization and monitoring.
large scale appears to become possible.

In this review we examine conditions required to
make inverse problems well posed for unsaturated flow

Knowledge of unsaturated soil hydraulic proper- through homogeneous and heterogeneous soil columns.
ties is indispensable for successful predictions of Stochastic conceptualizations of inverse problems for

water flow and solute transport in the vadose zone. A va- the vadose zone are then introduced. Simple examples
riety of laboratory and field methods are currently avail- are used to illustrate the principles of geostatistically
able for direct and indirect evaluations of unsaturated based inverse approaches (GA), including cokriging, a
hydraulic conductivity, K, as a function of pressure head, sequential linear estimator, and a successive linear esti-
h, and/or water content, �. Popular laboratory methods mator method. We discuss applications related to GA to
include the one- and multistep outflow methods (Kool vadose zone inversion problems, hydraulic tomography,
et al., 1985; van Dam et al., 1994), the upward infiltra- and electrical resistivity tomography for vadose zone
tion method (Hudson et al., 1996), and the evaporation characterization and monitoring. Finally, we introduce
method (Gardner and Miklich, 1962, Šimůnek et al., a stochastic fusion of information concept to assimilate
1998). Popular field methods include the instantaneous information from soil physics, hydrology, geophysics,
profile method (Hillel et al., 1972), various unit-gradient and geology for characterizing and monitoring the va-
type approaches, sorptivity methods following ponded dose zone. Preliminary results of the information fusion
infiltration, and the crust method based on steady water technology are presented. Our discussions, we hope,
flow. While existing field methods are relatively simple will lead to better-designed laboratory and field experi-
in concept, these direct measurement methods have a ments, as well as to vigorous research and development
number of limitations that restrict their use in practice. of integrative inversion approaches for characterizing
For example, most methods are very time-consuming and monitoring the vadose zone.
to execute because of the need to adhere to relatively
restrictive initial and boundary conditions. This is espe- The Inverse Problem in Subsurface Hydrology:
cially true for field gravity drainage experiments involv- An Ill- or Well-Posed Probleming medium- and fine-textured soils. While most of the

Movement of water in variably saturated porous me-above methods are widely used and accepted, questions
dia, assuming isothermal conditions and neglecting the

T.J. Yeh, Department of Hydrology and Water Resources, The Uni-
versity of Arizona, Tucson, AZ 85721; J. Šimůnek, George E. Brown,
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gas phase, may be described using a modified form of Steady-State Unsaturated Flow
the Richards equation The fact that the hydraulic conductivity is a function

of the pressure head or moisture content generally in-
�Ss

�h
�t

�
��

�t
� � · [K(h)�(h � z)] [1] creases the difficulties of inverse problems for flow

through unsaturated porous media. Consider steady one-
where h is the pressure head, which is positive when dimensional vertical flow in an unsaturated soil column
the medium is fully saturated and negative when the and assume Darcy’s Law to be valid for the flow process:
medium is partially saturated, t is time, � represents the

q � �K(h)[dh/dz � 1] [4]volumetric moisture content, and z is the positive up-
ward vertical coordinate. The term Ss represents specific In this case, the pressure head, h, along the column must
storage and � a transitioning parameter that is one when be specified in addition to the specific discharge so that
h � 0 and zero when h is negative. To describe the �–h the unsaturated hydraulic conductivity at the given pres-
relationship of unsaturated media, van Genuchten’s (1980) sure head can be determined. Based on this principle, a
model is often assumed: unit gradient approach is frequently used to determine

the unsaturated hydraulic conductivity. Since hydraulic
�(h) � �r � (�s � �r)�1 � ��h �n��m

[2] conductivity varies with pressure head, several unit gra-
dient situations with different steady-state flow rates mustwhere � � is the absolute value, �s is the saturated mois-
be created to determine accurately the shape of the hy-ture content, �r is the moisture content at residual satura-
draulic conductivity function. The number of steady flowstion and �, n, and m are shape-fitting parameters with
can be reduced if we prescribe a relationship between Km � 1 � 1/n. We further assume that the unsaturated
and h. For example, if we assume that K(h) � Ks exp(�h),hydraulic conductivity function, K(h), follows Mualem’s
where Ks was previously defined and � is a pore-sizepore-size distribution model (van Genuchten, 1980);
distribution parameter (Gardner, 1958), we havethat is,

q � �Ks exp(�h) [5]
K(h) � Ks

(1 � (� �h �)n�1[1 � (� �h �)n]�m)2

[1 � (� �h �)n]m/2
[3]

In this case, two independent equations are required to
uniquely determine the value of Ks and �, implying that

where Ks is the locally isotropic saturated hydraulic con- at least two steady unit-gradient experiments under dif-
ductivity. Hereafter, Eq. [2] and [3] are referred to as ferent pressure head values must be undertaken. The
the VG model. problem will otherwise be ill posed. Similarly, if one uses

Generally, the boundary conditions associated with the VG model (Eq. [3]), which has three parameters (Ks,
Eq. [1] are given as: (i) K(h)�φ � n ·q* at boundaries, �, and n), three unit gradient conditions with different
	 1 , where n is a normal unit vector and q* a specified flow rates must be implemented such that three inde-
specific discharge, and (ii) φ(x, y, z) � φ* at boundaries, pendent equations exist to yield a unique solution. Al-
	 2 , where φ* is the specified hydraulic head. The initial though the inverse problem becomes well posed, the re-
condition is given as φ(x, y, z, t) � φ*(x, y, z, 0) at t � 0. sultant nonlinear equations may be still difficult to solve.

If we define Ks, Ss, �, n, �s, and �r as parameters or Consider one-dimensional steady unsaturated infil-
primary variables, then φ, h, and � are state variables, tration into a column consisting of two layers of known
secondary variables, or system responses. A forward prob- thickness. The unsaturated hydraulic conductivity of
lem refers to solving the flow equation for the pressure each layer is assumed to be described by the exponential
head or moisture distribution in time and space with model, and the thickness of the layer is constant, 
z .
known primary variables, and for given initial and bound- Therefore, we now have two equations:
ary conditions. On the other hand, an inverse problem
refers to estimating values of the primary variables from Ksi exp[�ih(z)]�dh(z)

dz
� 1� � �q

information about excitations to the system and its re-
sponse (secondary information) to those excitations. z � (zi, zi�1), i � 1,2 [6]A forward problem is well posed if the parameters
and initial and boundary conditions are completely spec- Each of these equations has two unknowns (Ks and

�) if q and h are specified. For unsaturated flow, hified in the solution domain so that the problem can
have a unique solution. It is ill posed and has an infinite varies nonlinearly within each material. Accordingly, a

detailed h distribution for one steady flow rate is neces-number of solutions otherwise. A well-posed problem,
however, does not necessarily warrant a solution. For sary to allow specification of h and dh/dz values at

different z values, such that two independent equationsinstance, a well-posed forward problem for variably sat-
urated flow may still encounter convergence and stabil- can be formulated for each material. If only one h and

dh/dz (e.g., unit gradient conditions if they exist) in eachity issues related to solution techniques. In addition, a
well-posed problem with incorrect information can lead material is known, imposing two different flow rates is

essential so that two independent equations for eachto an erroneous solution. Similarly, an inverse problem
is ill posed if there is no unique solution to the inverse material exist. To demonstrate this concept, Fig. 1A and

1B show both the true and estimated values of Ks andproblem. Next, we will examine conditions necessary for
an inverse problem to be well posed for both steady- � (after removing their means) in a synthetic soil profile

with 20 layers, respectively. The estimated values werestate and transient unsaturated flow in porous media.
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Fig. 1. Comparisons of true and estimated (A) Ks and (B) � values (after removing their means) from one flux boundary condition. (C) and
(D) compare the true and estimated values for two flux boundary conditions.

obtained using the successive linear estimator approach
�K(h)��h

�z
� 1��

z�0
�

�

�t� �
z�L

z�0

�(z, t)� � K(h)��h
�z

� 1��
z�L

(discussed below) with one pressure head measurement
in each layer for one steady unsaturated flux situation. [7]
This inverse problem is ill posed since each layer has

The term on the left-hand side of Eq. [7] is the outflowtwo unknowns, Ks and �, but only one pressure head
evaluated at z � 0. The first term on the right-handvalue, and thus only one independent equation. The
side of Eq. [7] denotes changes in storage, while theestimates therefore deviate from, yet resemble, the true
second term is the specific discharge flowing into thefields. If one fully saturated steady and one unsaturated
column at z � L. The sum of the two terms on the right-steady flux experiments are conducted, two different
hand side of Eq. [8] yields the specific discharge at thepressure head and gradient values—thus two indepen-
end of the column, q(0, t):dent equations—become available for each layer. The

inverse problem then becomes well posed. Figure 1C
� K(h)��h

�z
� 1��

z�0
� q(0, t) [8]and 1D show the estimated Ks and � values with the

two fluxes. Notice that the estimates are identical to the
true values—the inverse problem is well posed. The Equation [8] suggests that the pressure head, the pres-
parameter n in the VG model was assumed to be known sure gradient, and the discharge at z � 0 at a specified
a priori in this example. time must be known beforehand to uniquely define K(h)

at the given pressure head. Again, the minimum number
of times that these measurements must be specified willTransient Unsaturated Flow
depend on the form of the invoked hydraulic conductiv-

For transient unsaturated flow problems, after inte- ity model. For instance, if the VG model with three
grating Richards equation (Eq. [1]) over the length of unknown parameters (Ks, �, and n) is used, at least three
the soil column (from z � 0, the bottom of the column, different discharge rates and pressure head profiles at

three times are needed to create three independentto z � L, the top of the column), we have
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equations. This scenario forms the basis of the well- complications. These complications include representa-
tiveness of mathematical models for actual physical pro-known instantaneous profile method (Rose et al., 1965;

Watson, 1966). cesses (model error), inability to measure detailed h
and � distributions and fluxes (lack of information),Knowledge of the pressure head and moisture content

distributions along the column at two specified times precision of numerical models and computational de-
vices (numerical errors), and noise in the measurementsallows evaluation of the pressure head gradient and

the change in moisture content along the length of the (measurement errors), in addition to consistency in scale
between measurements and the representative elemen-column. However, this is not sufficient to make the

inverse problem of Eq. [8] well posed. Since the unsatu- tary volume. Thus, a theoretically well-posed problem,
complicated by these factors, may yield a unique but un-rated hydraulic conductivities K(h) at z � 0 and z � L

remain unknown, the number of unknowns is greater desirable solution. In recent investigations, many soil
physicists (Toorman et al., 1992; Zurmühl, 1996; Šimů-than the number of independent equations. Additional

information about the pressure head and moisture con- nek and van Genuchten, 1997; Šimůnek et al., 1998) have
developed practical approaches to circumvent these dif-tent distributions at different times does not help be-

cause more unknowns [i.e., K(h) at different h values] ficulties. Nevertheless, the well-posedness conditions dis-
cussed above are necessary to have a unique solutionare introduced. Consequently, to resolve the ill-posed

issue, in addition to the head and moisture content dis- to the inverse problem. These prerequisites must be con-
sidered a priori in the design of field and laboratorytributions at different times, one of the boundary fluxes

in Eq. [7] at different times must be specified. Notice experiments for the inverse problem.
that if at different times measurements of both the pres-
sure head and the moisture content at a point in a Stochastic Conceptualization
homogeneous soil column are available, the water reten- of Inverse Problems
tion curve, �(h), can be constructed for the medium. If

While inverse problems associated with laboratory ex-we assume that the parameter values for the retention
periments in general can be well posed if sufficient andcurve are representative of the relative conductivity
necessary information is collected, virtually all inversecurve based on the VG model, the relative conductivity–
problems for field experiments are ill posed because thepressure head relationship can be derived without in-
prerequisites are difficult to meet, especially when oneverting the flow model.
attempts to identify detailed heterogeneity. Many ap-For transient flow in an unsaturated heterogeneous
proaches have attempted to solve these types of inversemedium, the general rule is that the initial and boundary
problems in subsurface hydrology (e.g., Neuman, 1973;conditions, and many sets of spatial steady-state head
Yeh, 1986; Sun, 1994; McLaughlin and Townley, 1996).distributions, and temporal head and moisture distribu-
In spite of their differences, all methods, in theory,tions during transient flows must be known. The inclu-
should yield an exact solution if the inverse problem ission of two or three fluxes is invaluable for making the
well posed. On the contrary, no unique solution willinverse problem well posed.
exist if the problem is ill posed despite having a veryThese examples assume that the size of each soil block
effective solution technique. The fact is that if manyis the same and known. If the size of each block varies
global minima exist, most or all solution techniques willand the distribution of the blocks is unknown, the prob-
yield large numbers of solutions to the inverse problem.lem becomes more complex. While the previous discus-
However, if some prior information about the conduc-sion focused on one-dimensional flow problems, the
tivity distribution (e.g., the average block size, the maxi-same principles are also applicable to multidimensional
mum and minimum parameter values), in addition toflow problems. The hydraulic conductivity anisotropy
sparsely observed responses of a system, is given, theof the equivalent homogeneous medium, or the anisot-
solution can be better constrained (e.g., Menke, 1989).ropy of each block, may have to be considered if they
Even with this prior information, the estimated parame-are significant. This means that more parameters may
ters still involve uncertainty because of spatial variabil-need to be identified. Therefore, additional information
ity of the parameters.about the system’s spatial and temporal responses must

Because of these considerations, a probabilistic de-be acquired.
scription (or stochastic representation) of the hydraulicThe discussions above lead to the fact that if sufficient
properties becomes appropriate. That is to say, eachinformation is available to yield enough independent

equations, the inverse problem is always well posed and of the properties of a geological formation should be
considered as a stochastic process with an infinite num-should have a unique solution. A well-posed problem,

however, may still fail to yield a solution because of limi- ber of possible realizations, characterized by a joint prob-
ability distribution (Gelhar, 1993). In practice, the jointtations of the adopted solution technique and erroneous

information. We should also emphasize that the discus- probability distribution is seldom known but can be
approximated by the first and second moments of sam-sions are restricted to inversions based on mathematical

models, which assume a one-to-one relationship between ples. The first moment, the mean, represents the most
likely value of the property. The second moment, thethe hydraulic property and the hydraulic response of a

system in both forward and inverse operators. spatial covariance function, specifies the variance and
correlation structure of the process, analogous to a de-The inversion of hydraulic properties from actual lab-

oratory and field experiments may encounter other scription of maximum and minimum values of the prop-



www.vadosezonejournal.org 211

erties and the average block size in previous discussions, f̂ 0 � �01 f 1 � �02 h2 [9]
respectively. If one adopts the stochastic representation

where the weights �01 and �02, represent the contributionof the hydraulic property, a corresponding response of
to the hydraulic conductivity estimate at x0 from thethe formation to an excitation is then considered a sto-
known hydraulic conductivity, f 1, and the pressure head,chastic process.
h2, at locations x1 and x2, respectively. The weights canWith limited secondary information, an inverse model
be obtained by minimizing the mean-square error ofthus is best perceived as a means to produce property
the estimate, E[( f 0 � f̂ 0)2]. The minimization leads to aand response fields that agree with properties and re-
system of equations:sponses at sample locations. In addition, these fields

must satisfy the statistics (i.e., the mean and covariance) �Cff (x1, x1) Cfh (x1, x2)
Cfh (x1, x2) Chh(x2, x2)� ��01

�02
� � �Cff (x0, x1)

Cfh (x0, x2)� [10]describing their spatial variability, while the governing
equation must describe the underlying physical process.
In a conditional probability concept, this resultant field where Cgg (xi, xj) represents the spatial covariance of
is a conditional realization of the property or response the stochastic processes, gi and gj (which can be either
field, among many possible realizations in the ensemble. conductivity or head) at locations xi and xj. Notice that
While many possible realizations of such a conditional Cfh(xi, xj) � Chf (xj, xi). The solution of Eq. [10] yields
field exist (i.e., nonunique solutions), the conditional the cokriging weights,
mean field is unique. This field also represents the most
likely solution to the inverse problem, even though this �01 �

�hh(x2, x2)�ff (x0, x1) � �fh(x1, x2) �fh(x0, x2)
�hh(x2, x2) � �fh(x1, x2)2

,
may not necessarily be the true field of the soil profile
or geological formation. Its deviation from the true field

�02 �
�fh(x0, x2) � �fh(x1, x2) �fh (x0, x1)

�hh(x2, x2) � �fh(x1, x2)2 [11]is quantified through the conditional variance (uncer-
tainty). As more pieces of primary and secondary infor-
mation are acquired, the conditional mean will gradually if we define normalized covariance functions, that is,
resemble the true realization of the property field of �ff (xi, xj) � Cff (xi , xj)/Cff (xi , xi), �hh(xi , xj) � Chh(xi , xj)/
the given geological formation, and the uncertainty pro- Cff (xi , xi), and �fh(xi , xj) � Cfh(xi , xj)/Cff (xi , xi).
gressively diminishes. An ill-posed inverse problem is thus Note from Eq. [11] that the weight does not depend
best considered as a stochastic inverse problem, whereas on the variance of hydraulic conductivity. To evaluate
a well-posed problem is a deterministic inverse prob- the weights, the covariance, Cff (xi , xj) must be specified
lem—a least-squares approach would be appropriate. a priori. In theory, the covariances Chh(xi , xj) and Cfh(xi ,

xj) can be derived from data, if sufficient data sets are
Geostatistically Based Inverse Approaches available, but are generally calculated using Cff (xi , xj)

and a first-order analysis based on the flow model (e.g.,If one accepts the stochastic conceptualization of the
Dettinger and Wilson, 1981). As a result, the flow pro-ill-posed inversion problem, GA are appropriate inverse
cess is implicitly considered in this cokriging technique.methods. In this section, principles of cokriging, sequen-

Consider a simple linear forward model for flow, say,tial conditioning, and a successive linear estimator ap-
h � a21 f 1 � a22f 2 , where a21 and a22 are coefficients. Weproach are illustrated using some simple examples.
are to estimate the hydraulic conductivity value, f 2 , at
location x2 , using simple cokriging with known hydraulicCokriging
conductivity, f 1 , and hydraulic head, h2, at location x1Cokriging in essence is a classical linear predictor that and x2 . In this case, cokriging yields an exact solution.

considers spatial correlation structures of flow processes The covariances needed are calculated from the forward
(such as pressure heads and velocities) and hydraulic model and they are
properties of geological media. In addition, cokriging
takes into account possible cross-correlation between Chh(x2, x2) � a2

21Cff (x1, x1) � 2a21a22Cff (x1, x2) � a2
22Cff (x2, x2)

the flow processes and the hydraulic properties. Cokrig- Cfh(x1, x2) � a21Cff (x1, x1) � a22Cff (x1, x2)
ing has been widely used to estimate transmissivities, Cfh(x2, x2) � a21Cff (x1, x2) � a22Cff (x2, x2) [12]
heads, velocities, and concentrations of pollutants in

Using these covariances, a solution to a matrix simi-highly heterogeneous aquifers (e.g., Kitanidis and Vom-
lar to Eq. [10] lead to the weights: �21 � �a21/a22, andvoris, 1983; Hoeksema and Kitanidis, 1984, 1989; Rubin
�22 � 1/a22 . Notice that in this case the weights areand Dagan, 1987; Gutjahr and Wilson, 1989; Sun and
independent of the covariance function of hydraulicYeh, 1992; Harvey and Gorelick, 1995; Yeh et al., 1995,
conductivity. This is because the problem is well posed1996). It has also been used to estimate water content
(i.e., a deterministic inverse problem). On the otherdistributions based on combined measurements of water
hand, if the problem is ill posed (i.e., a stochastic inversecontent, soil water pressure head, soil surface tempera-
problem), cokriging yields weights that depend on theture, and/or soil texture (e.g., Vauclin et al., 1983; Yates
covariance functions (see Eq. [11]) and can produce aand Warrick, 1987; and Mulla, 1988).
unique estimate that satisfies the minimum mean squareConsider estimating the hydraulic conductivity value,
error criterion. The influence of the covariance, how-f 0, at location x0, using simple cokriging and a known
ever, decreases with an increase in the number of obser-hydraulic conductivity, f 1, and pressure head, h2, at loca-

tions x1 and x2, respectively; that is, vations of either h or f .
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Sequential Linear Estimator Then the weight is given by

Instead of estimating f 0 simultaneously using both f 1
�02 �

ε (1)
fh (x0, x2)

ε (1)
hh(x2, x2)

�
�fh(x0, x2) � �ff (x0, x1) �fh(x1, x2)

�hh(x2, x2) � �2
fh(x2, x1)and h2 as in the previous example, we now will use a [22]

sequential linear estimator approach (Vargas-Guzman
The estimate (Eq. [15]) thus becomesand Yeh, 1999) that estimates f 0 , f 1 , and h2 using only

f 1 at first, and then improves the estimate by adding the f̂ (2)
0 � f̂ (1)

0 � �02(h2 � ĥ2) � (�01 � �02�21) f 1 � �02h2
observed h2 information. Our first estimates are

�
�hh(x2, x2) �fh(x0, x2) � �ff (x0, x1) �fh(x1, x2)

�hh(x2, x2) � �2
fh(x1, x2)

f 1f̂ (1)
0 � �01 f 1 , f̂ (1)

1 � �11 f 1 , ĥ (1)
2 � �21 f 1 [13]

where the superscript (1) indicates the first step of the
�

�fh(x0, x2) � �ff (x0, x1) �fh(x1, x2)
�hh(x2, x2) � �2

fh(x1, x2)
h2 [23]sequential estimate and

�01 �
Cff (x0, x1)
Cff (x1, x1)

� �ff (x0, x1), �11 �
Cff (x1, x1)
Cff (x1, x1)

� �ff (x1, x1) � 1, This result is essentially Eq. [9] with the weights given
in Eq. [12]. Therefore, linear estimation using different

�21 �
Cfh(x1, x2)
Cff (x1, x1)

� �fh(x1, x2) [14] information sequentially is equivalent to cokriging that
uses all of the information simultaneously. The sequen-

Notice that the estimate of f 1 is exact because kriging tial approach nevertheless reduces computational ef-
is an exact interpreter at the sample location (i.e., a con- forts. Consider there are Nf measurements of hydraulic
ditioning approach). conductivity and Nh measurements of the hydraulic

Next, we will update our estimate of f 0 by using the head. The computational cost of inverting the matrix in
difference between the observed h2 and its estimate from Eq. [10] is (Nf � Nh)3, whereas the cost of the sequential
Eq. [13]: estimator is N3

f � N3
h . Suppose the measurements are fur-

ther subdivided into subgroups and then used sequen-f̂ (2)
0 � f̂ (1)

0 � �02(h2 � ĥ2) [15]
tially in the estimation. The savings in terms of computa-

where the superscripted (1) and (2) indicate the order tional efforts can be even more significant. It must be
of the sequential linear estimator. The weight, �02, in emphasized that during sequential estimation it is essen-
Eq. [15] is obtained by minimizing the variance of the tial to update the unconditional covariance after condi-
new estimate: tioning with available information.

Notice that the weights of the GA method for differ-E[( f 1 � f̂ (2)
0 )2] � E�[( f 0 � f̂ (1)

0 ) � �02(h2 � ĥ (1)
2 )]2�

ent estimation locations also can be obtained indepen-ε (2)
ff (x0, x0) � ε (1)

ff (x0, x0) � 2�02ε (1)
fh (x0, x2) � � 2

02ε (1)
hh(x2, x2) dently. That is, one can solve Eq. [10] to obtain �11[16]

and �12 for Location 1, independently from solving the
where ε represents the conditional (or residual) covari- equation for obtaining �21 and �22 for Location 2. There-
ance and cross-covariance. Differentiating Eq. [16] with fore, the algorithm is most suitable for parallel comput-
respect to �02 and setting the result equal to zero, we ing, and is highly efficient, since the inverse of the left-
have hand side of Eq. [11] has to be computed only once. This

feature of the GA approach offers a similar advantage�02ε (1)
hh(x2, x2) � ε (1)

fh (x0, x2) [17]
to inverse modeling of variably saturated flows where

in which the conditional covariance can be determined by several parameters (e.g., Ks, �, n, �s, and �r of the VG
model) require estimation—the GA can estimate theseE[(h2 � ĥ (1)

2 )2] � E[(h2 � �21f 1)2]
parameters independently.ε (1)

hh(x2, x2) � Chh(x2, x2) � 2�21Cfh(x1, x2) � � 2
21Cff (x1, x1) In the case of stochastic inverse problems where the[18] number of observations, M, is always much smaller than

Using Eq. [14], the normalized conditional head covari- the number of parameters to be estimated, N, which is
ance for Eq. [18] becomes the scenario in real-world problems, the GA method

offers an even greater advantage over other classical
�(1)

hh(x2, x2) � �hh(x2, x2) � �2
fh(x2, x1) [19]

inverse methods. For inverse problems of variably satu-
Equation [19] shows that the conditional variance of the rated flow, the GA also permits sequential inclusion
hydraulic head thus becomes smaller than the uncondi- of pressure head and moisture content measurements.
tional head variance because of the effects of condition- Moreover, the GA method allows sequential inclusion
ing using f 1. Similarly, the conditional cross-covariance of observations from multiple experiments such as in
can be derived: hydraulic tomography and sequential fusion of informa-

tion of different processes, as discussed below.E[( f 0 � f̂ (1)
0 )(h2 � ĥ (1)

2 )] � E[( f 0 � �01f 1)(h2 � �21f 1)]
ε (1)

fh (x0, x2) � Cfh(x0, x2) � �21Cff(x0, x1) Successive Linear Estimator� �01Cfh(x1, x2) � �01�21Cff (x1, x1)
While the GA approach is powerful, it still is only[20]

a linear predictor. Relationships between primary andWritten in terms of normalized covariances, Eq. [20] secondary variables of the vadose zone are generallybecomes highly nonlinear. Therefore, the GA approach cannot
fully exploit available secondary information. To over-�(1)

fh (x0, x2) � �fh(x0, x2) � �ff (x0, x1) �fh(x1, x2) [21]



www.vadosezonejournal.org 213

come this limitation, Zhang and Yeh (1997) adapted a (1996) to identify unsaturated hydraulic parameters in
heterogeneous vadose zones during steady-state uni-successive linear estimator (SLE) technique (Yeh et al.,
form flow and by Yeh and Zhang (1996) for nonuniform1996) to the vadose zone inverse problem. The principle
flow. Later, Hughson and Yeh (1998) extended the ap-of the SLE is similar to the sequential linear estimator.
proach to transient unsaturated flow. Harter and YehHowever, instead of using different pieces of informa-
(1996) showed that measurements of hydraulic headtion sequentially, SLE uses the same information succes-
enhance the prediction of the flow paths of solutes insively to account for the nonlinear relation, and thus to
the vadose zone. Yeh and Zhang (1996) reported thatimprove the estimate.
the unsaturated hydraulic parameters of a heteroge-Detailed SLE algorithms for vadose zone inverse
neous vadose zone could be identified if sufficient pres-problems can be found in Hughson and Yeh (2000).
sure head and degree of saturation information wasHere we present a brief outline of the steps involved.
available. They found that, under relatively wet condi-The SLE consists of seven steps. Step 1 starts with co-
tions, measurements of the pressure head improved esti-kriging, which integrates primary and secondary infor-
mates of the saturated hydraulic conductivity. Undermation to estimate the value of the primary variable
relatively dry conditions, measurements of saturationat locations where no information of the variable is
enhanced the estimate of the pore-size distribution pa-available. In Step 2, the covariance of the primary vari-
rameter, �, of the Gardner model.able is updated to reflect the effects of available infor-

Li and Yeh (1999) used cokriging to estimate the hy-mation. In Step 3, the newly estimated variable field
draulic conductivity from pressure head, solute con-from Step 1 is used to simulate the hydraulic head by
centration, and solute arrival time measurements in ameans of a forward flow model. In Step 4, the condi-
hypothetical, heterogeneous vadose zone subject totional covariances of the secondary information and
steady-state infiltration at different degrees of satura-their cross-covariances with the primary values are mod-
tion. Their analysis showed that the performance ofified using a first-order analysis as in the sequential
cokriging deteriorates as the medium becomes less satu-linear estimator approach. For Step 5, these newly eval-
rated when either head or concentration measurementsuated covariances and cross-covariances are used to
are used. They attributed this result to an increase incompute new weights. Step 6 is where the new weights,
nonlinearity between head or concentration and thealong with the difference between simulated and ob-
conductivity as the medium becomes less saturated, andserved system responses at observation locations, are
to the linear predictor nature of cokriging.used to improve the estimate of the primary variable,

Among pressure head, solute concentration, and sol-which is similar to the sequential linear estimator ap-
ute arrival time measurements, Li and Yeh (1999) foundproach. In Step 7, the weights are used to update condi-
that pressure head measurements of steady-state flowtional covariances for the next iteration. This newly
fields were the most useful secondary information forupdated primary variable field and new conditional co-
estimating the Ks field using cokriging. They attributedvariances are used again in Steps 3 and 4, followed by
this finding to several factors. First, the nonlinear rela-Steps 5 through 7. In essence, Steps 3 through 7 are
tionship between head and Ks may have been relativelyrepeated until no improvement in the estimate of the
mild for the cases they studied. Additionally, the as-primary variable is found (i.e., the solution converges).
sumption of ergodicity was approximately satisfied forSimilar to a nonlinear maximum a posteriori (MAP)
steady-state flow. In other words, the ensemble meanmethod (see McLaughlin and Townley, 1996), the SLE
head distribution evaluated with mean values of theis also based on a Bayesian framework but differs from
parameters closely approximates the spatial mean headMAP in many aspects (Kitanidis, 1986, 1997). More
distribution. Such an existence of ergodicity reduces theimportantly, during nonlinear iterations, our SLE up-
variance of the head, and consequently improves thedates the second moment of the posteriori probability
linearity between head and conductivity. Conversely,of the primary variable in a consistent manner using a
the ergodicity assumption cannot be easily satisfied forfirst-order approximation approach. For a well-posed
the solute transport case. Only when a solute plume hasinverse problem (saturated or unsaturated flow), the
traveled over enough correlation lengths, has sampledSLE converges to the true solution rapidly (as shown
enough heterogeneity, and has become a Fickian pro-in Fig. 1). Also, notice that the SLE can account for
cess, will the ergodicity assumption be satisfied. Becausemeasurement errors in the estimation by addition of
of a lack of ergodicity, the variance of a concentrationerror variances to the diagonal of the left-hand side of
perturbation can be very large and the cokriging estima-matrix of (10) or (17).
tion using concentration measurements can be unsatis-
factory.

In theory, concentration distributions of a tracer areApplications
the result of both convection and dispersion processes.

Unsaturated Inverse Problems Suppose we neglect dispersion and assume that convec-
Traditional inverse modeling approaches typically tion is the dominant process. The convection process is

consider secondary information collected during one ex- a function of not only the hydraulic conductivity but
citation to the system only (e.g., an infiltration event) also the hydraulic gradient and the moisture content.
to identify all primary variables. Based on this approach, Cross-correlation between the concentration and the

hydraulic conductivity is thus not as strong as the rela-a cokriging technique was developed by Harter and Yeh
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tionship between pressure head and hydraulic conduc- tions are often impractical and cost-prohibitive. Collect-
ing copious secondary information with a minimumtivity. This suggests that for estimating the hydraulic

conductivity, concentration measurements are generally number of boreholes and a limited budget then becomes
an important and practical issue for improving the in-less effective. The same argument applies to arrival times

of a tracer concentration. However, Li and Yeh (1999) verse solution.
Hydraulic or pneumatic tomography appears to befound that estimates of the conductivity based on head

measurements could still be improved by incorporating one possible technique to accomplish this goal. Hydrau-
lic or pneumatic tomography can generate many pres-additional concentration information.

Of course, the examples assumed that the scales of sure measurements with a fixed number of boreholes
(Gottlieb and Dietrich, 1995; Butler et al., 1999; Yehmeasurements of hydraulic properties, pressure head,

concentration, and arrival time are the same as the ele- and Liu, 2000; Liu et al., 2002; Vesselinov et al., 2001a,b).
For example, using packers, two fully screened wells inment size of the model. In practice, this assumption will

unlikely be met and thus, results in biased estimates. an aquifer can be partitioned into many intervals. By
sequentially pumping water at different intervals, andWhile issues of different scales remain to be solved, a

practical solution is to collect “enough” measurements monitoring the steady-state head response at the other
wells and packed-off intervals, many pairs of head–in space (e.g., along a borehole), smooth them with a

moving average method based on the size of the ele- discharge data sets can be obtained with only two wells.
This vast amount of information may yield additionalment, and then use the smoothed values at measurement

locations as the conditioning values. Alternatively, one independent equations for the inverse process—ana-
logous to a multiple pumping test to determine aquifercan add nugget effects to the covariance functions for

the measurements in the SLE such that contributions anisotropy (Neuman et al., 1984).
Interpretation of the vast amount of data from tomo-from the measurements to estimates are reduced. As a

graphic tests demands an efficient inverse algorithm.consequence, estimated fields are expected to be smooth,
A combined SLE and sequential method offers greatbut they may retain essential heterogeneity patterns.
promise to accumulate the high-density secondary infor-Lastly, one must recognize that the propagation process
mation from the tomographic test and maintains theof pressure head is highly diffusive, moisture content is
system of equations at a manageable size so that theyless, and concentration and travel time are the least. There-
can be solved with the least numerical difficulties. Usingfore, effects of the scale are expected to be minimal if
this sequential SLE approach, Yeh and Liu (2000)the pressure head information is used.
showed that tomographic aquifer tests have significantBecause of the highly nonlinear nature of most vadose
advantages over traditional pumping tests. Such testszone inverse problems, Zhang and Yeh (1997) showed
can provide a detailed image of three-dimensional aqui-that the SLE approach could yield more detailed images
fer heterogeneity with the same number of wells used inof unsaturated hydraulic parameters than cokriging.
traditional pumping tests. They also examined networkThis implies that the SLE, which successively incorpo-
design issues and reported that the effects of the spatialrates the nonlinear relation between the primary and
covariance function diminish as the number of hydraulicsecondary variables, can maximize the utility of avail-
tomography data sets increases. They nonetheless em-able secondary information.
phasized accuracy of hydraulic head measurements.The SLE principle was adopted by Hughson and Yeh
Subsequently, Liu et al. (2002) conducted sand box ex-(2000) to develop an inverse model for three-dimen-
periments to test the hydraulic tomography approachsional, transient flow in heterogeneous vadose zones.
and concluded that the tomography is a viable technol-They also used the sequential estimator approach to
ogy for delineate aquifer heterogeneity and the sequen-allow pressure head and water content data obtained
tial SLE algorithm is a promising tool for inverting theat different times to be sequentially included in the
vast amount of data generated with tomography tests.inversion. Using this inverse model, they investigated

While their investigations dealt with saturated flowthe efficacy of estimating the VG parameters using pres-
problems, the tomographic concept can be equally wellsure and moisture content measurements at relatively
applied to unsaturated infiltration tests, that is, unsatu-early, intermediate, and late time periods. They con-
rated hydraulic tomography. The unsaturated hydrauliccluded that for the cases investigated, late time data
tomography method involves the sequential injectionprovide the best estimates.
of water at different depths and locations, followed by
monitoring the response of the vadose zone at selected

Hydraulic Tomography locations. Using an appropriate inverse modeling tech-
nique, the vast amount of secondary information canResults of the previous applications of the GA meth-

ods to vadose zone inverse problems demonstrate a thus be processed to image spatial distributions of the
primary variables of the vadose zone.simple fact: in spite of the robustness of GA based

inverse models, accurate identification of a large num- Pumping or injection air tests in the unsaturated zone
are one of many possible approaches to determine theber of primary variables in a three-dimensional vadose

zone still requires a large amount of secondary informa- permeability and porosity of unsaturated soil and frac-
tured rocks. In principle, air injection tests are verytion. To satisfy this requirement using traditional sam-

pling means, installation of numerous soil sampling sites similar to their hydraulic counterparts conducted in fully
water-saturated media. Air is either injected into orand/or boreholes is necessary, except that such opera-
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withdrawn from sections of boreholes isolated by means zone can be monitored. Furthermore, assuming univer-
of inflatable packers, with the pressure responses moni- sal moisture content and resistivity relations (i.e., Ar-
tored in observation wells and packed-off intervals. The chie’s Law), a three-dimensional image of the moisture
pressure response in observation wells can be related content distribution over a large volume of geological
to pneumatic flow parameters such as permeability and material can thus be obtained.
porosity through analytical techniques or numerical in- Electrical resistivity tomography also relies on in-
verse modeling. Pneumatic tomography (i.e., cross-hole version of the potential equation. Yeh et al. (2002) ex-
pneumatic injection tests conducted sequentially and tended the sequential SLE algorithm to three-dimen-
corresponding inverse interpretation) has recently been sional ERT inversions such that both electric potential
proposed as a method for characterizing subsurface het- and point measurements of the electrical conductivity
erogeneity (Vesselinov et al., 2001a,b). In general, pneu- can be included in the inversion. They showed that elec-
matic injection and gaseous tracer experiments in frac- tric potential sampling arrays perpendicular to bedding
tured rocks are not widely performed. Much of current are more effective than those parallel to bedding. They
experience has been gained during pneumatic injection also showed that the ERT can detect the general pattern
tests in tuffs at Yucca Mountain, Nevada (LeCain and of change in the resistivity and, thus, the pattern of
Walker, 1994; LeCain, 1996, 1998; Wang et al., 1998; change in the moisture content. Furthermore, the reso-
Huang et al., 1999), in Box Canyon, Idaho (Benito et lution of the ERT image can be easily improved by de-
al., 1998, 1999), and at the Apache Leap Research Site ploying a large number of sensors within boreholes and
near Superior, AZ (Trautz 1984; Yeh et al., 1988; Ras- at the soil surface. The relative inexpensiveness of themussen et al., 1990, 1993; Guzman et al., 1996; Illman sensor makes such a deployment feasible, thus makinget al., 1998).

ERT a highly desirable monitoring tool for vadose zoneDespite their ability to create many data sets to con-
investigations. However, recent field studies (Baker,strain the inverse solution, hydraulic and pneumatic to-
2001; Yeh et al., 2002) indicated that parameters ofmography also have several limitations. The effective-
Archie’s Law exhibit profound spatial variability, al-ness of tomography has been found to decrease rapidly,
though they are spatially correlated. This variabilityindicating that excessive sequential excitation often pro-
compounds the difficulty in translating resistivity toduces only redundant information (Yeh and Liu, 2000)
moisture content. In other words, at some location, abecause secondary information is always collected at
small change in resistivity may indicate a large changethe same locations. In addition, data are often strongly
in water content, while at other locations a substantialaffected by barometric pressure fluctuations (Illman et
change in the resistivity may correspond to only a smallal., 1998; Illman and Neuman, 2001), which cause the
change in the water content (Yeh et al., 2002). Conse-effectiveness of the data to decline rapidly. As a result,
quently, the ERT’s ability to yield an accurate imageacquisition of high-density and accurate secondary in-
of change in moisture content, or more critically theformation throughout the vadose zone remains the only
moisture content itself, remains to be proven.viable means to enhance the ability of an inverse model

to produce high-resolution subsurface images.
Stochastic Fusion of Information

Electrical Resistivity Tomography Our previous inverse modeling efforts have brought
about several aspects of characterization and monitor-To attain high-density secondary information needed
ing of vadose zones:for hydrological inverse modeling, geophysical surveys

appear to be viable and cost-effective technologies.
1. Geologic materials exhibit random spatial varia-Whereas geophysical surveys may not provide the pri-

tions in hydro- or geophysical properties on a mul-mary information for hydrologic modeling, they can be
tiplicity of scales. Small-scale direct sampling ofextremely cost-effective, indirect tools for detecting geo-
the entire vadose zone is in most or all cases virtu-logical structures (e.g., Rubin et al., 1992; Hyndman and
ally impossible.Gorelick, 1996; Rea and Knight, 1998; Hubbard et al.,

2. Reliable inversions of variably saturated flow1999, 2001) and for monitoring hydrological processes.
problems require a large amount of secondary in-Recently, ERT surveys have been demonstrated to be
formation at high densities over the entire volumepractical tools for collecting high-density moisture con-
of the investigation, and many constraints prohibittent data in the vadose zone without excessive invasive
the collection of such information.sampling (e.g., Daily et al., 1992, Zhou et al., 2001,

3. Tomography approaches can produce additionalBrainard et al., 2001).
data sets to constrain the inversion, but their effi-Similar to hydraulic tomography, ERT emits DC cur-
cacy can be limited.rents at a point in space and monitors the electrical

4. Geophysical surveys have the potential to collectpotential at other locations. By moving the DC source
a vast amount of information pertinent to hydro-location, one can generate many electrical potential fields
logical inversion; however, significant spatial varia-and source pairs, from which a three-dimensional image
tion in the relations between various hydrologicof changes in the resistivity can be derived using an in-
and geophysical properties diminishes the value ofverse model. Assuming changes in resistivity mimic

changes in moisture content, water flow in the vadose the information for its intended applications.
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Approach

Because of these problems and uncertainties, assimi-
lation of different types of information using a stochastic
approach appears to be the only plausible solution. In
other words, while geological characterization, point mea-
surements of hydrological and geophysical properties,
hydraulic tomography, and ERT have their pro and
cons, an integration of their individual strengths may
facilitate a better way to monitor and characterize the
vadose zone and quantify uncertainty.

During the integration, not only the hydrological and
geophysical inversion methods need to include available
primary and secondary information to better condition
the ensemble of their primary variables, but the recipro-
cal nature of hydrologic and geophysical information
and inversions must be recognized as well. For example,
hydrologic information can provide useful constraints
for an ERT inversion, while, on the other hand, an ERT
inversion can furnish a vast amount of water content
data for hydrological inverse modeling. Such a recipro-
cal relation between hydrologic and geophysical infor-
mation and inversions thus demands a joint inversion
that requires an iterative approach to fully utilize all
available information. Consequently, conditional means,
the best and unique estimates with minimal uncertainty,
can be obtained and their conditional variances can
quantify their uncertainty. This is the basis of the sto-
chastic fusion of information concept described below.

The stochastic fusion approach comprises two levels.
Level 1 fusion aims to include information related to Fig. 2. Flow chart of Level 2 iterative stochastic fusion.
unsaturated hydraulic tomography or ERT surveys to
independently enhance interpretations of spatial distri- Specifically, during an unsaturated hydraulic tomogra-
butions of their own primary variables. For this purpose, phy experiment, several water infiltration tests at differ-
the sequential SLE algorithm is most suitable. ent locations (packed-off intervals) could be conducted

The information required for inversions of unsatu- sequentially. During each test, some point measure-
rated hydraulic tomography consists of spatial covari- ments of the pressure head and moisture content are
ance structures of the primary variables, and hydraulic taken, while an ERT is deployed to monitor water move-
properties from core samples, as well as in situ pressure ment. The resistivity image from the ERT is improved
head and moisture content measurements during the by using Level l fusion to integrate measured hydrologic
tomography. For the electrical tomography, information and geophysical information into the ERT inversion
to be fused may include electric potential measurements process along with some prior information. The prior
of the electric field induced by the ERT survey, point information, the mean and covariance structure of the
measurements of resistivity and moisture content, and resistivity and moisture content fields during the unsatu-
parameters of resistivity–moisture relations. In addition, rated hydraulic tomography test, can be derived from
the prior information about covariance structures of a forward simulation of the hydraulic tomography test
resistivity, moisture content, and parameters of resisti- with mean hydraulic parameters. With this information,
vity–moisture relation will be included. the ERT inversion can yield a reasonable result and is

Outputs from this level of fusion of hydraulic tomog- able to estimate not only changes in resistivity and the
raphy are conditional means of hydraulic parameters, water content, but also the moisture content itself and
pressure head, and moisture content distributions and their conditional moments.
their associated covariance functions. For the ERT, con- Estimates of the moisture content distributions, to-
ditional mean resistivity and moisture content fields and gether with their conditional moments, from the inver-
mean parameter fields of the resistivity–moisture con- sion of the ERT are subsequently used as input to the
tent relation, in addition to their conditional covariance hydraulic tomography inversion model, which estimates
structures, are products of the Level 1 fusion. distributions of the unsaturated hydraulic parameters, as

Level 2 fusion aims to honor the reciprocal nature well as their conditional moments. With the additional
of hydraulic and ERT inversion. It takes an iterative information from the ERT regarding moisture content
approach to arrive at the best estimate of the primary at locations where no samples were available, the hydro-
variable fields and uncertainty. The flow chart shown logical inversion of unsaturated media properties thus

improves, and a more detailed image of the hydraulicin Fig. 2 depicts a general concept of the fusion process.
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Fig. 3. True (A) ln � and (B) � fields of the synthetic vadose zone.

heterogeneity emerges. Simulations using the newly de- negligible; both were treated as deterministic constants
rived heterogeneity image then produce better pressure with values of 0.366 and 0.029, respectively. The parame-
head and moisture content estimates at locations where ters, Ks , �, and n, were considered as random fields with
no moisture content measurements are available. The geometric means of 0.0063 cm s�1, 0.028 1/cm, and 2.0,
improved moisture content simulations and their covari- respectively. The variances of lnKs , ln �, and ln n were
ances are subsequently returned to an ERT inversion to 0.1, 0.1, and 0.01, respectively. It was also assumed that
enhance estimates of resistivity and, in turn, moisture all three parameters possessed the same exponential
content distributions. The iterative process continues un- covariance function with a horizontal correlation scale
til no further improvement in hydraulic heterogeneity, of 240 cm and a vertical correlation scale of 20 cm.
moisture content, and resistivity estimates can be gained. Following the generation of random hydraulic parame-

This iterative procedure is repeated for each unsatu- ter fields, a hydrostatic negative pressure head distribu-
rated hydraulic tomographic test. With such an iterative tion, with zero pressure head at the bottom, was assigned
fusion of information, data collected from both hydrau- to the vadose zone as the initial condition. Next, a steady
lic and geophysical tests can then be fully used. Unsatu- infiltration event was simulated using a finite element
rated hydraulic tomography may thus be a viable and flow model (Srivastava and Yeh, 1992). The top center
cost-effective technology for characterizing the vadose of the vadose zone (from x � 80 to 120 cm, y � 0 to
zone. Meanwhile, an ERT may become both a reliable 20 cm, and z � 200 cm) was treated as a constant head
and cost-effective monitoring tool for moisture contents. boundary with a pressure head of �80 cm. The remain-

der of the surface and the two sides of the domain
Example were considered as no-flux boundaries; the bottom was

assumed to be a water table. Figure 3A depicts the lnTo demonstrate the promise of the stochastic fusion
� field for the vadose zone, while the simulated “true”technology, some preliminary results are presented be-
� field corresponding to the steady infiltration is shownlow. During the past few years, we have developed a
in Fig. 3B.method that fuses information obtained from ERT sur-

Two cases were examined in which the ln � fieldsveys, point hydrological measurements, and unsaturated
were estimated using � information derived from twohydraulic inversion modeling to better characterize and
different approaches. In both cases, the other unsatu-monitor the vadose zone. The effectiveness of this infor-
rated hydraulic parameter fields were assumed knownmation fusion technology is illustrated below using a
for the vadose zone. In Case 1, point measurements ofsynthetic vadose zone. This synthetic vadose zone con-
� were assumed available at six locations (black circlessisted of 200 elements, with each element having a di-
in Fig. 3B). Using a theoretical moisture content covari-mension of 20 cm in both horizontal directions and 10
ance, the six measurements, and a kriging technique, ancm in the vertical. The unsaturated hydraulic properties
estimated � field (Fig. 4A) was derived. The theoreticalof each element were assumed to be described by the

VG model. The variability in �s, and �r , were assumed moisture content covariance was calculated using a first-
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Fig. 4. (A) Estimated � fields using six � measurements and a kriging technique; (B) estimated ln � field from an unsaturated inverse model
using 34 � values from Fig. 4A; (C) simulated � fields using the ln � field from Fig. 4B. (D) Estimated � fields using six � measurements
and an ERT survey; (E) estimated ln � field from an unsaturated inverse model using 34 � values from Fig. 4D; (F) simulated � fields the
using the ln � field from Fig. 4E.



www.vadosezonejournal.org 219

order analysis of the flow model with mean values and ACKNOWLEDGMENTS
covariances of the parameters. From this kriged � field, The first author is funded in part by a DOE EMSP96 grant
34 � values were subsequently sampled at locations indi- through Sandia National Laboratories (contract AV-0655#1)
cated by red circles. Afterward, our hydraulic inversion and a DOE EMSP99 grant through the University of Wiscon-

sin, A019493, and in part by an EPA grant R-827114-01-0.model (Hughson and Yeh, 2000) was employed using
This work does not necessarily reflect the views of DOE andthese � measurements in conjunction with one point
EPA, and no official endorsement should be inferred. Themeasurement of the ln � parameter (red circle in Fig.
study was also partially supported by the SAHRA Science4A) to estimate the ln � field over the entire vadose and Technology Center as part of NSF grant EAR-9876800.

zone. With this estimated ln � field, a forward simulation We are grateful to Alexandre Desbarats, Roger Beckie, Mar-
yielded a new � distribution corresponding to steady tha P.L. Whitaker and an anonymous reviewer, for their re-
infiltration (Fig. 4C). views of the manuscript and useful suggestions and comments.

In Case 2, an ERT survey was conducted over the
vadose zone with a synthetic resistivity field that was REFERENCES
converted from the “true” � field assuming a spatially

Baker, K. 2001. Investigation of direct and indirect hydraulic property
constant resistivity–moisture relation. A geostatistically laboratory characterization methods for heterogeneous alluvial de-
based ERT inversion model for � (Liu, 2001) was then posits: Application to the Sandia-Tech vadose zone infiltration test

site. Master’s thesis, Geosciences. New Mexico Tech, Socorro, NM.used in which the six � measurements together with the
Benito, P.H., P. Cook, B. Faybishenko, B. Freifeld, and C. Doughty.covariance function of � were used to constrain the 1998. Box Canyon pneumatic connectivity study: Preliminary data

inversion. Figure 4D shows the estimated � field from analysis. Report LBNL-42359. Lawrence Berkeley National Labo-
ratory, Berkeley, CA.this inversion. In comparison with Figure 3B, Figure

Benito, P.H., P. Cook, B. Faybishenko, B. Freifeld, and C. Doughty.4D reveals a striking similarity with the true � field,
1999. Crosswell air-injection packer tests for the assessment ofindicating the advantage of fusing point measurements pneumatic connectivity in fractured, unsaturated basalt. p. 843–850.

of � and an ERT survey. In Amadei et al. (ed.) Rock mechanics for industry.
Binley, A., P. Winship, R. Middleton, M. Pakar, and J. West. 2001.Similar to Case 1, 34 moisture contents were sampled

High-resolution characterization of vadose zone dynamics usingfrom the estimated � field. Combining these samples
cross-borehole radar. Water Resour. Res. 37:2639–2652.with the six directly measured � values and one � sam- Brainard, J.R., R.J. Glass, D.L. Alumbaugh, L. Paprocki, D. La-

ple, our hydraulic inversion model produced an esti- Brecque, X. Yang, T.-C.J. Yeh, K.E. Baker, and C.A. Rautman.
2001. The Sandia-Tech Vadose Zone Facility: Experimental designmated ln � field (Fig. 4E). As expected, the estimated
and data report of a constant flux infiltration experiment. Internalln � field showed better agreement with the true ln �
Report. Sandia National Laboratories, Albuquerque, NM.

field (Fig. 3A) than the one obtained from Case 1. This Butler, J.J., Jr., C.D. McElwee, and G.C. Bohling. 1999. Pumping
is attributed to the fact that more accurate � information, tests in networks of multilevel sampling wells: Methodology and

implications for hydraulic tomography. Water Resour. Res. 35:acquired from fusion of information, was included in
3553–3560.this inversion than in Case 1. Figure 4F shows a plot of

Daily, W., A. Ramirez, D.J. LaBrecque, and J. Nitao. 1992. Electrical
the simulated � distribution from the estimated ln � resistivity tomography of vadose water movement. Water Resour.
field, which is only slightly better than Figure 4D. This Res. 28:1429–1442.

Dettinger, M.D., and J.L. Wilson. 1981. First-order analysis of uncer-was attributed to greater effect of the other prescribed
tainty in numerical models of groundwater flow. Part 1. Mathemati-unsaturated hydraulic parameters. Nonetheless, if more
cal development. Water Resour. Res. 17:149–161.

� information from the ERT survey (Fig. 4D) had been Gardner, W.R. 1958. Some steady state solutions of the unsaturated
moisture flow equation with application to evaporation from aused, the hydraulic inversion would have yielded an
water table. Soil Sci. 85:228–232.even better estimate of the ln � field and, in turn, a

Gardner, W.R., and F.J. Miklich. 1962. Unsaturated conductivity andbetter simulation of the moisture content distribution diffusivity measurements by a constant flux method. Soil Sci.
than Figure 4F. 93:271–274.

Gelhar, L.W. 1993. Stochastic subsurface hydrology. Prentice Hall,
Englewood Cliffs, NJ.

Final Remarks Gottlieb, J., and P. Dietrich. 1995. Identification of the permeability
distribution in soil by hydraulic tomography. Inverse ProblemsUnder field conditions, stochastic conceptualization 11:353–360.

of the inverse problem is inevitable. Geostatistically Gutjahr, A.L., and J.L. Wilson. 1989. Cokriging for stochastic models.
Transp. Porous Media 4:585–598.based inverse procedures appear promising because

Guzman, A.G., A.M. Geddis, M.J. Henrich, C.F. Lohrstorfer, andthey utilize prior statistical information of the geological
S.P. Neuman. 1996. Summary of air permeability data from single-structure, point observations, and flow processes to yield hole injection tests in unsaturated fractured tuffs at the Apache

conditional hydraulic parameters and information re- Leap Research Site: Results of steady-state test interpretation.
NUREG/CR-6360. U.S. Nuclear Regulatory Commission, Wash-garding their uncertainty. To further reduce uncertainty
ington, DC.of the conditional hydraulic parameters, and to make

Harter, Th., and T.-C.J. Yeh. 1996. Conditional stochastic analysis of
the parameters more representative of reality, assimilat- solute transport in heterogeneous, variably saturated soils. Water
ing a broad range of hydrologic, geologic, and geophysi- Resour. Res. 32:1597–1610.

Harvey, C., and S.M. Gorelick. 1995. Mapping hydraulic conductivity:cal information in the inversion becomes essential. We
Sequential conditioning with measurements of solute arrival time,believe that the stochastic fusion of information ap-
hydraulic head, and local conductivity. Water Resour. Res. 31:

proach presented in this paper offers much promise to 1615–1626.
Hillel, D., V.D. Krentos, and Y. Stylianou. 1972. Procedure and testaccomplish this task.



220 VADOSE ZONE J., VOL. 1, NOVEMBER 2002

of an internal drainage method for measuring soil hydraulic charac- lic tomography: sandbox experiments. Water Resour. Res. 38(4):
10.1029/2001WR000338.teristics in situ. Soil Sci. 114:395–400.

McLaughlin, D., and L.R. Townley. 1996. A reassessment of theHoeksema, R.J., and P.K. Kitanidis. 1984. An application of the geo-
groundwater inverse problem. Water Resour. Res. 32:1131–1161.statistical approach to the inverse problem in two-dimensional

Menke, W. Geophysical data analysis: Discrete inverse theory. Vol.groundwater modeling. Water Resour. Res. 20:1003–1020.
45. International Geophysics Series. Acad. Press, San Diego, CA.Hoeksema, R.J., and P.K. Kitanidis. 1989. Prediction of transmissivi-

Mulla, D.J. 1988. Estimating spatial patterns in water content, matricties, heads, and seepage velocities using mathematical modeling
suction, and hydraulic conductivity. Soil Sci. Soc. Am. J. 52:and geostatistics. Adv. Water Resour. Res. 12:90–101.
1547–1553.Huang, K., Y.W. Tsang, and G.S. Bodvarsson. 1999. Simultaneous

Neuman, S.P. 1973. Calibration of distributed parameter groundwaterinversion of air-injection tests in fractured unsaturated tuff at Yucca
flow models viewed as a multiple-objective decision process underMountain. Water Resour. Res. 35:2375–2386.
uncertainty. Water Resour. Res. 9:1006–1021.Hubbard, S. J. Chen, J. Peterson, E.L. Majer, K.H. Williams, D.J.

Neuman, S.P., G.R. Walter, H.W. Bentley, J.J. Ward, and D.D. Gonza-Swift, B. Mailloux, and Y. Rubin. 2001. Hydrological characteriza-
lez. 1984. Determination of horizontal aquifer anisotropy with threetion of the South Oyster bacterial transport site using geophysical
wells. Ground Water 22:66–72.data. Water Resour. Res. 37:2431–2456.

Rasmussen, T.C., D.D. Evans, P.J. Sheets, and J.H. Blanford. 1990.Hubbard, S. Y. Rubin, and E. Majer. 1999. Spatial correlation struc-
Unsaturated fractured rock characterization methods and data setsture estimation using geophysical data. Water Resour. Res. 35:
at the Apache Leap Tuff Site. NUREG/CR-5596. U.S. Nuclear1809–1825.
Regulatory Commission, Washington DC.Hudson, D.B., P.J. Wierenga, and R.G. Hills. 1996. Unsaturated hy-

Rasmussen, T.C., D.D. Evans, P.J. Sheets, and J.H. Blanford. 1993.draulic properties from upward flow into soil cores. Soil Sci. Soc.
Permeability of Apache Leap tuff: Borehole and core measure-Am. J. 60:388–396.
ments using water and air. Water Resour. Res. 29:1997–2006.Hughson, D.L., and T.-C. J. Yeh. 1998. A geostatistically-based inverse

Rea, J., and R. Knight. 1998. Geostatistical analysis of ground-pene-model for three-dimensional variably saturated flow. Stoch. Hy-
trating radar data: A means of describing spatial variation in thedrol. Hydraul. 12:285–298.
subsurface. Water Resour. Res. 34:329–339.Hughson, D.L., and T.-C.J. Yeh. 2000. An inverse model for three-

Rose, C.W., W.R, Stern, and J.E. Drummond. 1965. Determinationdimensional flow in variably saturated porous media. Water Re-
of hydraulic conductivity as a function of depth and water contentsour. Res. 36:829–839.
for soil in situ. Aust. J. Soil Res. 3:1–9.Hyndman, D.W., and S.M. Gorelick. 1996. Estimating lithologic and

Rubin, Y., and G. Dagan. 1987. Stochastic identification of transmis-transport properties in three-dimensions using seismic and tracer
sivity and effective recharge in steady groundwater flow. 1. Theory.data. Water Resour. Res. 32:2659–2670.
Water Resour. Res. 23:1185–1192.Illman, W.A., and S.P. Neuman. 2001. Type-curve interpretation of

Rubin, Y., G. Mavko, and J. Harris. 1992. Mapping permeability ina cross-hole pneumatic injection test in unsaturated fractured tuff. heterogeneous aquifers using hydrological and seismic data. WaterWater Resour. Res. 37:583–603. Resour. Res. 28:1809–1816.Illman, W.A., D.L. Thompson, V.V. Vesselinov, and S.P. Neuman. Šimůnek, J., and M.Th. van Genuchten. 1997. Estimating unsaturated1998. Single-hole and cross-hole pneumatic tests in unsaturated soil hydraulic properties from multiple tension disc infiltrometer
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