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A number of hydrological models used to simulate situations 
ranging from fi eld-scale water fl ow to global climate change 

rely on numerical techniques that simulate heat, water, and sol-
ute fl uxes in the vadose zone. Th e use of fl ow models for variably 
saturated conditions requires accurate estimates of the hydraulic 
characteristics that govern water retention and water fl ow in soils 
(Wösten et al., 2001). Th e hydraulic characteristics of soils vary 
spatially from one location to another, and are also scale-depen-
dent (Hopmans et al., 2002). Th e temporal variability can also 
occur as a result of various biological and human activities, such 
as root-growth, soil management and agricultural practices, or 

physical processes, such as soil shrinking-swelling, soil crusting, 
and/or water repellence (Wösten et al., 2001). Th erefore, it is 
necessary to characterize the hydraulic characteristics of soils while 
keeping their spatial and temporal variability in perspective.

Ideally, it would be best to measure soil hydraulic parameters 
in the laboratory or fi eld so that the variability in space and time can 
be suffi  ciently characterized. However, this diffi  cult task is rarely ac-
complished because of the signifi cant fi nancial and time investments 
required for such measurements. Additionally, the spatial variabil-
ity of soil hydraulic properties, their scale-dependency and possibly 
large modeling domains can make such characterization diffi  cult.

To circumvent these practical diffi  culties with direct meth-
ods, researchers have shown keen interest in developing indirect 
methods beginning as early as 1912 (Briggs and Shantz, 1912). 
Th e basic idea behind these indirect methods, oft en called pe-
dotransfer functions (PTFs aft er Bouma and van Lanen, 1987), 
is to predict hard-to-measure soil hydraulic properties (such as 
retention parameters and hydraulic conductivities) using easily 
obtainable input information (such as soil texture, bulk density, 
and particle-size distribution). In essence, PTFs represent pre-
dictive functions that translate the data we have (input) into the 
data we need (output) (Wösten et al., 2001)

Navin K. C. Twarakavi*
Auburn Univ.
201 Funchess Hall
Auburn, AL 36849

Jirka Šimůnek
Dep. of Environmental Sciences
Univ. of California
Riverside, CA 92521

M. G. Schaap
Dep. of Soil, Water, and Environmental Science
Univ. of Arizona
Shantz Bldg.
Tucson, AZ 85721

SO
IL PH

Y
SIC

S

Development of Pedotransfer Functions for 
Estimation of Soil Hydraulic Parameters using 
Support Vector Machines

Modeling fl ow in variably saturated porous media requires reliable estimates of the hydraulic 
parameters describing the soil water retention and hydraulic conductivity. Th ese soil hydraulic 
properties can be measured using a wide variety of laboratory and fi eld methods. Frequently, 
this proves to be an arduous task because of the high spatial and temporal variability of soil 
properties. In the last decade, researchers have shown a keen interest in developing a class 
of indirect approaches, called pedotransfer functions (PTFs), to overcome this problem. 
Pedotransfer functions predict soil hydraulic parameters using easily obtainable soil properties 
such as textural information, bulk density and/or few retention points. In this paper, we use 
a new methodology called Support Vector Machines (SVMs) to derive a new set of PTFs. 
Support vector machines represent a pattern recognition approach where the overall prediction 
error and complexity of the SVM structure are minimized simultaneously. We used the same 
database that was utilized to develop ROSETTA to generate the SVM-based PTFs. Th e 
performance of the SVM-based PTFs was analyzed using the coeffi  cient of determination, root 
mean square error (RMSE) and mean error (ME). All soil hydraulic parameters estimated using 
the SVM-based PTFs showed improved confi dence in the estimates when compared with the 
ROSETTA PTF program. Estimates of water contents and saturated hydraulic conductivities 
using the hydraulic parameters predicted by the SVM-based PTFs mostly improved compared 
with those obtained using the artifi cial neural network (ANN)-based ROSETTA. Th e RMSE 
for water contents decreased from 0.062 to 0.034 as more predictors were used, while the RMSE 
for the saturated hydraulic conductivity decreased from 0.716 to 0.552 (dimensionless log10 
units). Similarly, the bias in the water contents estimated using the SVM-based PTF was reduced 
signifi cantly compared with ROSETTA.

Abbreviations: ANN, Artifi cial neural networks; HYPRES, Database of hydraulic properties of European 
soils; ME, Mean Error; PTFs, Pedotransfer functions; RMSE, Root mean squared error; SLT, Statistical 
learning theory; SVMs, Support vector machines; UNSODA, Unsaturated soil hydraulic properties 
database; WISE, World inventory of soil emission potentials.
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Th e complexity of existing PTF models varies from simple 
lookup tables that provide hydraulic parameters for particu-
lar textural classes (e.g., Carsel and Parrish, 1988; Wösten et 
al., 1995), to linear/nonlinear regression-based approaches (cf. 
Rawls and Brakensiek, 1985; Minasny et al., 1999), to models 
that incorporate physical relationships in soil water fl ow process-
es (e.g., Haverkamp and Parlange, 1986; Arya and Paris, 1981; 
Tyler and Wheatcraft , 1989; Nimmo et al., 2007). More sophis-
ticated methods use various kinds of ANNs (Pachepsky et al., 
1996; Tamari et al., 1996; Minasny et al., 1999), Group Method 
of Data Handling (Pachepsky and Rawls, 1999), or make use of 
multi-dimensional nearest neighbor techniques (Nemes et al., 
2006a, 2006b). Wösten et al. (2001) provided a detailed review 
of the various PTFs that had been developed.

Pedotransfer functions are usually developed by examin-
ing the relationships between input data (textural properties) 
and soil hydraulic parameters (such as retention curve and/or 
hydraulic conductivity function parameters) from existing soil 
databases. Several large databases such as UNSODA (Leij et 
al., 1996), HYPRES (Wösten et al., 1999), and WISE (Batjes, 
1996) are available for the development of PTFs. Th e accuracy 
and reliability of a given PTF approach is determined by how 
well the various relationships between the input data (i.e., infor-
mation such as texture or bulk density) and the output data (i.e., 
soil hydraulic parameters) are represented in the PTF structure. 
Th ese relationships oft en tend to be highly nonlinear, and are 
therefore not well established. Consequently, regression-based 
PTFs (cf. Rawls and Brakensiek, 1985; Minasny et al., 1999) 
have oft en performed poorly because they require adequate prior 
knowledge of these relationships.

Even though regression-based PTFs have been widely used 
in the past due to their simplicity, PTFs based on pattern recog-
nition approaches (cf. Pachepsky et al., 1996; Tamari et al., 1996; 
Schaap et al., 2001) seem to have become more popular.

Pattern recognition approaches help describe the underly-
ing relationships between the given inputs and outputs by ‘learn-
ing’ from a training data set. Aft er training, pattern recognition 
methods lead to high-dimensional nonlinear functions. It can 
be said that pattern recognition approaches are mathematical 
models obtained in an experimental way. If there were no data 
(examples, patterns, and observations), there would be no learn-
ing, and consequently no pattern recognition tools. One such 
commonly used pattern recognition tool belongs to a class of 
methods called Artifi cial Neural Networks (ANNs).

An ANN is a classical pattern recognition paradigm inspired 
by the way biological nervous systems, such as the brain, process 
information (Hastie et al., 2001). Artifi cial Neural Networks are 
composed of a large number of highly interconnected process-
ing elements (called neurons) working in unison to solve specifi c 
problems. Th e key element of ANNs is user-defi ned, that is, their 
complicated inter-woven structure. Because of this, an ANN’s 
optimality for a specifi c problem is heavily infl uenced by user 
expertise, though this can be mitigated somewhat by exploring a 
number of diff erent ANN topologies (e.g., Ye et al., 2007). Once 
the neural network structure is selected, the objective of learn-
ing from the training data in ANNs is to calculate the optimal 
weight for each of the links in the neural net by minimizing the 
overall prediction error. Th e optimal high-dimensional relation 
between the input data (such as particle size or bulk density) and 

output data (hydraulic parameters) is learned from a given set of 
training data (input-output response patterns).

While ANN-based PTFs have been relatively successful, 
there are a number of weaknesses that need to be considered in 
their development and application. Key weaknesses include: (i) 
ANNs have a number of coeffi  cients (weights) that do not permit 
easy physical interpretation (Schaap et al., 2001), (ii) the ANNs’s 
structure has to be selected a priori and therefore may not be op-
timal since there are many types of neurons and many types of 
possible connections (Wösten et al., 2001), (iii) a higher number 
of neurons and connections than required can result in overfi t-
ting and over parameterization (Hastie et al., 2001) and (iv) due 
to the complexity of the ANNs structure and the large number 
of weights that are being “trained” as the network “learns”, there 
is no assurance that the learning algorithm will fi nd optimum 
weights that minimize prediction errors. Th e procedure can get 
stuck in a local minimum, even though it can be overcome most-
ly. In lieu of the problems associated with ANN-based PTFs, 
there is need for a better pattern recognition tool to improve the 
PTFs accuracy and reliability. Th is has been duly recognized in a 
review by Wösten et al. (2001). Tamari et al. (1996) used radial 
basis functions to develop PTFs. Radial basis functions are an 
improvement over traditional ANNs but they suff er from many 
of the same weaknesses as ANNs.

Recently, a number of new pattern recognition tools have 
been proposed that aim to improve on the weaknesses of ANNs. 
For example, over-fi tting can be mitigated by constraining the 
ANN optimization using independent data (Schaap, 2004) or 
by using bayesian regularization (MacKay, 1992; Ye et al., 2007). 
Support vector machines (SVMs) provide another promising 
approach which, unlike ANNs where the complexity of the 
structure is fi xed a priori and only the prediction error can be 
minimized, represent a pattern recognition approach where the 
overall prediction error and complexity of the SVM structure are 
simultaneously minimized (Vapnik, 1995; 1998).

Th e SVM regression methodology (Vapnik, 1995, 1998) 
is based on the Statistical Learning Th eory (SLT), which is a 
unique philosophy for addressing the problems and techniques of 
pattern recognition. Th e SLT proved that a pattern recognition 
method would generalize well (i.e., provide good performance 
on independent data) when the structural complexity of the pat-
tern recognition method and the prediction error in the train-
ing sets were simultaneously minimized (Vapnik, 1995, 1998). 
Good performance on a training data set is a necessary but insuf-
fi cient condition for a robust pattern recognition method.

Support vector machines have been used successfully for a 
wide array of classifi cation and regression problems. Recently, 
a number of SVM applications have been introduced in hydro-
logical sciences (Kanevski and Maignan, 2004; Tartakovsky and 
Wohlberg, 2004; Wohlberg et al., 2006). Dibike et al. (2001) ap-
plied SVM to remotely sensed image-processing problems and 
reported a superior performance over the traditional ANNs. 
Liong and Sivapragasam (2000) showed that SVM performance 
was superior to ANNs in forecasting fl ood stage. Wohlberg et 
al. (2006) showed that SVM methodology tends to improve the 
predictions in some case studies, especially in regression-based 
problems such as kriging. Asefa et al. (2004, 2005) successfully 
used the SVM methodology for a host of pattern recognition 
problems in hydrology, ranging from ground water modeling, to 
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stream fl ow predictions. In this pa-
per, we analyze the performance of the 
pattern recognition approach based 
on the SVMs for generating PTFs.

MATERIALS AND 
METHODS
Soil Hydraulic Parameters

In this study, we consider the re-
tention curve and hydraulic conduc-
tivity function described by the van 
Genuchten model (van Genuchten, 
1980). Of all available models for repre-
senting soil hydraulic properties, the van 
Genuchten model is perhaps the most 
widely used model for characterizing hy-
draulic conductivity and water content 
dependence on the capillary pressure head. Th e van Genuchten model 
is described as follows.
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where θ(h) is the volumetric water content, (L3 L−3) as a function of the 
pressure head h (L), θs and θr are the saturated and residual volumetric 
water contents, Se(h) is the eff ective soil water saturation (-) for the pres-
sure head h (L), and α (L−1) and n (-) are van Genuchten shape param-
eters. A combination of Eq. [1] with the Mualem pore-size distribution 
model (Mualem, 1976) yields the following expression for unsaturated 
hydraulic conductivity (van Genuchten, 1980):
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where K(Se) is the unsaturated hydraulic conductivity (LT−1) as a func-
tion of the soil water saturation (or pressure head), Ks is the saturated 
hydraulic conductivity (LT−1), and L is an empirical parameter, oft en 
assumed to be 0.5 (Mualem, 1976). In this research, we develop PTFs 
for the following soil hydraulic parameters: (a) retention curve param-
eters (θs, θr, α and n) and (b) saturated hydraulic conductivity Ks.

Data Set
For developing the PTFs, we used the same data set used by Schaap 

and Leij (1998) and Schaap et al. (2001) for calibrating the ROSETTA 
model. Schaap and Leij (1998) assembled this set from a variety of avail-
able data sets. Th e assembled data set consists of data that are heteroge-
neous and diverse with respect to the measurement procedures, sources 
and scales of measurements. Figure 1 shows the textural distribution of 
the data set used in this study. Table 1 also lists the summary statistics 
for the retention parameters and the saturated hydraulic conductivity 
for diff erent textural classes in the dataset. Th e dataset contained 2134 
soil samples with water retention data. As each of these soil samples had 
at least six retention curve points, the entire data set included 20,574 
θ(h) points. Measurements for saturated hydraulic conductivity (Ks) were 
available for 1306 of these soils samples.

Th e retention curve parameters were estimated for the 2134 soil 
samples with the retention data using a curve-fi tting approach. Th e water 

Fig. 1. Textural distribution of soil samples containing (a) retention data, and (b) saturated 
hydraulic conductivity.

Table 1. Average water retention parameters, saturated hydraulic conductivities, and bulk densities for each textural class in the database. 
The values in parentheses represent the standard deviation (Schaap and Leij, 1998).

 Class
Water retention Saturated hydraulic conductivity

Na Db
† θr θs log(α) log(n) N‡ Db log(Ks)

g cm−3 cm3 cm−3 cm3 cm−3 log(cm−1) g cm−3 log(cm d−1)
Sand 308 1.53(0.12) 0.053(0.029) 0.375(0.055) −1.45(0.25) 0.50(0.18) 253 1.53(0.13) 2.81(0.59)
Loamy Sand 205 1.52(0.19) 0.049(0.042) 0.390(0.070) −1.46(0.47) 0.24(0.16) 167 1.53(0.19) 2.02(0.64)
Loam 249 1.37(0.25) 0.061(0.073) 0.399(0.098) −1.95(0.73) 0.17(0.13) 113 1.42(0.22) 1.08(0.92)
Sandy Loam 481 1.46(0.26) 0.039(0.054) 0.387(0.085) −1.57(0.56) 0.16(0.11) 314 1.55(0.18) 1.58(0.66)
Silt Loam 332 1.28(0.27) 0.065(0.073) 0.439(0.093) −2.30(0.57) 0.22(0.14) 135 1.42(0.14) 1.26(0.74)
Sandy Clay Loam 181 1.57(0.18) 0.063(0.078) 0.384(0.061) −1.68(0.71) 0.12(0.12) 135 1.59(0.18) 1.12(0.85)
Silty Clay Loam 89 1.32(0.18) 0.090(0.082) 0.482(0.086) −2.08(0.59) 0.18(0.13) 40 1.36(0.12) 1.05(0.76)
Clay Loam 150 1.42(0.19) 0.079(0.076) 0.442(0.079) −1.80(0.69) 0.15(0.12) 62 1.44(0.23) 0.91(1.09)
Silt 6 1.33(0.09) 0.050(0.041) 0.489(0.078) −2.18(0.30) 0.22(0.13) 3 1.39(0.03) 1.64(0.27)
Clay 92 1.39(0.20) 0.098(0.107) 0.459(0.079) −1.82(0.68) 0.10(0.07) 60 1.40(0.23) 1.17(0.92)
Sandy Clay 12 1.59(0.10) 0.117(0.114) 0.385(0.046) −1.48(0.57) 0.08(0.06) 10 1.60(0.08) 1.06(0.89)

Silty Clay 29 1.36(0.15) 0.111(0.119) 0.481(0.080) −1.79(0.64) 0.12(0.10) 14 1.33(0.16) 0.98(0.57)

†Bulk density.
‡Number of soils per textural class.
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retention data for each soil sample were fi tted using an algorithm utilized by 
Schaap and Leij (1998) to estimate the following soil hydraulic parameters 
(θs, θr, α and n). Fitting was performed with the simplex or amoeba algo-
rithm using the following constraints: 0.0 ≤ θr ≤ 0.3 cm3 cm−3, 0.6φ ≤ θs ≤ φ 
cm3 cm−3 (where φ is the total porosity), 0.0001 ≤ α ≤ 1.000 cm−1 and 
1.001 ≤ n ≤ 10. Measured saturated hydraulic conductivity was directly 
used as it was available for 1306 of the soil samples. Th e soil hydraulic 
parameters for each soil sample (that is, fi tted retention curve parame-
ters and the measured saturated hydraulic conductivity, where available) 
were then juxtaposed to other soil properties (such as textural informa-
tion, bulk density, and water contents at particular pressure heads) to 
create the input data for the training and testing of PTFs. For improving 
the statistical robustness of the PTFs, logarithmically transformed val-
ues of the measured saturated hydraulic conductivities [log(Ks)] and the 
fi tted retention curve shape parameters [log(α) and log(n)] were used 
(Schaap et al., 2001).

It is important to note that some textural classes (such as silt) do 
not have a suffi  cient number of samples in the data set, and thus cali-
brated PTFs for these textural classes are likely to be highly uncertain. It 
can be expected that the uneven distribution of soil samples in diff erent 
textural classes will impact the reliability of the PTF predictions.

Theory of Support Vector Regression
Th e goal of a pattern recognition method is to estimate an un-

known real-value variable using the mathematical functional relation-
ship as follows:

( )y β δ= +x  [3]

where δ is an independent and identically distributed zero mean random 
error (noise), x is a multivariate input of m-dimensions, y is a scalar out-
put and β(x) is a function, likely nonlinear. Th e estimation of the β(x) 
function is based on a fi nite number (nt) of samples, the so-called train-
ing data set: ),...,1(),,( tii niy =x .

Th e SVM regression is based on the generalized regression for-
mulation. In the SVM regression, the input x is fi rst mapped onto an 
m-dimensional space using some fi xed (nonlinear) mapping, and then 
a linear regression model relating the input-output data is constructed. 
Mathematically, the SVM regression is formulated as:
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where g j(x), j = 1..m denotes a set of nonlinear transformations, wj are 
associated weights and b is the bias term.

Similar to traditional regression methods, an SVM regression 
model is developed by minimizing the error in predictions during the 
training stage. Th e quality of each prediction for a noisy data set is mea-
sured by a novel error function known as the ε-insensitive loss function 
(Vapnik, 1995; 1998):
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Th e value of ε in the loss function dictates the sensitivity of the transfor-
mation to noise in the data. A value of ε equal to zero essentially converts 
the ε-insensitive loss function into a least-modulus loss function and Eq. 
[5] into the mean absolute error. It has been shown in many studies that 
a non-zero ε results in a good SVM regression (Vapnik, 1995; 1998). 
Figure 2 shows a schematic of the ε-insensitive loss function. Once the 
residuals are estimated using the ε-insensitive loss function, the cumula-
tive training error can be described as:
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Th e SVM regression performs a linear regression using ε-insensitive 
loss function while trying to reduce the SVM’s structural complexity 
by minimizing 2

w (Vapnik, 1995, 1998). Th is is achieved by intro-
ducing the non-negative slack variables ξi and ξi*, i = 1..nt to measure 
the deviation of training samples outside the ε-insensitive zone (Fig. 
2). Minimization of 2

w infl uences the structural complexity of the 
SVM regression model because it infl uences the fi nal estimate of hyper-
parameters which govern the structure of SVM model. Th us, the SVM 
regression is formulated as a minimization of the following function:
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Th is optimization problem can be trans-
formed into a dual problem (Vapnik, 
1995), and its solution is given as:
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where tn is the number of points in the train-
ing data set and ),( xxiK  is a kernel function.

A number of kernels are available 
(Vapnik, 1995, 1998). Th e kernel func-
tion is a symmetrical function that satisfi es 
the so-called Mercer’s conditions (Vapnik, 

Fig. 2. Illustration of the SVM regression with the •-insensitive loss function. All the errors contributed 
by points within the •-tube are not considered during the SVM regression.



SSSAJ: Volume 73: Number 5  •  September –October 2009 1447 

1995, 1998). Th e performance of SVMs depends at least as strongly on 
the choice of a kernel as on a kernel’s parameterization (Wohlberg et al., 
2006). In fact, the lack of a principled way to identify the optimal kernel is 
considered a main weakness of SVMs. In this study, we consider one of the 
most commonly used kernels, namely the Radial Basis kernel. Th e radial 
basis function is mathematically expressed in Eq. [9].

2

2( , ) exp
2
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x x
K
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æ ö-
= -ç ÷ç ÷

è ø
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where γ is the kernel parameter called as the kernel width. One may 
defi ne the radial basis kernel by specifying the kernel width γ a priori. 
Readers are referred to Vapnik, (1995, 1998) for a detailed description.

During the training of SVM regression models, only certain data 
points in the training data set have non-zero coeffi  cients in Eq. [8]. Th ese 
points are also called as support vectors. Th e number of support vectors 
(nsv) is a good indicator of how well the SVM model may perform on an 
unseen dataset. A larger percentage of support vectors will lead to over-
fi tting of the training data set and poor predictions in the testing data 
set, and a smaller percentage will lead to under-fi tting. For optimally 
fi tting SVM using a training data set, the percentage of support vectors 
should be around 50% (Hastie et al., 2001).

Support vector machine-based regression has been found to show 
an improved performance for some cases in the past (Wohlberg et al., 
2006). Th e performance of the SVM regression depends on a good se-
lection of the following so-called hyper parameters: cost (C), insensitiv-
ity value (ε) and the radial basis kernel width (γ). Th e cost parameter C 
determines the tradeoff  between the complexity of the SVM structure 
and the prediction error of the training set. For example, if the cost C 
is set too large, the resulting SVM regression would give minimal im-
portance to the necessity of minimizing the SVM structure complexity. 

Th is could result in over-fi tting of the training data and poor generaliza-
tion. Th e insensitivity parameter, ε, controls the width of the insensi-
tive zone. Larger values of ε lead to smaller numbers of support vectors, 
which can result in poor generalization.

Figure 3 shows a schematic of a trained SVM structure, and the 
steps involved in estimating the fi nal output value, f(xt,w), given an input 
vector xt. Th e input vector xt and the support vectors Xi (i = 1,.., SVn ) 
are nonlinearly transformed using the pre-defi ned kernel function and 
then linearly combined using weights wi and the bias b obtained during 
training to estimate the fi nal output value.

In this research, the SVM regression was performed in two stages: 
(i) training and (ii) testing. Before training, the training data was stan-
dardized for zero mean and unit variance. Th e standardized training 
data was used to develop the SVM regression models. Th e mean and 
standard deviation values used for standardizing, was used in the later 
stages for de-standardizing the predictions. Th e training stage aims at 
fi nding the optimal estimates of cost, C, insensitivity value, ε and the radial 
basis kernel width, γ, to achieve the best generalization. During the testing 
stage, the ability of the trained SVM to predict fi nal values is evaluated.

In the past, optimal estimations of the SVM hyper-parameters 
were performed using the following three procedures: (i) based on a 
priori knowledge and user expertise, (ii) using a thorough grid-based 
search approach, and (iii) using an analytical estimation based on the 
statistical properties of the training data. In this study, we have opted 
to use the grid-based search approach. Th e objective of the grid-search 
method is to obtain the optimal hyper-parameters by estimating the 
error in the predictions for a training data set for every possible com-
bination of the hyper-parameters within a feasible hyper-parameter 
space. Th e hyper-parameter which results in a minimum training error 
was chosen as optimal. To estimate the training error, we used a fi ve-fold 
cross-validation approach. Readers are referred to Hastie et al. (2001) 

Fig. 3. Flowchart showing the steps involved during estimation of output when input data is fed to a trained SVM regression model. Note that the 
Steps (2), (3) and (4) are performed at the same instance when the appropriate kernel such as the radial basis kernel is used.
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for a detailed explanation of the fi ve-fold cross-validation approach. Th e 
optimal hyper-parameters for the SVMs were estimated by searching 
within the feasible parameter space. Th e feasible parameter space for 
each of the hyper-parameters was constructed using a set of minimum 
and maximum possible values that were assumed to be the following a 
priori (0.0001 < C < 1000, 0.0001 < γ < 100, 0 < ε < 1). We assumed 
the aforementioned range of hyper-parameters to be appropriate based 
on number of previous studies (e.g., Asefa et al., 2004; 2005). A mesh 
increment of 0.01 was selected for the grid search to ensure optimality of 
hyper-parameters and the computational effi  ciency.

Performance Criteria
At diff erent stages of the PTF development, it is required to quan-

tify the amount by which an estimated value diff ers from the ‘true’ value 
of the quantity being estimated. Such quantifi cation describes how well 
the estimator describes the ‘true’ values. In this research, such diff erences 
between estimated values and the ‘true’ values are quantifi ed using the 
following performance criterion: (i) root mean square error (RMSE), 
(ii) mean error (ME), and (iii) coeffi  cient of determination (R2).
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where N is the number of values, ζ i (i = 1..N) is the ‘true’ value of the 
quantity, z  is the mean of the ‘true’ values and ζ’i (i = 1..N) are the cor-
responding estimated values.

Support Vector Machine Methodology
We developed new PTFs based on the SVM methodology for the 

saturated hydraulic conductivity [log(Ks)] and the four parameters of 
the water retention function [θs, θr, log(α), and log(n)]. Th e R statisti-
cal language was used for developing the SVM-based PTFs. Four SVM-
based PTFs were developed for each set of soil hydraulic parameters by 
varying the input data predictors. Th e fi rst set of PTFs (called S1) used 
sand, silt, and clay percentages as input predictors. Th e second set of 
PTFs (called S2) used bulk density, and sand, silt, and clay percentages 
as predictors, while the input data of the third set of PTFs (called S3) 
also included the water content at the pressure head of −330 cm. Th e 
last model (called S4) included the water content at the pressure head 
of −15,000 cm in addition to those predictors used for the third set of 
PTFs (S3). Pedotransfer functions for retention parameters were devel-
oped by training with the corresponding parameter data that were esti-
mated by fi tting the van Genuchten retention model to retention data 
of the soils (2134 soil samples). On the other hand, PTF for saturated 
hydraulic conductivity was trained using the measured saturated hy-
draulic conductivity values (1306 soil samples). Th erefore, performance 
analysis of the PTFs using RMSE, R2 and ME (Equations 10–12) was 
done by comparing the predicted values with fi tted estimates [in case of 
θs, θr, log(α), and log(n)] and measured values [in case of log(Ks)].

Pedotransfer functions were developed by combining the SVM 
approach with the bootstrap method (Efron and Tibshirani, 1993). In 

the bootstrap method, a single dataset of size ‘N’ is randomly resampled 
with replacement to create ‘B’, statistically similar subsets also of size 
‘N’, while each of the ‘B’ subsets contain about 63% of the parent data 
set (Schaap et al., 2001). Using each of these ‘B’ subsets (also called as 
training data set), PTFs were fi rst trained. Th e trained PTFs were then 
tested using the 37% of the parent dataset that was not represented in 
the subset. Incorporating the bootstrapping method into the generation 
of PTFs has several advantages: (i) it allows for estimating uncertainty 
in the PTF prediction, and (ii) it creates complementary testing and 
training data sets. A ‘B’ value of 60 was used in our calibration, follow-
ing Efron and Tibshirani (1993) who suggested a B value between 50 
and 100 for a robust model. Each of the SVM-based PTFs comprised of 
60 SVMs that were calibrated using the bootstrapped subsets of the original 
dataset. Predictions of the soil hydraulic parameters from 60 SVMs were 
fi rst averaged to report the mean parameter estimates and their standard de-
viations. Th e mean value of the soil parameters from the 60 bootstraps were 
reported as the predictions from the PTFs.

For each of the PTFs used to predict the water retention param-
eters, we also compared the predicted values in the training and testing 
data sets with the corresponding fi tted values for all of the 60 bootstraps 
using the RMSE criterion. In case of the PTF developed to predict the 
saturated hydraulic conductivity, we compared predicted values in the 
training and testing data sets with the corresponding measured estimates 
for all of the 60 bootstraps using the RMSE criterion. Th e mean of the 
RMSE in the training and testing data sets of the 60 bootstraps for each 
PTF was reported as the training and testing error.

It is of interest to analyze how the errors in the predicted soil 
hydraulic parameters translated in the accuracy of the water contents 
that may be estimated using these predicted parameters (Eq. [1a–1c]). 
For this purpose, we calculated RMSE and ME values between water 
contents estimated using parameters predicted by PTFs (S1-S4) and 
the measured water contents [20,574 θ(h) points]. To understand how 
these RMSE and ME values varied for water contents (θ(h)) as a func-
tion of pressure head (h), we also calculated these values for water con-
tents grouped using 10 suction classes between 0, 3.2, 10, 32, 100, 320, 
1000, 3200, 10 000, 32000, and 10000 cm. It is important to note that 
water contents estimated by using parameters predicted by PTFs cannot 
be more accurate than those estimated by using fi tted parameters that were 
used to develop the PTFs. Th e RMSE and ME were also estimated between 
the water contents estimated using the fi tted parameters and the measured 
water contents for comparison purposes.

RESULTS AND DISCUSSION
Development of Support Vector Machine-based 
Pedotransfer Functions

Th e four SVM-based PTFs (S1, S2, S3, and S4) were de-
veloped using the procedure described above. Table 2 lists the 
summary statistics for the hyper-parameters of all PTFs, along 
with the percentage of training data set that represents support 
vectors. One may view support vectors as those records in the 
training data set providing the maximum value to the SVM 
method. It may be seen from Table 2 that all developed PTFs 
have an optimal number of support vectors around 50% of the 
training dataset which is also the recommended value (Hastie et 
al., 2001). Th e optimal percentage of support vectors was also 
refl ected in the performance of SVMs on the training and testing 
data sets.
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As described in the methodology section, we estimated the 
RMSE of the predictions in the training and testing data sets for 
all the PTFs (Table 3). Table 3 shows that the performance of the 
PTFs for the training and testing data is very close, suggesting a 
near optimal training of the PTFs

To enable direct comparisons with Schaap et al. (2001), we 
used the developed PTFs to predict soil hydraulic parameters for 
the entire data set. Comparisons were made using RMSE and 
R2. Table 4 lists the RMSE and R2 values of the soil hydraulic 
predictions by the SVM-based PTFs for the entire dataset. One 
obvious observation is that R2 values between fi tted and PTF-
predicted soil hydraulic parameters increase and RMSE decreas-
es as more input predictors are used in the PTFs (from S1 to S4). 
Th is observation suggests that all predictors in the input data set 
have some information that is useful for estimating the hydraulic 
parameters. In all of the PTFs, correlations between predictions 
of θr and corresponding fi tted estimates is the weakest among the 
predicted parameters. Bulk density seems to considerably im-
prove predictions of θs (compare S2 and S1). On the other hand, 
the accuracy of predictions also seems to increase signifi cantly 

(especially for θr, log (α) and log(n)) when retention curve data 
are used as additional predictors (compare S2 to S3 and S4).

We also compared the R2 values for the predicted soil hy-
draulic parameters with the corresponding values for the ANN-
based ROSETTA which is given in Schaap et al. (2001). It was 
noted that the RMSE and R2 values suggest a signifi cant im-
provement in predictions obtained by all the SVM-based PTFs 
when compared with the ANN-based ROSETTA. Compared 
with ROSETTA, SVM-based PTFs, using SSC as the input, 
shows the most improvement. Also, the extent of improvement 
in the soil hydraulic parameters predicted by SVM seems to be 
lesser and lesser with the number of inputs used in the PTFs.

Table 5 shows RMSE between the observed water contents 
and those estimated by using parameters predicted by ROSETTA 
and SVM-based PTFs. Th e RMSE estimates in Table 4 also in-
dicate SVM-based PTFs are more accurate in predicting water 
contents. One may attribute this improvement in predictions 
due to one or both of the following reasons: (i) the improvement 
of SVM over ANNs or (ii) the superior structure of SVM-based 

Table 2. Summary statistics of estimates of hyperparameters and percentage of support vectors (SV) for the SV machines (SVM)-based 
Pedotransfer functions (PTFs) that predict water retention parameters and saturated hydraulic conductivity using different sets of input data. 
The estimated means and standard deviations (in parentheses) of all bootstraps in a PTF are reported. SSC– sand, silt, and clay percentages, 
Db– bulk density, θ330 and θ15000– water contents at pressure heads of −330 and −15,000 cm, respectively.

Parameter PTF Model Input data Cost, C Kernel width γ Insensitivity ε Number of SV 

(-) (-) %

θr S1 SSC 9.2 (3.35) 0.28 (0.1) 0.48 (0.14) 57.55 (8.76)
θs 23 (2.1) 1.01 (0.05) 0.62 (0.2) 42.53 (16.05)
log10(α) 9.4 (2.97) 0.45 (0.35) 0.68 (0.3) 38.74 (21.61)
log10(n) 22.6 (1.67) 0.27 (0.09) 0.5 (0.09) 41.61 (8.76)
log10(Ks) 16.6 (2.44) 0.82 (0.32) 0.41 (0.25) 57.17 (23.03)
θr S2 SSS+Db

6.2 (3.35) 0.4 (0.1) 0.7 (0.14) 41.3 (8.76)
θs 4.4 (2.1) 0.27 (0.05) 0.52 (0.2) 34.96 (16.05)
log10(α) 4.2 (2.97) 0.67 (0.35) 0.74 (0.3) 33.02 (21.61)
log10(n) 13.6 (1.67) 0.26 (0.09) 0.5 (0.09) 40.35 (8.76)
log10(Ks) 16.6 (2.44) 0.16 (0.32) 0.51 (0.25) 43.83 (23.03)
θr S3 SSC+ Db + θ330

16.6 (3.35) 0.16 (0.18) 0.51 (0.15) 43.83 (9.5)
θs 9.4 (2.79) 0.16 (0.3) 0.41 (0.11) 42.95 (8.5)
log10(α) 20 (3.56) 0.16 (0.45) 0.4 (0.2) 48.86 (10.92)
log10(n) 8.8 (1.51) 0.28 (0.12) 0.4 (0.07) 43.31 (4.53)
log10(Ks) 9 (1.34) 0.28 (0.11) 0.43 (0.22) 43.2 (19.12)
θr S4 SSC+ Db + θ330 + 

θ15000

13.3 (3.29) 0.17 (0.11) 0.51 (0.22) 43.53 (19.12)
θs 8 (4.83) 0.22 (0.13) 0.42 (0.08) 40.41 (9.55)
log10(α) 9 (2.26) 0.34 (0.07) 0.29 (0.11) 56.86 (11.05)
log10(n) 20 (3.9) 0.27 (0.3) 0.19 (0.09) 58.41 (7.76)
log10(Ks) 6.4 (1.41) 0.21 (0.15) 0.37 (0.2) 45.13 (21.05)

Table 3. Root mean squared error (RMSE) of the water retention 
parameters and saturated hydraulic conductivities predicted by dif-
ferent support vector machine (SVM)-based pedotransfer functions 
(PTFs) for the training and testing data sets.

Parameter Data S1 S2 S3 S4
θr Training 0.063 0.061 0.052 0.039

Testing 0.072 0.07 0.064 0.045
θs Training 0.075 0.052 0.049 0.047

Testing 0.081 0.055 0.052 0.05
log(α) Training 0.558 0.531 0.47 0.342

Testing 0.567 0.537 0.476 0.348
log(n) Training 0.132 0.127 0.11 0.08

Testing 0.132 0.13 0.113 0.083
log(Ks) Training 0.714 0.662 0.561 0.55

Testing 0.72 0.662 0.57 0.556

Table 4. Root mean squared error (RMSE) and R2 estimates for the 
water retention parameters and saturated hydraulic conductivities 
predicted by different support vector machine (SVM)-based pedo-
transfer functions (PTFs) for the entire dataset.

Parameter
Performance 

measure
S1 S2 S3 S4

θr
R2 0.282 0.38 0.48 0.79
RMSE 0.066 0.064 0.056 0.041

θs
R2 0.44 0.787 0.816 0.831
RMSE 0.077 0.053 0.05 0.048

log(α) R2 0.497 0.567 0.684 0.848
RMSE 0.561 0.533 0.472 0.344

log(n) R2 0.686 0.705 0.791 0.897
RMSE 0.132 0.128 0.111 0.081

log(Ks) R2 0.681 0.737 0.817 0.826
RMSE 0.716 0.662 0.564 0.552
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PTFs over ROSETTA. Th e ANN-based ROSETTA predicts 
all four VG parameters using ONE single model (i.e., the ANN 
has four outputs corresponding to diff erent parameters). In the 
case of the SVM-based PTFs developed here, there are four dif-
ferent models, each predicting one output (multi-model). It is 
our opinion that the multi-model approach provides SVM-based 
PTFs more fl exibility, and could be one of the reasons why the 
SVM-based PTFs have lower prediction errors. To check if the 
observed improvement was due to multi-model nature of SVM-
based PTFs or due to the superior structure of SVM compared 
with ANN, we need to do further research comparing single-
model ANN, multi-model ANNs, single-model SVM and multi-
model SVMs. Th is is a topic for future research.

Uncertainty
Estimations of uncertainty (such as standard deviation) in 

predictions by PTFs can be very useful, especially for further 
statistical and modeling studies. Th e user may view the uncer-
tainty estimate as a measure of PTF’s reliability (e.g., Schaap, 
2004). Since we used bootstrapping for the SVM-based PTFs, 
we can easily estimate standard deviations for the predicted soil 
hydraulic parameters. Figure 4 shows the distribution of mean 
(μ) soil hydraulic parameters predicted by the S2 PTFs and the 
associated uncertainty (σ, standard deviation) as a function of 
soil texture for a specifi ed bulk density of 1.3 g cm−3. Here, we 
use the standard deviation to represent the uncertainty under the 
assumption that the errors are distributed normally, which may 
not necessarily be true. As already observed for ROSETTA by 
Schaap et al. (2001), the textural dependence of predicted pa-
rameter values concur with established knowledge. For example, 
θr increases for fi ner textures, while log(Ks) increases for coarser 
textures. Standard deviations for the predicted values of soil 
hydraulic parameters show similarity. Th ey are especially high 
for textures that are less well represented in the input data set 
(compare Fig. 1 with Fig. 4). Th is was consistently observed for 
predictions by all PTFs (S1-S4), indicating that gathering more 
information for textures that are less represented in the training 
dataset (such as silt) is a necessity.

Water Contents and Saturated 
Hydraulic Conductivity

Th e soil hydraulic parameters predicted using diff erent 
SVM-based PTFs were used to estimate water contents at dif-
ferent pressure heads with the van Genuchten model. Th ese pre-

dicted water contents were then compared with the correspond-
ing measured values using RMSE. Table 5 summarizes RMSE of 
water contents and saturated hydraulic conductivities predicted 
using ROSETTA and the SVM-based PTFs for diff erent input 
predictors. For saturated hydraulic conductivities, RMSE of 
predictions by ROSETTA and SVM are comparable for lower-
order PTFs which use only textural information and bulk den-
sity. However, when retention data points are also included into 
the PTFs training (as in S3 and S4), the SVM-based PTFs show 
considerable improvement. Compared with ROSETTA, RMSE 
for water contents predicted by the SVM-based PTFs decreased by 
10 to 25% for diff erent PTFs. Compared with  other PTFs, Table 
5 indicates that the hydraulic conductivities predictions by SVM-
based PTFs show only a marginal improvement over ROSETTA.

Figure 5 shows RMSE between water contents estimated 
using parameters predicted by PTFs (S1-S4) and the measured 
water contents as a function of the pressure head. A similar analy-
sis was performed by Schaap et al. (2001). Th e fi gure also shows 
the RMSE for the water contents estimated by using the fi tted 
parameters. Naturally, one may expect that the water contents 
predicted by the PTFs cannot be more accurate than those es-
timated by using the fi tted parameters. Compared with the re-
sults of ROSETTA (Schaap et al., 2001), the SVM-based PTFs 
show improvements for diff erent pressure head intervals. Out 
of all the PTFs, only S4 performs better at lower pressure heads 
(<−32,000 cm), while all other PTFs seem to have poor perfor-
mance at these pressure heads. It is important to note that we 
had only 28 points below the pressure head of −32,000 cm. Th us, 
the poor performance of PTFs at lower pressure heads could be 
a statistical problem.

Figure 6 depicts the ME for water contents estimated using 
the parameters predicted by the SVM-based PTFs as a function 
of pressure head. Th e ME for the water contents estimated using 
the RETC-fi tted parameters is also shown. Clearly, the RETC-
fi tted parameters show minimal ME indicating minimal bias in 
the estimated water contents. Th e water contents estimated using 
the parameters predicted by the SVM-based PTFs show relatively 
more bias. Th e water contents are overestimated near saturation 
(especially when log(h) < 0.5 cm) and underestimated at lesser 
saturations. It was observed that this trend is very similar to ME 
of the water contents estimated by using ROSETTA (Schaap et 
al., 2001). However, the absolute ME value of the water contents 
estimated using parameters predicted by SVM-based PTFs indi-
cate lesser bias than those estimated using parameters estimated 
by ROSETTA. Similarly in Fig. 6, the ME of the estimated water 
contents seems to be reduced as more predictors are used in the 
corresponding PTF.

SUMMARY AND CONCLUSIONS
Th e SVM methodology was successfully applied to develop 

PTFs that used diff erent input predictors to estimate soil hydrau-
lic parameters. Th ese PTFs utilize some or all of the following 
predictors: sand, silt, and clay percentages, bulk density and re-
tention data at one or two points (at the fi eld capacity and the 
wilting point). Bootstrapping was performed to allow for the 
estimation of uncertainty in the predictions. It was observed that 
an increase in the number of predictors resulted in improved predic-
tions by PTFs. It was also observed that the predictions by the SVM-
based PTFs showed considerable improvement over ROSETTA.

Table 5. Root mean square error (RMSE) estimates between the 
measured and corresponding predicted water contents and satu-
rated hydraulic conductivities by support vector machine (SVM)-
based pedotransfer functions (PTFs) and ROSETTA.

PTF 
Model

Input data used† PTF θ(h) log(Ks)

S1 SSC SVM-based 0.062 0.716
ROSETTA 0.076 0.717

S2 SSC+Db SVM-based 0.053 0.662
ROSETTA 0.068 0.666

S3 SSC+ Db + θ33
SVM-based 0.038 0.564
ROSETTA 0.047 0.586

S4 SSC+ Db + θ33+θ15000
SVM-based 0.034 0.552
ROSETTA 0.044 0.581

Direct fi t 0.012 NA
†SSC, sand silt and clay; Db, bulk density.
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However, we note that large uncertainties in PTFs’ estimates 
remain due to the lack of data for some textural classes (such as silt) 
in the training. Th is limitation underscores the need for gathering 
more information, especially for fi ne-textured classes (see Table 1). 
One may also expect that the performance of PTFs would improve 
if additional information, such as the organic matter content, soil 
structure and chemical properties, was available. However, as not-
ed by Schaap et al. (2001), care should be taken to avoid predic-
tors that are diffi  cult to measure or are not commonly measured 
because this may put the very idea of PTFs in jeopardy.
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Fig. 5. RMSE for water contents predicted by the SVM-based PTFs as 
a function of the pressure head. RMSE for water contents estimated 
using the fi tted parameter values is also shown. Bars show a number 
of retention points for different pressure head intervals.

Fig. 6. Variation in Mean Error (ME) between the measured water 
contents and those predicted by SVM-based PTFs (S1-S4) as a function 
of the pressure head (cm). The ME of the direct fi t to water retention 
data using the RETC program is also shown.


