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The variably saturated fl ow process in soils is a highly nonlin-
ear and dynamic phenomenon. Commonly used numeri-

cal models for variably saturated water fl ow use the classical 
Richards equation (Richards, 1931). The Richards equation is 
highly nonlinear due to the dependence of unsaturated hydrau-
lic conductivity and water content on the capillary pressure 
head. Consequently, modeling variably saturated water fl ow 
involves solving the Richards equation along with a nonlin-
ear soil hydraulic model (Gardner, 1958; Brooks and Corey, 
1964; van Genuchten, 1980; Leij et al., 1997) that charac-
terizes the relationships between the water content, capillary 
pressure head, and unsaturated hydraulic conductivity. Of all 
available soil hydraulic models, the van Genuchten–Mualem 
model (van Genuchten, 1980) is perhaps the most widely used 
model in simulation of vadose zone fl ow processes and, there-

fore, used in this study for representing the complex relation-
ships between the hydraulic conductivity, the water content, 
and the pressure head.

Due to the multidimensionality of the parameter space, a 
common dilemma during parameter estimation in hydrologic 
processes is that there are a number of parameter sets that can fi t 
the data equally well. The ultimate goal during the soil hydrau-
lic parameter estimation is to obtain parameter estimates that 
are the most representative of fl ow processes in soils. An appli-
cation of the van Genuchten–Mualem model in vadose zone 
fl ow modeling requires estimates of the following soil hydraulic 
parameters: the so-called shape parameters (α and n), saturated 
hydraulic conductivity (Ks), saturated water content (θs), and 
residual water content (θr). Of the required parameter set, Ks 
and θs can be estimated experimentally. The remaining param-
eters (α, n, and θr) have to be estimated indirectly by fi tting the 
van Genuchten–Mualem model to the experimental retention 
and unsaturated hydraulic conductivity data using an optimiza-
tion approach, such as the RETC code (van Genuchten et al., 
1991). It has been traditionally assumed that a good estimate of 
the necessary soil hydraulic parameters is achieved when the esti-
mated parameter set can accurately represent both the retention 
curve and hydraulic conductivity–pressure head relationships as 
well as the transient fl ow processes.

The RETC code is a widely used computer program for esti-
mating the soil hydraulic parameters that represent the retention 
curve and the unsaturated hydraulic conductivity–pressure head 
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A New Approach to Estimate Soil Hydraulic 
Parameters Using Only Soil Water Retention Data

Traditional approaches for estimating soil hydraulic parameters (such as the RETC code) 
perform well when experimental data for both the retention curve and hydraulic conduc-
tivity function are available; however, unsaturated hydraulic conductivity data are often 
unavailable. The objective of this work was to develop an approach to estimate robust soil 
hydraulic parameters from water retention curve data alone. The proposed approach, called 
the Multiobjective Retention Curve Estimator (MORE), is based on the Multiobjective 
Shuffl ed Complex Evolution Metropolis (MOSCEM-UA) algorithm and estimates an opti-
mal parameter set by simultaneously minimizing two objective functions each representing 
water content and relative unsaturated hydraulic conductivity residuals. To address the lack 
of observed unsaturated hydraulic conductivity data, MORE transforms both predicted and 
observed water contents into the hydraulic conductivity space using a pore-size distribution 
model (e.g., the Mualem model) and also optimizes the soil hydraulic parameters in this 
fi ctitious space. We applied MORE to two cases. In the fi rst case, MORE was used to esti-
mate soil parameters using only retention curve data for 12 random soils selected from the 
UNSODA database. While the soil hydraulic parameters estimated using RETC and MORE 
fi t the retention curve similarly, the MORE approach consistently decreased the error in 
fi tting unsaturated hydraulic conductivities by as much as 5% compared with RETC. The 
second case involved using the parameters fi tted using the MORE and RETC approaches to 
model a fi eld-scale experiment. Compared with RETC, the error in predicted water contents 
decreased by 25% using parameters predicted by MORE. The MORE approach was shown 
to fi t robust soil hydraulic parameters; however, the approach is relatively slower and more 
time consuming than RETC.

Abbreviations: MORE, Multiobjective Retention Curve Estimator; MOSCEM-UA, Multiobjective 
Shuffl ed Complex Evolution Metropolis.
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relationships (van Genuchten et al., 1991). The RETC code uses 
a nonlinear least-squares optimization approach to estimate the 
unknown model parameters from observed retention, conduc-
tivity, or diffusivity data. The aim of this curve-fi tting process 
is to fi nd the set of parameters that best minimizes the sum of 
squared residuals, SSQ, between model predictions and data (van 
Genuchten et al., 1991). The SSQ refl ects the degree of model 
bias (lack of fi t) and the contribution of random errors. Note that 
the SSQ objective function is statistically synonymous with the 
RMSE. The RETC code minimizes the SSQ iteratively by means 
of a weighted least-squares approach based on Marquardt’s maxi-
mum likelihood method (Marquardt, 1963).

Previous studies have shown that RETC can be effi ciently 
used to fi t the retention curve and the unsaturated hydraulic 
conductivity function when experimental data are available for 
both properties (e.g., van Genuchten et al., 1991; Yates et al., 
1992). While experimental data for the retention curve can be 
collected relatively easily, accurate measurements of unsatu-
rated hydraulic conductivities are generally diffi cult and time 
consuming (Schaap and van Genuchten, 2005). Soil physicists, 
however, often fi nd themselves in the predicament where they 
must estimate the soil hydraulic parameters that adequately 
represent the entire gamut of pressure head–water content–
hydraulic conductivity relationships using only the retention 
curve data. When only retention curve data are available, 
RETC sometimes fi ts the retention curve at the cost of poorer 
characterization of the unsaturated hydraulic conductivity. For 
example, the van Genuchten–Mualem model, when fi tted only 
to the experimental retention curve data, often results in a good 
fi t of the retention curve but does not necessarily ensure a good 
description of the hydraulic conductivity–pressure head rela-
tionship (see below for illustrations). This is mainly due to the 
varying sensitivities of the retention curve and the unsaturated 
hydraulic conductivity function to the parameter set.

In the past, many improvements have been suggested to 
the RETC code (e.g., Hollenbeck et al., 2000; Abbaspour et al., 
2001); however, these improvements do not address conditions 
where only the soil water retention data are available. Similar 
to the RETC approach, these improved methods often result 
in parameter sets that inadequately represent the unsaturated 
hydraulic conductivity–pressure head relationship.

Traditional methods, such as RETC, for estimating the 
soil hydraulic parameters are formulated as a single-objective 
optimization problem. The classical single-objective optimi-
zation approach is based on the central assumption that the 
chosen single-objective function can adequately and correctly 
represent all errors that may be incurred due to the parameter 
set used in the model (Vrugt et al., 2003). Gupta et al. (1999) 
have convincingly pointed out that this may not be true, and 
that the single-objective function can sometimes contribute 
structural errors during model calibration that may even exceed 
measurement errors.

In this study, we developed a multiobjective optimiza-
tion approach, called MORE, for estimating the soil hydraulic 
parameters that is designed to overcome the aforementioned 
weaknesses of the single-objective optimization in RETC. 
Multiobjective optimization is not an alien concept for soil 
physicists and has been explored in many previous studies (e.g., 
Neuman, 1973; Vrugt and Dane, 2005; Schoups et al., 2005; 
Mertens et al., 2006). The basic idea behind multiobjective 
optimization methods is fi nding parameter sets that simultane-
ously minimize multiple objective functions. The solution to 
this problem, however, will generally no longer be a single “best” 
parameter set but will consist of a group of possible solutions 
due to tradeoffs among different objective functions (Vrugt et 
al., 2003). A key characteristic of this so-called “Pareto set of 
solutions” is that each parameter set within the Pareto set of solu-
tions is better than the others for at least one objective function, 
but none is better than the others for all objective functions.

Figure 1 gives an illustration of this concept. The Pareto 
set of solutions would also include the solutions for the indi-
vidual objectives. For example, while Point A represents param-
eters that provide the best solution for the objective F1, Point B 
represents the optimal parameter set for the objective F2. Many 
algorithms are available for estimating the “optimal” parameter 
sets through multiobjective optimization, such as MOCOM-
UA (Yapo et al., 1998) and MOSCEM-UA (Vrugt et al., 
2003). One may select a “best” possible solution (represented 
by Point C) from the Pareto set of solutions by minimizing the 
normalized Euclidean measures of distance of the Pareto set 
to the origin (Vrugt et al., 2003). It is possible to estimate the 
same “best” possible solution using a weighted single-objective 
function; however, the relative values of weights would domi-
nate the fi nal “best” possible solution. It has been convincingly 
argued that the “best” solution has the smallest normalized dis-
tance. Throughout this study, the point on the Pareto set with 
the minimal normalized Euclidean distance to the origin has 
been selected as the “best” possible solution.

MATERIALS AND METHODS
Proposed Approach

For a one-dimensional scenario, the Richards equation is described 
mathematically as follows:

Fig. 1. Schematic of the location of the Pareto optimal solution of a 
multiobjective problem in the objective space. Circles represent 
various nonoptimal parameter sets that do not provide the best 
solution. Points A and B represent parameter sets that provide 
the best solution for individual objectives F1 and F2, respectively. 
The line connecting Points A and B is the nondominated “Pareto 
optimal” set of solutions. Point C corresponds to the Pareto solu-
tion that may be regarded as the “best” possible solution.
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where θ is the volumetric water content, h is the soil water pressure 
head (L), t is time (T), z is the distance from a reference datum (L), 
K(h) is the unsaturated hydraulic conductivity (L T−1) as a function of 
h or θ, and S represents fl ow from sinks and sources.

The van Genuchten–Mualem model, which is used to represent 
the functions K(h) and θ(h) in the fl ow models, is described as
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where θ(h) is the volumetric water content at pressure head h, θs and θr 
are the saturated and residual volumetric water contents, respectively; 
Se(h) is the scaled water content at pressure head h (L), Ks is the satu-
rated hydraulic conductivity (L T−1), α (L−1) and n are van Genuchten’s 
shape parameters, and l is a tortuosity or pore-connectivity parameter 
estimated by Mualem (1976) to be 0.5. Equations [1] and [2] have 
been used with or without additional modifi cations to model variably 
saturated water fl ow and have been successfully extended into two and 
three dimensions (e.g., Šimunek et al., 1999; Preuss et al., 2004).

The MORE approach utilizes two objective functions to obtain a 
simultaneous fi t of the retention curve and the unsaturated hydraulic 
conductivity function. The fi rst objective function refl ects the lack of fi t 
of observed water contents, while the second objective function assesses 
the lack of fi t of observed unsaturated hydraulic conductivities. The 
goal of the MORE methodology is to fi nd the parameter set such that 
both objective functions, O(b), described in Eq. [3] are minimized:
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where b [ = α, n, θs, and θr] is the set of optimized soil hydraulic 
parameters, θi are the observed water contents, ˆ ( )iθ b

 
are the fi tted 

water contents as a function of the parameter set b, ˆˆ ( , )i ik θ b  are the 
fi tted relative hydraulic conductivities as a function of the parameter 
set b and fi tted water contents ˆ ( )iθ b , and ki(θi,b) are the apparent 
observed relative hydraulic conductivities as a function of the param-
eter set b and observed water contents θi. In the absence of observed 
relative conductivities, ki(θi), apparent observed relative hydrau-
lic conductivities, ki(θi,b), are estimated using the parameter set b 
and observed water contents, θi, from Eq. [2a–2d]. It is assumed 
that ki(θi,b) closely refl ects the actual relative hydraulic conductivity, 
ki(θi), that could have been estimated experimentally. Similarly, fi t-
ted relative hydraulic conductivities, ˆˆ ( , )i ik θ b , are estimated using fi t-
ted water contents, ˆ ( )iθ b , and the parameter set b. The optimization 
based on Eq. [3] thus simultaneously minimizes water content residu-

als in both the water content and the relative unsaturated hydraulic 
conductivity objective function spaces. A pore-size distribution model 
(e.g., Mualem, 1976) is used to project both fi tted and observed water 
contents into the hydraulic conductivity space. Similar to the RETC 
approach, the RMSE is used in MORE as the objective function. Note 
that the RMSE objective function for the relative unsaturated hydraulic 
conductivities considers log-transformed values as unsaturated hydrau-
lic conductivities that vary across many orders of magnitude.

Several assumptions are made in the MORE approach. Note that 
the water content data are projected into both the retention curve and 
hydraulic conductivity objective spaces in MORE. The second major 
assumption is that pore-size distribution models, such as the Mualem 
model, accurately transform water contents into relative hydraulic 
conductivities. This assumption is especially crucial, as the accuracy 
of the second objective function is entirely dependent on the validity 
of the pore-size distribution model for the soil under consideration.

The MOSCEM-UA algorithm is used to solve the multiobjective 
optimization problem posed in MORE. The algorithm in the MORE 
approach is essentially the same as the MOSCEM-UA algorithm (for 
a detailed description of the approach, see Vrugt et al., 2003). The 
only additions in the MORE approach are in the multiobjective vec-
tor estimation stage described above. Figure 2 shows the fl ow chart for 
calculating the multiobjective vector used in the MORE approach for 
a given parameter set and experimental retention data when the van 
Genuchten–Mualem model is considered.

Only a brief explanation of the procedure used in the MOSCEM-
UA algorithm is presented here. The MOSCEM-UA algorithm starts 
with an initial population of points from the feasible parameter space 
defi ned by the user. For each individual of the population, values of 
the multiple objective functions are computed and the population is 
ranked and sorted based on their fi tness. The fi tness of each individual 

Fig. 2. A fl owchart for calculating the multiobjective vector for a 
given parameter set in the Multiobjective Retention Curve Esti-
mator (MORE) approach.
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is based on how much the multiple objectives are minimized. The 
population (100 individuals were used in this study) is then parti-
tioned into complexes (fi ve in this study) and in each complex, par-
allel sequences of individuals are launched and new candidates are 
derived from the structure of the sequences and associated complexes. 
A Metropolis–Hastings algorithm is used to decide if the candidate 
points are acceptable and in case of acceptance, the worst member 
of the current complex is replaced. The procedure is continued until 
a prescribed number of iterations is reached (here 10,000), after 
which they are combined and new complexes are formed through the 
process of shuffl ing. This process converges to the Pareto set. From 
the estimated Pareto set, the nondominated Pareto set is selected. A 
Pareto set of parameters is said to be nondominated if no parameter 

set exists that has the lowest values of all objective functions. The non-
dominated Pareto set is illustrated by a thick line in Fig. 1. From the 
nondominated Pareto set, the parameter set superior to other possible 
solutions is chosen as the “best” possible parameter set (represented 
by Point C in Fig. 1). The MORE approach was implemented in the 
MATLAB environment (The MathWorks, 1999) and was primarily 
based on the MOSCEM-UA algorithm (Vrugt et al., 2003). Figures 3 
and 4 are practical examples of Fig. 1 and further illustrate the param-
eter sets obtained by the MOSCEM-UA algorithm.

The performance of MORE was evaluated using two case stud-
ies of varying complexity. The fi rst case study compared the perfor-
mance of RETC and MORE in estimating parameters for a variety of 
soils of different textures and structures randomly selected from the 
UNSODA database. The second case study involved estimating the 
soil hydraulic parameter set from experimental retention curve data 
for the Las Cruces one-dimensional variably saturated fl ow experi-
ment (Wierenga et al., 1991). While the fi rst case study involved 
laboratory measurements of core samples with smaller heterogeneity 
and fewer experimental data, the second case study involved a fi eld-
scale experiment with larger heterogeneity and more experimental 
data. HYDRUS-1D (Šimunek et al., 2005) was used to model the 
one-dimensional variably saturated water fl ow with parameters esti-
mated from RETC and MORE in the second case study. To compare 
the observed data with those predicted using the MORE and RETC 
approaches, we used the RMSE statistic. The RMSE is a commonly used 
error statistic that is the square root of the mean of the squared residuals.

Case 1: Selected Soils from the UNSODA Database
In comparing the performance of the MORE and RETC 

approaches for estimating parameters from soil water retention experi-
mental data, we randomly chose 12 soils of different textures and struc-
tures from the UNSODA database (Leij et al., 1996; Nemes et al., 2001). 
These selected soils were chosen such that retention curve and unsatu-
rated hydraulic conductivity data are available. Among these soils in the 
UNSODA database, many have similar retention curve and unsaturated 
hydraulic conductivity data. Most of these soils with similar retention 
curves and unsaturated hydraulic conductivity data shared the same sam-
pling location. Care was taken to avoid such repetitions. Also, soils with 
obvious sampling and experimental errors were ignored. The selected 

soils, covering a wide range of textures and struc-
tures, are listed in Table 1. Although the MORE 
and RETC approaches were compared for their 
performance for all 12 selected soils, only one of 
these randomly selected soils is used here to illus-
trate in more detail the MORE approach.

Even though the selected soils had experi-
mental data for both soil water retention and 
unsaturated hydraulic conductivity, only the 
retention curve data were used to estimate 
the soil hydraulic parameters. The estimated 
parameter set was then used to see how well 
the MORE and RETC approaches were able 
to characterize the unsaturated hydraulic 
conductivity by comparing the experimental 
unsaturated hydraulic conductivity data with 
predicted values. In other words, the experi-
mental unsaturated hydraulic conductivities 
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were used only to evaluate the robustness of the “best” parameter sets 
estimated using MORE and RETC.

Case 2: Las Cruces Trench Experiment
The second case study involved modeling of the one-dimensional 

infi ltration for the Las Cruces trench site experiment (Wierenga et al., 
1989, 1991). The Las Cruces trench site experiment was a compre-
hensive fi eld study conducted in southern New Mexico. The primary 
purpose of the study was to develop a data set for validating and test-
ing numerical models. For this purpose, the study site was heavily 
instrumented with tensiometers, neutron probes, and solute samplers 
for collecting water contents, pressure heads, and solute concentra-
tions. More than 500 soil samples (undisturbed and disturbed) were 
taken at the experimental site and analyzed in the laboratory for bulk 
density and to fi nd the saturated hydraulic conductivity and soil water 
retention curve. The experimental infi ltration study involved applica-
tion of water to a 4-m-wide area using closely spaced drips with an 
average surface fl ux of 1.82 cm d−1 for the 86 d of the experiment. 
During the experiment, no surface ponding was observed. To reduce 
the disruption of the experimental conditions by rain and evapora-
tion, the irrigated area and the surroundings were covered by a pond 
liner. To evaluate the data set, Wierenga et al. (1991) developed a 
simple one-dimensional numerical model assuming uniform soil 
conditions. Similar to HYDRUS-1D, the model was based on the 
Richards equation (Eq. [1]) for one-dimensional variably saturated 
water fl ow. For modeling purposes, Wierenga et al. (1991) assumed 
the equivalent saturated hydraulic conductivity (Ks) as a geometric 
mean of laboratory-measured values from all soil samples. The reten-
tion curve parameters were estimated from the laboratory data using 
an approach similar to RETC (Wierenga et al., 1991). Water contents 
were observed along the depth on Days 19 and 35 after the experi-
mented was started.

Similar to the work done by Wierenga et al. (1991), the one-
dimensional simulation of the infi ltration in the Las Cruces experi-
ment was performed with the MORE-estimated soil hydraulic param-
eters. Initial pressure heads (hi = −100 cm) in the soil profi le were 
the same as those used in Wierenga et al. (1991). While a constant 
water fl ux was used as the upper boundary condition (q0 = 1.82 cm 
d−1), free drainage was assumed at the lower boundary. Also, similar 
boundary conditions and equivalent saturated hydraulic conductivity 
(Ks = 270.1 cm d−1) were used. The retention 
curve parameters were estimated using again 
the RETC and MORE approaches. Except for 
the retention curve parameters, all remaining 
parameters and initial and boundary condi-
tions were kept the same. This allowed us to 
compare the effectiveness of the RETC and 
MORE approaches in estimating parameter 
sets for variably saturated fl ow models.

RESULTS AND DISCUSSION
Case 1: Selected Soils from the 
UNSODA Database

One selected soil (undisturbed core 
sample of silt collected from Hannover, 
Germany; UNSODA code no. 4670) was 
initially used to analyze and demonstrate 
the MORE approach. For the selected soil, 
the RETC code was used to estimate the 

soil hydraulic parameters from only the retention data. The 
optimized retention parameters were as follows: θs = 0.441, θr 
= 0.000, α = 0.005 cm−1, and n = 1.41.

The MORE approach was then used to obtain the soil 
hydraulic parameters using multiobjective optimization. Figure 
3 shows the evolution of the “best” parameter set in the objec-
tive space using the MORE approach. Figure 3 is similar to 
Fig. 1, which illustrates the concept of the Pareto optimality. 
Figure 3 also shows the location of the RETC solution and 
the “best” possible solution obtained by MORE in the objec-
tive space. From the nondominated Pareto set of solutions, the 

“best” possible parameter set (illustrated by Point C in Fig. 1) 
was chosen as follows: θs = 0.429, θr = 0.030, α = 0.004 cm−1, 
and n = 1.56.

The estimated parameter sets obtained by RETC and 
MORE were then used to predict the retention curves and 
hydraulic conductivity–pressure head functions using Eq. [2]. 
Figure 4 compares observed water contents and relative hydrau-
lic conductivities with the corresponding soil hydraulic func-
tions obtained from MORE and RETC. It is clear that RETC 
fi ts water contents much better than it predicts relative hydrau-
lic conductivities. Relative unsaturated hydraulic conductivities 
are clearly underestimated when parameters estimated only 
from the retention curve are used. An underprediction of rela-
tive hydraulic conductivities would translate into a prediction 
of fl ow rates slower than in reality during model simulations. 
On the other hand, the MORE approach shows a signifi cantly 
improved correspondence between measured and predicted 
relative unsaturated hydraulic conductivities (Fig. 4b), despite 
the fact that measured hydraulic conductivities were not used 
in the optimization process. Although the MORE approach 
predicts the hydraulic conductivity function signifi cantly bet-
ter than the RETC approach, the retention curves fi tted by 
the two approaches differ only slightly (Fig. 4a). Figures 5a 
and 5b show contour plots of the RMSE between the observed 
and estimated water contents and relative hydraulic conduc-
tivities, respectively, for different combinations of the α and 
n parameters. Figure 5 also shows the location of the RETC 
and MORE solutions. One can immediately observe the dis-
similarity of the two error surfaces. For example, the hydraulic 

Table 1. Summary of 12 soils selected from the UNSODA database for the fi rst case study. 
Note that the silt soil (no. 4670, in italics) was used for a thorough analysis of the 
Multiobjective Retention Curve Estimator (MORE) approach.

UNSODA 
no.

Texture Structure

Experimental data points

Soil water 
retention

Unsaturated hydraulic 
conductivity

——————— no. ———————
4672 silt loam fi ne to moderate polyhedric 25 25
2242 sandy loam granular 11 12
1400 clay angular 28 10
4011 loamy sand granular 24 11
1382 sandy clay loam angular 46 10
4661 sand single grain 25 25
4670 silt blocky 25 25
1490 silt loam blocky 39 10
1361 silty clay crumb angular 45 10
1371 silty clay loam angular 48 10
1270 – slightly welded 5 8
2740 clay loam angular 6 13
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conductivity is relatively more sensitive to the n parameter than 
to the α parameter. Figure 5 further illustrates that retention 
and hydraulic conductivity functions have different minima. 
While the estimated RETC parameter set is located well inside 
the global minimum for water contents, it is not necessarily in 
the region of the global minimum for relative hydraulic con-
ductivities. Similar observations have been reported in previous 
studies (e.g., Yates et al., 1992). Yates et al. (1992) analyzed the 
RETC code for a range of soils from the UNSODA database 
and noted that estimates of the unsaturated hydraulic conduc-
tivity were, on average, less accurate. Because of the often poor 
characterization of the unsaturated hydraulic conductivity, one 
may expect that RETC may lead to parameter estimates that 
are less representative of the fl ow characteristics of the medium. 
Compared with the RETC solution, the MORE solution is 
better placed in the region of global minima for both the water 
content and relative hydraulic conductivity. We emphasize here 
again that no measured hydraulic conductivity data were used 
in optimizing the soil hydraulic parameters and that these mea-
sured data were used only to evaluate the solutions obtained by 
the two methods.

It should be noted that the MOSCEM-UA algorithm on 
which the MORE approach is based has a set of user-input 
values. These include the number of complexes, the number 
of function evaluations, and the size of the population. In our 
analysis of the various soils selected from the UNSODA data-
base, approximately 10,000 function evaluations were suffi cient 
to attain a robust Pareto set of solutions. The sensitivity of the 
MORE code to the number of complexes and population size 
was analyzed and is reported in Table 2. Similar to the observa-
tion made by Vrugt et al. (2003), the number of Pareto points 
generated by the MORE approach is relatively insensitive to 
the population size and the number of complexes. The “best” 
possible solution was also relatively insensitive to the population 
size and number of complexes. Similar observations were made 
during the sensitivity analysis of the remaining selected soils from 
the UNSODA database.

The MORE approach seemed to consistently provide better 
results than the RETC code for a variety of soils. Figure 6 shows 
the tradeoff in the objective space of the MORE approach for sev-
eral selected soils. One may note that the Pareto set is relatively uni-
formly distributed. Any gaps that may be observed in the Pareto 
set distribution (Soil no. 1490, for example) are due to poor repre-
sentation of the data by the model. Table 3 lists the “best” param-
eter sets estimated by the MORE and RETC approaches, while 
Table 4 lists the RMSE estimates between fi tted and observed 
water contents and predicted and observed unsaturated hydraulic 
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Fig. 5. Contour plots of the RMSE between the observed and fi tted (a) 
water contents and (b) log of relative hydraulic conductivities as a 
function of shape parameters α (cm−1) and n for the silt soil (UN-
SODA code no. 4670). The star symbol represents the parameter set 
estimated using RETC and the solid square symbol corresponds to 
the “best” possible parameter set estimated using the Multiobjec-
tive Retention Curve Estimator (MORE) approach. Gray points are 
the fi nal nondominated Pareto set estimated by the MORE approach. 
Only retention data were used in parameter optimization by both 
RETC and MORE.

Table 2. The total number of nondominated PARETO points after 
10,000 function evaluations with the Multiobjective Reten-
tion Curve Estimator (MORE) approach for the silt soil (UN-
SODA no. 4670) as a function of population size 10, 20, 50, 
or 100 and the number of complexes.

Complexes
Nondominated Pareto points

10 20 50 100
––––––––––––––no.––––––––––––––

1 84 148 114 83
2 153 110 88
5 108 98

10 100

Fig. 6. Tradeoffs in the objective space of the Multiobjective Retention 
Curve Estimator (MORE) algorithm for selected soils. Gray points 
represent different parameter sets considered by the MORE ap-
proach. Circles represent the fi nal nondominated Pareto set af-
ter 10,000 function evaluations. The star symbol represents the 
parameter set estimated using RETC and the solid square symbol 
corresponds to the “best” possible parameter set estimated using 
the MORE approach; k is the relative hydraulic conductivity and 
θ is the volumetric water content.



SSSAJ: Volume 72: Number 2  •  March –April 2008 477 

conductivities. Even though unsaturated hydraulic 
conductivity data were not used in either the RETC 
or the MORE approaches, the parameter sets gen-
erated by MORE showed an improved character-
ization of the hydraulic conductivity–pressure head 
relationship. The RMSE for fi tted retention curves 
was almost identical for both approaches, while 
the RMSE for the predicted hydraulic conductiv-
ity function was often much lower for the MORE 
approach than for the RETC approach. Only in 
one case did the RETC approach provide a lower 
RMSE than the MORE approach.

Case 2: Las Cruces Trench Experiment
The RETC and MORE algorithms were used 

to estimate the retention curve parameters by fi t-
ting the retention curve data for the Las Cruces 
Trench experiment. Figure 7 shows the tradeoffs 
between different possible parameter sets in the 
objective space when fi tting the retention curve 
and the unsaturated hydraulic conductivity func-
tion. The RETC solution and the “best” possible solution from 
MORE are also compared in the objective space. Application of 
the RETC code to the retention curve data for the undisturbed 
and disturbed soils (>500 soil samples) resulted in the follow-
ing retention curve parameter values: θs = 0.321, θr = 0.083, 
α = 0.055 cm−1, and n = 1.51. Note that the estimated values 
from the RETC code are the same as those used by Wierenga 
et al. (1991). The MORE algorithm led to the following “best” 
parameter set: θs = 0.323, θr = 0.084, α = 0.038 cm−1, and 
n = 1.65. The MORE solution is considerably different from 
the RETC solution in terms of the estimated parameter values. 
Of particular interest is the value of n, which has a signifi cant 
infl uence on the shape of the unsaturated hydraulic conductiv-
ity. It should be noted that in Fig. 7, while RMSE(θ) compares 
the observed and predicted water contents, RMSE(k) compares 
the apparent observed and predicted relative hydraulic conduc-
tivities (which were calculated from the optimized parameter 
set and observed and predicted water contents). Vrugt et al. 
(2003) suggested that it is desirable 
to have a smooth nondominated 
Pareto set, which is clearly the case 
in Fig. 7. The estimated retention 
curve parameters obtained with the 
RETC and MORE algorithms were 
then used to predict water content 
profi les at two different times for 
which observation data were avail-
able. The modeling was done using 
HYDRUS-1D (Šimunek et al., 
2005). Figure 8 compares predicted 
water content profi les calculated 
with parameters obtained using 
the RETC and MORE approaches 
against observed water contents for 
Days 19 and 35. The parameter set 
estimated using MORE provides a 
better estimate of water contents 
than the parameter set obtained by 

RETC. In other words, it may be concluded that the parameter 
set estimated using MORE is more representative of the fl ow 
processes than the one estimated using RETC. One may also 
observe that the errors in predicted water contents are higher 
for Day 19 than for Day 35. It is interesting to see an improved 
prediction of the wetting front with the MORE parameters. 
A simple error analysis of the predicted water contents was 
performed for Days 19 and 35 (Table 5). The error statistics 
indicate a considerable improvement in predicted water con-
tents using the parameter set from MORE. The errors in pre-
dicted water contents were reduced by 25% using the MORE 
approach. The cumulative distribution functions of the errors 
in predicted water contents for Days 19 and 35 are plotted in 
Fig. 9. Also, the maximum error in predictions was reduced for 
both days from 0.13 to 0.08 by using the soil hydraulic param-
eters from MORE. The cumulative distribution function for 
MORE is initially steeper than the RETC, indicating preva-
lence of smaller deviations between observed and calculated 
water contents for the latter.

Table 3. The fi nal parameter sets (residual and saturated volumetric water contents, 
θr and θs, respectively, and shape parameters α and n) estimated by the RETC 
and Multiobjective Retention Curve Estimator (MORE) approaches for the ran-
domly selected soils from the UNSODA database.

UNSODA 
soil no.

RETC MORE

θr θs α n θr θs α n

cm−1 cm−1

4672 0.000 0.391 0.007 1.15 0.000 0.392 0.007 1.16

2242 0.161 0.548 0.024 4.75 0.140 0.551 0.024 4.09

1400 0.000 0.449 0.004 1.09 0.000 0.448 0.003 1.09

4011 0.057 0.415 0.021 1.70 0.052 0.415 0.022 1.66

1382 0.000 0.344 0.017 1.11 0.000 0.345 0.015 1.12

4661 0.037 0.408 0.102 1.82 0.036 0.408 0.101 1.81

4670 0.000 0.441 0.005 1.41 0.030 0.429 0.004 1.56

1490 0.000 0.399 0.008 1.19 0.007 0.400 0.008 1.20

1361 0.165 0.433 0.004 1.26 0.192 0.430 0.004 1.32

1371 0.208 0.407 0.003 1.38 0.219 0.405 0.002 1.44

1270 0.066 0.169 0.002 1.67 0.064 0.169 0.002 1.63
2740 0.000 0.710 0.107 1.17 0.000 0.707 0.099 1.17

Table 4. Root mean squared errors between observed water contents or unsaturated hydraulic 
conductivities and corresponding fi tted values calculated using the parameter sets estimated 
by the RETC and Multiobjective Retention Curve Estimator (MORE) approaches.

UNSODA no.

RMSE

RETC MORE

Water content
Unsaturated hydraulic 

conductivity
Water content

Unsaturated hydraulic 
conductivity

4672 0.004 3.100 0.004 2.970
2242 0.011 0.536 0.011 0.359

1400 0.003 0.852 0.003 0.816

4011 0.010 0.902 0.010 0.832

1382 0.007 1.297 0.008 1.218

4661 0.008 1.661 0.008 1.652

4670 0.019 0.809 0.021 0.764

1490 0.006 0.815 0.006 0.825

1361 0.005 0.493 0.005 0.409

1371 0.004 0.298 0.004 0.250

1270 0.002 0.717 0.002 0.679
2740 0.031 3.789 0.011 3.590



478 SSSAJ: Volume 72: Number 2  •  March–April 2008

CONCLUSIONS

We have presented a new approach, called MORE, for esti-
mating soil hydraulic parameters when only retention data are 
available. This approach provides the optimal parameter set by 
simultaneously and independently minimizing two objective 
functions that represent water content and relative hydraulic 
conductivity residuals. When observed hydraulic conductivities 
are not available, the MORE approach transforms both pre-
dicted and observed water contents into the hydraulic conduc-
tivity space using Mualem’s pore-size distribution model and also 
optimizes the soil hydraulic parameters in this fi ctitious space. 
By doing so, it accounts for the effect the fi tted retention func-
tion exerts on predicted unsaturated hydraulic conductivities.

We have demonstrated the applicability of the MORE algo-
rithm using two case studies, both of which showed an improve-

ment in descriptions of unsaturated hydraulic conductivities 
and soil water fl ow characterization. The MORE approach is a 
promising approach for improving the estimation of soil hydrau-
lic parameters, despite some minor drawbacks. For example, 
MORE tends to be slower than RETC due to the higher com-
putational demand.

The performance of both approaches was also compared for 
the van Genuchten–Burdine model and for conditions of differ-
ent data availability. It was found that when both retention and 
hydraulic conductivity data are available, the performance of RETC 
and MORE is similar. In scenarios where only retention data are 
available (which is the most common case in modeling studies), the 
MORE approach estimates the soil hydraulic parameters better than 
RETC since, in addition to retention data, it also considers their 
transformation into the hydraulic conductivity space.

During the development of MORE, a number of philo-
sophical questions were encountered that may be of interest for 
future research. One of the key issues was the uniqueness of 
the soil hydraulic parameters and its dependence on the type 
of modeling problem. In modeling scenarios involving mul-
tiple components, such as movement of water, solute, and heat, 
it would be interesting to analyze whether multiple objectives 
representing different components need to be considered dur-
ing the parameter estimation. For example, in a coupled water 

Fig. 7. Evolution of the tradeoff curve in the objective space of the 
Multiobjective Retention Curve Estimator (MORE) algorithm for 
the Las Cruces trench experiment. Gray points represent different 
parameter sets considered by the MORE approach. Circles rep-
resent the fi nal nondominated Pareto set after 10,000 function 
evaluations. The solid square symbol corresponds to the “best” 
possible parameter set estimated using the MORE approach; k is 
the relative hydraulic conductivity and θ is the volumetric water 
content. The solution set estimated by RETC is less optimal than 
the MORE solution and is beyond the limits of the plot.

Fig. 8. Water content measured and predicted using HYDRUS-1D with 
the soil hydraulic parameters optimized by the RETC and Multiob-
jective Retention Curve Estimator (MORE) approaches for (a) Day 
19 and (b) Day 35 for the Las Cruces trench experiment.
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Fig. 9. Cumulative distribution functions for absolute errors in pre-
dicted water contents for (a) Day 19 and (b) Day 35 for the Las 

Cruces trench experiment.

Table 5. Summary statistics (RMSE and mean absolute error, MAE) 
of errors in water contents predicted by the RETC and Multi-
objective Retention Curve Estimator (MORE) approaches at 
different times for the Las Cruces trench experiment.

Parameter
RMSE MAE

RETC MORE RETC MORE

Water content, Day 19 0.040 0.033 0.030 0.026

Water content, Day 35 0.039 0.030 0.029 0.022
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and heat transport modeling (such as Saito et al., 2006), the 
third objective representing the thermal conductivity may need 
to be included in MORE. The MORE approach has been ini-
tially written in the MATLAB environment (The MathWorks, 
1999) and will be integrated into the RETC code in the near 
future. Interested readers may contact the authors for using the 
MORE code.
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