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T«�Ù� ®Ý increasing evidence that fl ow and transport pro-

cesses in soils often cannot be described using classical 

models that assume uniform fl ow and transport (e.g., Nkedi-

Kizza et al., 1984; Hendrickx and Flury, 2001; Pot et al., 2005; 

Köhne et al., 2006). Many laboratory and fi eld experiments have 

demonstrated the presence of nonequilibrium fl ow and transport 

conditions in soils. Nonequilibrium water fl ow and solute trans-

port in the unsaturated zone can be simulated at present by means 

of a large number of models of various degrees of complexity and 

dimensionality. Modeling approaches range from relatively simple 

analytical solutions for solute transport (e.g., van Genuchten, 

1981; Toride et al., 1993) to complex numerical codes (e.g., 

Šimůnek et al., 2005; Jacques and Šimůnek, 2005). While such 

programs as STANMOD (Šimůnek et al., 1999) that implement 

analytical solutions undoubtedly will remain useful for simpli-

fi ed analyses of solute transport during steady-state fl ow (e.g., for 

analyzing solute breakthrough curves measured in the labora-

tory, or for initial or approximate analysis of fi eld-scale transport 

problems), numerical models are now increasingly being used 

since they can be applied more readily than analytical models 

to realistic laboratory and fi eld problems. Th e use of numerical 

models has been further popularized during the last 20 yr or so 

because of the appearance of appropriate software packages in 

both the public and commercial domains and the development 

of increasingly sophisticated graphics-based interfaces that can 

simplify their use tremendously.

Attempts to describe nonequilibrium transport have tradi-

tionally been developed along two lines: physical and chemical 

nonequilibrium models (van Genuchten and Cleary, 1979). 

While physical nonequilibrium models assume that nonequilib-

rium fl ow or transport is caused by physical factors (e.g., van 

Genuchten and Wierenga, 1976), chemical nonequilibrium 

models assume that chemical factors are the cause of nonequi-

librium transport (e.g., Selim et al., 1976; van Genuchten and 

Wagenet, 1989). Only a few researchers (e.g., Brusseau et al., 

1989; Selim et al., 1999; Pot et al., 2005) have combined the 

physical and chemical nonequilibrium approaches to account 

for both possible causes of nonequilibrium, thus improving the 

description of solute transport in soils.

Over the years, several publicly available numerical codes 

have been developed that consider a number of options for 

simulating nonequilibrium water fl ow and solute transport (e.g., 

Pruess, 1991; Jarvis, 1994; van Dam et al., 1997). Unique to 

the HYDRUS-1D software package (Šimůnek et al., 2005, 

2008) is the wide range of approaches that can be selected for 
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Accurate process-based modeling of nonequilibrium water fl ow and solute transport remains a major challenge in 
vadose zone hydrology. Our objecƟ ve here was to describe a wide range of nonequilibrium fl ow and transport model-
ing approaches available within the latest version of the HYDRUS-1D soŌ ware package. The formulaƟ ons range from 
classical models simulaƟ ng uniform fl ow and transport, to relaƟ vely tradiƟ onal mobile-immobile water physical and 
two-site chemical nonequilibrium models, to more complex dual-permeability models that consider both physical and 
chemical nonequilibrium. The models are divided into three groups: (i) physical nonequilibrium transport models, (ii) 
chemical nonequilibrium transport models, and (iii) physical and chemical nonequilibrium transport models. Physical 
nonequilibrium models include the Mobile-Immobile Water Model, Dual-Porosity Model, Dual-Permeability Model, 
and Dual-Permeability Model with Immobile Water. Chemical nonequilibrium models include the One KineƟ c Site 
Model, the Two-Site Model, and the Two KineƟ c Sites Model. Finally, physical and chemical nonequilibrium transport 
models include the Dual-Porosity Model with One KineƟ c Site and the Dual-Permeability Model with Two-Site SorpƟ on. 
Example calculaƟ ons using the diff erent types of nonequilibrium models are presented. ImplicaƟ ons for the formula-
Ɵ on of the inverse problem are also discussed. The many diff erent models that have been developed over the years for 
nonequilibrium fl ow and transport refl ect the mulƟ tude of oŌ en simultaneous processes that can govern nonequilib-
rium and preferenƟ al fl ow at the fi eld scale.



www.vadosezonejournal.org · Vol. 7, No. 2, May 2008 783

simulating nonequilibrium processes. Our objective here is to 

describe the large number of physical and chemical nonequilib-

rium approaches available in the latest version of HYDRUS-1D 

(Šimůnek et al., 2008). Th e models range from classical models 

simulating uniform fl ow and transport, to traditional dual-

porosity physical and two-site chemical nonequilibrium models, 

to complex dual-permeability models that consider both physi-

cal and chemical nonequilibrium. Since our focus is mainly 

on solute transport and since the nonequilibrium models for 

water fl ow have been reviewed relatively recently (Šimůnek 

et al., 2003), we only very briefl y review here the governing 

water fl ow equations to defi ne variables later used in the solute 

transport equations. We will present several examples calcu-

lated with the diff erent nonequilibrium approaches to show 

the eff ect of various transport and reaction parameters, and to 

demonstrate the consequences of increased complexity in the 

models. Implications for the formulation of the inverse problem 

are also discussed.

Overview of Conceptual Models
A large number of alternative physical and chemical non-

equilibrium models can be formulated. Figures 1 and 2 show 

schematics of a range of possible physical equilibrium and non-

equilibrium models for water fl ow and solute transport. Figure 

3 shows similar schematics of various chemical nonequilib-

rium models that have been incorporated into HYDRUS-1D. 

Traditional fl ow and transport models are 

based on the classical description of uniform 

fl ow and transport in soils (the Uniform Flow 

Model in Fig. 1a and 2a). In this model, the 

porous medium is viewed as a collection of 

impermeable soil particles (or of impermeable 

soil aggregates or rock fragments), separated 

by pores or fractures through which fl ow 

and transport takes place. Variably saturated 

water fl ow through such a porous system is 

usually described using the Richards equa-

tion and solute transport using the classical 

advection–dispersion equation. Defi nitions 

of various water contents and concentrations used in the diff erent 

models are given in the Appendix.

A hierarchical set of physical nonequilibrium flow and 

transport models can be derived from the Uniform Flow Model. 

Th e equilibrium fl ow and transport model can be modifi ed by 

assuming that the soil particles or aggregates have their own 

microporosity and that water present in these micropores is 

immobile (the Mobile–Immobile Water Model in Fig. 1b and 

2b). While the water content in the micropore domain is con-

stant in time, dissolved solutes can move into and out of this 

immobile domain by molecular diff usion (e.g., van Genuchten 

and Wierenga, 1976). Th is simple modifi cation leads to physical 

nonequilibrium solute transport while still maintaining uniform 

water fl ow.

Th e mobile–immobile water model can be further expanded 

by assuming that both water and solute can move into and out 

of the immobile domain (Šimůnek et al., 2003), leading to the 

Dual-Porosity Model in Fig. 1c and 2c. While the water content 

inside of the soil particles or aggregates is assumed to be con-

stant in the Mobile–Immobile Water Model, it can vary in the 

Dual-Porosity Model since the immobile domain is now allowed 

to dry out or rewet during drying and wetting processes. Water 

fl ow into and out of the immobile zone is usually described using 

a fi rst-order rate process. Solute can move into the immobile 

domain of the Dual-Porosity Model by both molecular diff usion 

and advection with fl owing (exchanging) water. Since water can 

F®¦. 1. Conceptual physical nonequilibrium models for water fl ow and solute transport. In the plots, θ is the water content, θmo and θim in 
(b) and (c) are water contents of the mobile and immobile fl ow regions, respecƟ vely; θM and θF in (d) are water contents of the matrix and 
macropore (fracture) regions, respecƟ vely, and θM,mo, θM,im, and θF in (e) are water contents of the mobile and immobile fl ow regions of the 
matrix domain, and in the macropore (fracture) domain, respecƟ vely; c are concentraƟ ons of corresponding regions, with subscripts having 
the same meaning as for water contents, while S is the total solute content of the liquid phase.

F®¦. 2. Conceptual physical nonequilibrium models for water fl ow and solute transport.
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move from the main pore system into the soil aggregates and vice 

versa, but not directly between the aggregates themselves, water 

in the aggregates can be considered immobile from a larger scale 

point of view.

Th e limitation of water not being allowed to move directly 

between aggregates is overcome in a Dual-Permeability Model 

(e.g., Gerke and van Genuchten, 1993a,b). Water and solutes 

in such models also move directly between soil aggregates, as 

shown in Fig. 1d and 2d. Dual-permeability models assume that 

the porous medium consists of two overlapping pore domains, 

with water fl owing relatively fast in one domain (often called the 

macropore, fracture, or interporosity domain) when close to full 

saturation, and slow in the other domain (often referred to as 

the micropore, matrix, or intraporosity domain). Like the Dual-

Porosity Model, the Dual-Permeability Model allows the transfer 

of both water and solutes between the two pore regions.

Finally, the Dual-Permeability Model can be further refi ned 

by assuming that inside of the matrix domain an additional 

immobile region exists into which solute can move by molecular 

diff usion (the Dual-Permeability Model with MIM in Fig. 1e 

and 2e).

Chemical nonequilibrium models implemented into 

HYDRUS-1D are schematically shown in Fig. 3. Th e simplest 

chemical nonequilibrium model assumes that sorption is a 

kinetic process (the One Kinetic Site Model in Fig. 3a), usually 

described by means of a fi rst-order rate equation. Th is model can 

be expanded into a Two-Site Sorption model by assuming that 

the sorption sites can be divided into two fractions (e.g., Selim et 

al., 1976; van Genuchten and Wagenet, 1989). Th e simplest two-

site sorption model arises when sorption on one fraction of the 

sorption sites is assumed to be instantaneous, while kinetic sorp-

tion occurs on the second fraction (Two-Site Model in Fig. 3b). 

Th is model can be further expanded by assuming that sorption 

on both fractions is kinetic and proceeds at diff erent rates (the 

Two Kinetic Sites Model in Fig. 3c). Th e Two Kinetic Sites Model 

reduces to the Two-Site Model when one rate is so high that it 

can be considered instantaneous, to the One Kinetic Site Model 

when both rates are the same, or to the chemical equilibrium 

model when both rates are so high that they can be considered 

instantaneous.

Th e diff erent models discussed thus far involve either physi-

cal or chemical nonequilibrium. Many transport situations will 

involve both types of nonequilibrium. One obvious example 

occurs during transport through an aggregated laboratory soil 

column involving steady-state water fl ow (either fully saturated 

or unsaturated) when both a conservative tracer (no sorption) 

and a reactive solute are used. Th e collected tracer breakthrough 

curve may then display typical features refl ecting nonequilib-

rium, such as a relatively rapid initial breakthrough followed by 

extensive tailing. Since the tracer is nonreactive, this nonequi-

librium must be caused by physical factors. When the reactive 

solute is additionally sorbed kinetically to the solid phase (an 

indication of a chemical nonequilibrium), the use of a model is 

required that simultaneously considers both physical and chemi-

cal nonequilibrium.

Th e resulting combined physical and chemical nonequi-

librium approach may be simulated with HYDRUS-1D using 

the Dual-Porosity Model with One Kinetic Site (Fig. 3d). Th is 

model considers water fl ow and solute transport in a dual-poros-

ity system (or a medium with mobile–immobile water) while 

assuming that sorption in the immobile zone is instantaneous. 

Following the two-site kinetic sorption concept, however, the 

sorption sites in contact with the mobile zone are now divided 

into two fractions, subject to either instantaneous or kinetic 

sorption. Since the residence time of solutes in the immobile 

domain is relatively large, equilibrium probably exists between 

the solution and the sorption complex here, in which case there 

is no need to consider kinetic sorption in the immobile domain. 

Th e model, on the other hand, assumes the presence of kinetic 

sorption sites in contact with the mobile zone since water can 

move relatively fast in the macropore domain and thus prevent 

chemical equilibrium.

Finally, chemical nonequilibrium can also be combined with 

the Dual-Permeability Model. Th is last nonequilibrium option 

implemented into HYDRUS-1D (the Dual-Permeability Model 

with Two-Site Sorption in Fig. 3e) assumes that equilibrium and 

kinetic sites exist in both the macropore (fracture) and micropore 

(matrix) domains.

A complete list of the diff erent models summarized here, and 

described in more detail below, is given in Table 1, including the 

specifi c equations used for the water fl ow and solute transport 

models. Th e table additionally lists the various parameters, and 

their total number, that will appear in any particular solute trans-

port model when used for steady-state fl ow conditions.

F®¦. 3. Conceptual chemical nonequilibrium models for reacƟ ve solute transport. In the plots, θ is the water content, θmo and θim in (d) are 
water contents of the mobile and immobile fl ow regions, respecƟ vely; θM and θF in (e) are water contents of the matrix and macropore (frac-
ture) regions, respecƟ vely; c are concentraƟ ons of the corresponding regions, se are sorbed concentraƟ ons in equilibrium with the liquid 
concentraƟ ons of the corresponding regions, and sk are kineƟ cally sorbed solute concentraƟ ons of the corresponding regions.
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Specifi c Models for Water Flow

We will briefl y review the governing equations for both equi-

librium (uniform) water fl ow and for nonequilibrium fl ow in 

dual-porosity and dual-permeability systems. Subsequently we 

will describe various solute transport models that consider either 

physical or chemical nonequilibrium and models that consider 

simultaneously both physical and chemical nonequilibrium.

Uniform Flow Model

Numerical models for water fl ow in soils (Fig. 1a and 2a) are 

usually based on the following equation:

( )
( ) 1

h h
K h S

t z z

⎡ ⎤⎛ ⎞∂θ ∂ ∂ ⎟⎜⎢ ⎥= + −⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠∂ ∂ ∂⎣ ⎦
 [1]

or its extensions (e.g., for two- and three-dimensional systems). In 

Eq. [1], often referred to as the Richards equation, z is the vertical 

coordinate positive upward [L], t is time [T], h is the pressure 

head [L], θ is the water content [L3 L−3], S is a sink term rep-

resenting root water uptake or some other source or sink [T−1], 

and K(h) is the unsaturated hydraulic conductivity function, 

often given as the product of the relative hydraulic conductivity, 

Kr (dimensionless), and the saturated hydraulic conductivity, Ks 

[L T−1]. Solutions of the Richards Eq. [1] require knowledge of 

the unsaturated soil hydraulic functions made up of the soil water 

retention curve, θ(h), which describes the relationship between 

the water content θ and the pressure head h, and the unsaturated 

hydraulic conductivity function, K(h), which defi nes the hydrau-

lic conductivity K as a function of h or θ. HYDRUS-1D considers 

both relatively traditional models (Brooks and Corey, 1964; van 

Genuchten, 1980) for the hydraulic functions, as well as more 

recent alternative single- (e.g., Kosugi, 1996) and dual-porosity 

(Durner, 1994) models.

Dual-Porosity Model

Dual-porosity models (Fig. 1c and 2c) assume that water 

fl ow is restricted to the macropores (or interaggregate pores and 

fractures), and that water in the matrix (intraaggregate pores 

or the rock matrix) does not move at all. Th is conceptualiza-

tion leads to two-region type fl ow and transport models (van 

Genuchten and Wierenga, 1976) that partition the liquid phase 

into mobile (fl owing, interaggregate), θmo, and immobile (stag-

nant, intraaggregate), θim, regions [L3 L−3]:

mo im  =  θ θ + θ  [2]

Th e dual-porosity formulation for water fl ow can be based on a 

mixed formulation of the Richards Eq. [1] to describe water fl ow 

in the macropores (the preferential fl ow pathways) and a mass 

balance equation to describe moisture dynamics in the matrix as 

follows (Šimůnek et al., 2003):

( )

( ) ( )

( )
( )

mo mo

mo
mo mo mo w

im im
im im w

1
z

h

t

h
K h S h

z

h
S h

t

∂θ
∂
⎡ ⎤⎛ ⎞∂ ∂ ⎟⎜⎢ ⎥= + − −Γ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠∂ ∂⎣ ⎦

∂θ
=− +Γ

∂

 [3]

where Smo and Sim are sink terms for the mobile and immo-

bile regions, respectively [T−1], and Γw is the transfer rate for 

water between the inter- and intraaggregate pore domains [T−1]. 

Šimůnek et al. (2003) and Köhne et al. (2004) discussed diff erent 

formulations that can be used to evaluate the mass transfer rate Γw.

Dual-Permeability Model

Diff erent dual-permeability approaches (Fig. 1d, 1e, 2d, and 

2e) may be used to describe fl ow and transport in structured 

media. While some models invoke similar equations for fl ow in 

the fracture and matrix regions, others use diff erent formula-

tions for the two regions. A typical example of the fi rst approach, 

implemented in HYDRUS-1D, is the work of Gerke and van 

Genuchten (1993a,b, 1996), who applied the Richards equa-

tion to each of the two pore regions. Th e fl ow equations for the 

macropore (fracture) (subscript f ) and matrix (subscript m) pore 

systems in their approach are given by

T��½� 1. Equilibrium and nonequilibrium models in HYDRUS-1D, their governing equaƟ ons, and the number of solute transport parameters 
for each model under steady-state water fl ow condiƟ ons.

Model name
Water fl ow 
equaƟ on(s)

Solute transport 
equaƟ on(s)

At steady-state water fl ow

No. of 
parameters

Parameters

Equilibrium model
Uniform fl ow and transport [1] [6] 4 θ, q, λ, Kd

Physical nonequilibrium models
Mobile–immobile water model [1] [2], [11] 7 θmo, θ im, qmo, λmo, Kd, fmo, ωmim
Dual-porosity model [2], [3] [11] 7 θmo, θ im, qmo, λmo, Kd, fmo, ωmim
Dual-permeability model [4], [5] [12] 9 θm, θ f, qm, qf, λm, λf, Kdm, Kdf, ωdp
Dual-permeability model with immobile water [4], [5] [13], [14] 12 θm,m, θ im,m, θ f, qm, qf, λm, λf, Kdm, Kdf, fm, ωdp, ωpdm

Chemical nonequilibrium models
One kineƟ c site model [1] [6], [15] 5 θ, q, λ, Kd, αk
Two-site model [1] [16], [17] 6 θ, q, λ, Kd, fe, αk
Two kineƟ c sites model [1] [18] 7 θ, q, λ, ka1, kd1, ka2, kd2

Physical and chemical nonequilibrium models
Dual-porosity model with one kineƟ c site [2], [3] [2], [20], [21] 9 θmo, θ im, qmo, λmo, Kd, fmo, fem, ωph, αch
Dual-permeability model with two-site 

sorpƟ on
[4], [5] [22] 13 θm, θ f, qm, qf, λm, λf, Kdm, Kdf, fm, ff, ωdp, αch,m, αch,f
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( )
( ) ( )

( )

( ) ( )

f f f w
f f f f

m m

m w
m m m m

1
t

t

1
1

h h
K h S h

z z w

h

h
K h S h

z z w

⎡ ⎤∂θ ⎛ ⎞∂ ∂ Γ⎟⎜⎢ ⎥= + − −⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠∂ ∂ ∂⎣ ⎦

∂θ
∂
⎡ ⎤⎛ ⎞∂ ∂ Γ⎟⎜⎢ ⎥= + − +⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠∂ ∂ −⎣ ⎦

 [4]

where w is the ratio of the volumes of the macropore or fracture 

domain and the total soil system (dimensionless). Th is approach 

is relatively complicated in that the model requires character-

ization of water retention and hydraulic conductivity functions 

(potentially of diff erent form) for both pore regions, as well as a 

hydraulic conductivity function of the fracture–matrix interface. 

Note that the water contents, θf and θm in Eq. [4], have diff erent 

meanings than in Eq. [3], where they represented water contents 

of the total pore space (i.e., θ  = θmo + θim), while here they refer 

to water contents of the two separate (fracture or matrix) pore 

domains such that

( )F M f m1w wθ= θ + θ = θ + − θ   [5]

Hence, lowercase subscripts in the dual-permeability model refer 

to the local (pore-region) scale, while uppercase subscripts refer 

to the global (total soil medium) scale.

Specifi c Models for Solute Transport

Uniform Transport

Solute transport in numerical models is usually described 

using the relatively standard advection–dispersion equation (Fig. 

1a and 2a) of the form

qcc s c
= D

t t z z z

⎛ ⎞ ∂∂θ ∂ ∂ ∂ ⎟⎜+ρ θ − −φ⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂ ∂
 [6]

or various extensions thereof (e.g., for two- and three-dimen-

sional systems, or for multiple phases or components). In Eq. 

[6], c is the solution concentration [M L−3], s is the sorbed con-

centration [M M−1], D is the dispersion coeffi  cient accounting 

for both molecular diff usion and hydrodynamic dispersion [L2 

T−1], q is the volumetric fl uid fl ux density [L T−1] evaluated 

using the Darcy–Buckingham law, and φ is a sink–source term 

that accounts for various zero- and fi rst-order or other reactions 

[M L−3 T−1].

While HYDRUS-1D considers a general nonlinear sorption 

equation that can be simplifi ed into a Langmuir or Freundlich 

isotherm (Šimůnek et al., 2005), for simplicity we assume here 

only linear adsorption of the form

ds K c=  [7]

where Kd is the distribution coeffi  cient [L3 M−1]. Linear sorp-

tion leads to the following defi nition of the retardation factor R 

(dimensionless):

d1
K

R
ρ

= +
θ

 [8]

In our examples below we will be using Eq. [7] for linear sorp-

tion and applying the resulting defi nition of R to all of the 

liquid domains involved (e.g., the total liquid phase, the mobile 

and immobile regions, or the matrix and macropore domains) 

with their appropriate parameters. Although considered in 

HYDRUS-1D, the eff ect of molecular diff usion will be neglected 

in the various examples. Th e dispersion coeffi  cient D accounting 

only for hydrodynamic dispersion [L2 T−1] is thus defi ned as

q
D v= λ = λ

θ
 [9]

where λ is the dispersivity [L] and v the average pore velocity [L 

T−1]. Th e same defi nition of the dispersion coeffi  cient will be 

used for all mobile phases. HYDRUS-1D additionally considers 

molecular diff usion for transport in the gaseous phase, which will 

not be discussed here either. Finally, in the examples to follow we 

will use the time T needed to reach one pore volume of effl  uent. 

Th is time is given by

L
T

q

θ
=  [10]

where L is some distance (e.g., column length) within the trans-

port domain being considered. For the physical nonequilibrium 

models discussed below, the pore volume for diff erent domains is 

defi ned using corresponding water contents and fl uxes.

Physical Nonequilibrium Transport Models

Mobile–Immobile Water and Dual-Porosity Models

Th e concept of two-region, dual-porosity type solute trans-

port (Fig. 1b, 1c, 2b, and 2c) was implemented already in earlier 

versions (1.0 and 2.0) of HYDRUS-1D to permit consider-

ation of physical nonequilibrium transport. While the physical 

nonequilibrium transport model in the earlier versions was 

combined only with uniform water fl ow Eq. [1], Version 3.0 of 

HYDRUS-1D was expanded to also consider the dual-porosity 

water fl ow model Eq. [3] with a transient immobile water content. 

In both implementations, the governing solute transport equa-

tions are as follows:

mo mo mo
mo

mo momo
mo mo mo s

c s
f

t t

q cc
D

z z z

∂θ ∂
+ ρ =

∂ ∂
⎛ ⎞ ∂∂ ∂ ⎟⎜θ − −φ −Γ⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂

 [11a]

( )im im im
mo s im1

c s
f

t t

∂θ ∂
+ − ρ = Γ −φ

∂ ∂  [11b]

( )s mim mo im w *c c cΓ = ω − +Γ
 [11c]

in which solute exchange between the two liquid regions is mod-

eled as the sum of an apparent fi rst-order diff usion process and 

advective transport (where applicable). In Eq. [11], cmo and cim 

are concentrations of the mobile and immobile regions [M L−3], 

respectively; smo and sim are sorbed concentrations of the mobile 

and immobile regions [M M−1], respectively; Dmo is the dis-

persion coeffi  cient in the mobile region [L2 T−1], qmo is the 

volumetric fl uid fl ux density in the mobile region [L T−1], φmo 

and φim are sink–source terms that account for various zero- and 
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fi rst-order or other reactions in both regions [M L−3 T−1]; fmo 

is the fraction of sorption sites in contact with the mobile water 

content (dimensionless), ωmim is the mass transfer coeffi  cient 

[T−1], and Γs is the mass transfer term for solutes between the 

mobile and immobile regions [M L−3 T−1]. Eauation [11a] 

describes solute transport in the mobile (macropore) zone, Eq. 

[11b] is a mass balance for the immobile (micropore) domain, 

while Eq. [11c] (Γs) describes the rate of mass transfer between 

the mobile and immobile domains. Th e second (advective) term 

of Γs in Eq. [11] is equal to zero for the Mobile–Immobile Model 

since that model does not consider water fl ow between the two 

regions. In the Dual-Porosity Model, c* is equal to cmo for Γw > 

0 and cim for Γw < 0.

Dual-Permeability Model

Analogous to Eq. [4], the dual-permeability formulation for 

solute transport is based on advection–dispersion type equations 

for transport in both the fracture and matrix regions as follows 

(Gerke and van Genuchten, 1993a,b) (Fig. 1d and 2d):

f ff f f f s
f f f

q cc s c
D

t t z z z w

⎛ ⎞ ∂∂θ ∂ ∂ ∂ Γ⎟⎜+ρ = θ − −φ −⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂ ∂  [12a]

m m m

m mm s
m m m

1

c s

t t

q cc
D

z z z w

∂θ ∂
+ρ =

∂ ∂
⎛ ⎞ ∂∂ ∂ Γ⎟⎜θ − −φ +⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ −

 [12b]

( ) ( )s dp m f m w1 *w c c cΓ = ω − θ − +Γ  [12c]

Th e variables in Eq. [12] have similar meanings as in Eq. [11], 

except that they refer now to two overlapping domains, i.e., the 

matrix (subscript m) and fracture (subscript f ) domains. Equation 

[12a] describes solute transport in the fracture domain, Eq. [12b] 

transport in the matrix domain, and Eq. [12c] advective–dis-

persive mass transfer between the fracture and matrix domains. 

Equation [12] assumes complete advective–dispersive transport 

descriptions for both the fractures and the matrix. Van Genuchten 

and Dalton (1986) and Gerke and van Genuchten (1996), among 

others, discussed possible expressions for the fi rst-order solute 

mass transfer coeffi  cient, ωdp [T−1].

Dual-Permeability Model with Immobile Water

Th e Dual-Permeability Model with Immobile Water (Fig. 1e 

and 2e) assumes that the liquid phase of the matrix can be further 

partitioned into mobile (fl owing), θm,m [L3 L−3], and immobile 

(stagnant), θim,m [L3 L−3], regions as follows:

m m,m im,mθ = θ + θ  [13]

where θm is the volumetric water content of the matrix pore 

system [L3 L−3]. Th e governing advection–dispersion equation 

for transport in the matrix region (Eq. [12b]) is then replaced 

with the modifi ed equations (Eq. [11]) (e.g., Pot et al., 2005) 

to yield

f ff f f f s
f f f f

q cc s c
D

t t z z z w

⎛ ⎞ ∂∂θ ∂ ∂ ∂ Γ⎟⎜+ρ = θ − −φ −⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂ ∂  [14a]
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1
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t t
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D
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∂θ ∂
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∂ ∂
⎛ ⎞∂ ∂∂ Γ⎟⎜θ − −φ + −Γ⎟⎜ ⎟⎟⎜⎝ ⎠∂ ∂ ∂ −

 

[14b]

( )im,m im,m im,m
m m s im,m1 *

c s
f

t t

∂θ ∂
+ρ − = Γ −φ

∂ ∂
 [14c]

( ) ( )s dp m f m,m w1 *w c c cΓ = ω − θ − +Γ  [14d]

( )s dpm m,m im,m* c cΓ = ω −  [14e]

where cim,m and cm,m are solute concentrations in the immobile 

and mobile zones of the matrix region [M L−3], respectively; 

φm,m and φim,m represent various reactions in the mobile and 

immobile parts of the matrix [M L−3 T−1], respectively; fm is 

again the fraction of sorption sites in contact with the mobile 

region of the matrix (dimensionless), ωdpm is the mass transfer 

coeffi  cient between mobile and immobile zones of the matrix 

region [T−1], and Γs* is the mass transfer term for solutes 

between the mobile and immobile regions of the matrix domain 

[M L−3 T−1]. Equation [14a] now describes solute transport in 

the fracture domain, Eq. [14b] transport in the mobile zone of 

the matrix domain, Eq. [14c] is a mass balance for the immobile 

zone of the matrix domain, Eq. [14d] describes mass trans-

fer between the fracture and matrix domains, while Eq. [14e] 

describes mass transfer between the mobile and immobile zones 

within the matrix domain.

Chemical Nonequilibrium Transport Models
One KineƟ c Site Model

When sorption in the Uniform Transport Model is consid-

ered (Fig. 3a) to be kinetic, Eq. [6] needs to be supplemented 

with an equation describing the kinetics of the sorption process. 

Th is is usually done by assuming a fi rst-order process as follows:

( )

k

k
k k

k e k

k
e d

qcc s c
D

t t z z z

s
s s

t

s K c

⎛ ⎞ ∂∂θ ∂ ∂ ∂ ⎟⎜+ρ = θ − −φ⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂ ∂

∂
ρ =α ρ − −φ
∂
=

 [15]

where k
es  is the sorbed concentration that would be reached at 

equilibrium with the liquid-phase concentration [M M−1], sk is 

the sorbed concentration of the kinetic sorption sites [M M−1], 

αk is a fi rst-order rate constant describing the kinetics of the 

sorption process [T−1], and φk represents a sink–source term 

that accounts for various zero- and fi rst-order or other reactions 

at the kinetic sorption sites [M L−3 T−1].

Two-Site Model

Similarly to the mobile–immobile water concept, the con-

cept of two-site sorption (Selim et al., 1976; van Genuchten and 

Wagenet, 1989) (Fig. 3b) was implemented already in Versions 

1.0 and 2.0 of HYDRUS-1D to permit consideration of nonequi-

librium adsorption–desorption reactions. Th e two-site sorption 
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concept assumes that the sorption sites can be divided into two 

fractions:

e ks s s= +  [16]

Sorption se [M M−1], on one fraction of the sites (Type 1 sites) is 

assumed to be instantaneous, while sorption sk [M M−1], on the 

remaining (Type 2) sites is considered to be a fi rst-order kinetic 

rate process. Th e system of equations describing the Two-Site 

Model is given by:

e k qcc s s c
D

t t t z z z

⎛ ⎞ ∂∂θ ∂ ∂ ∂ ∂ ⎟⎜+ρ +ρ = θ − −φ⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂
 [17a]

e
e ds f K c=  [17b]

( )
k

k k
k e k

s
s s

t

∂
ρ =α ρ − −φ
∂

 [17c]

( )k
e e d1s f K c= −  [17d]

where fe is the fraction of exchange sites assumed to be in 

equilibrium with the liquid phase (dimensionless), and αk is a 

fi rst-order rate constant [T−1]. Equation [17a] describes solute 

transport in the total system, Eq. [17b] equilibrium sorption onto 

the instantaneous sorption sites, Eq. [17c] is a mass balance of 

the kinetic sorption sites (van Genuchten and Wagenet, 1989), 

while Eq. [17d] represents the sorbed concentration of the kinetic 

sites when equilibrium would be reached with the liquid-phase 

concentration.

Two KineƟ c Sites Model

To facilitate simulations of the transport of colloids or 

microorganisms (such as viruses and bacteria), Version 3.0 of 

HYDRUS-1D also implemented a Two Kinetic Sites Model (Fig. 

3c) using the attachment–detachment approach:

k k
1 2
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a1 d1 1 k1

k
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a2 d2 2 k2
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s
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∂
ρ = θ − ρ −φ
∂
∂

ρ = θ − ρ −φ
∂

 [18]

where k
1s  and k

2s  are sorbed concentrations of the fi rst and 

second fractions of kinetic sorption sites [M M−1], respectively; 

ka1 and ka2 are attachment coeffi  cients for the fi rst and second 

fractions of kinetic sorption sites [T−1], respectively; kd1 and 

kd2 are detachment coeffi  cients for the fi rst and second fractions 

of kinetic sorption sites [T−1], respectively; and φk1 and φk2 

represent sink–source terms for the fi rst and second fractions 

of kinetic sorption sites [M L−3 T−1], respectively. Note that 

the Two Kinetic Sites Model can be used (and often is used) to 

describe diff erent processes. While the fi rst kinetic process could 

be chemical attachment, the second kinetic process could repre-

sent physical straining (e.g., Bradford et al., 2004; Gargiulo et al., 

2007, 2008). Note that in Eq. [18] we do not give the nonlinear 

blocking coeffi  cients accounting for, for example, Langmuirian 

blocking to attachment sites or depth-dependent straining that 

are considered in HYDRUS-1D (e.g., Bradford et al., 2004).

It is easily shown that the formulation based on attach-

ment–detachment coeffi  cients is mathematically identical to 

the formulation using fi rst-order mass transfer coeffi  cients. For 

example, by comparing Eq. [15] with [18] we have

( )
k

k k
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=α
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 [19]

Physical and Chemical Nonequilibrium Transport Models
Dual-Porosity Model with One KineƟ c Site

Th is model (Fig. 3d) is similar to the Dual-Porosity Model 

(Eq. [2]) in that the porous medium is divided into mobile and 

immobile domains such that θ  = θmo + θim. Th e current model, 

however, additionally divides the sorption sites in contact with 

the mobile zone, similarly to the Two-Site Model (Eq. [16]), into 

two fractions involving instantaneous and kinetic sorption such 

that the total sorption concentration at equilibrium is given by

( )

( ) ( )
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= − +

+ −
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 [20]

where e
mos  is the sorbed concentration in equilibrium with the 

liquid-phase concentration of the mobile region of the Dual-

Porosity Model [M M−1], k
mo,es  is the sorbed concentration of 

the kinetic sites in contact with the mobile region of the Dual-

Porosity Model when at equilibrium [M M−1], fmo is the fraction 

of sorption sites in contact with mobile water (the remainder is in 

contact with immobile water), and fem is the fraction of sorption 

sites in equilibrium with the mobile liquid phase (the remaining 

kinetic sites are also in contact with the mobile liquid phase). Th e 

complete Dual-Porosity Model with One Kinetic Site is described 

using the following equations:
e

mo mo mo
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( )s1 ph mo imc cΓ = ω −
 [21d]



www.vadosezonejournal.org · Vol. 7, No. 2, May 2008 789

( )k k
s2 ch mo,e mos sΓ =α ρ −  [21e]

e
mo em d mos f K c=  [21f ]

( )k
mo,e em d mo1s f K c= −  [21g]

where ωph and αch are fi rst-order rate constants [T−1] account-

ing for physical and chemical rate processes, respectively; Γs1 is 

the mass transfer term for solute exchange between the mobile 

and immobile regions [M L−3 T−1]; Γs2 represents mass transfer 

to the kinetic sorption sites in the mobile region [M L−3 T−1]; 

and φmo, φim, and φmo,k represent sink–source terms for the 

equilibrium phases in the mobile zone, the immobile zone, and 

the kinetic sorption sites [M L−3 T−1], respectively. Equation 

[21a] describes transport in the mobile phase, Eq. [21b] is a mass 

balance for the immobile phase, and Eq. [21c] a mass balance 

for the kinetic sorption sites in contact with the mobile zone. 

Equations [21d] and [21e] describe mass transfer rates between 

the mobile and immobile zones and to the kinetic sorption sites, 

respectively, while Eq. [21f ] and [21g] represent sorption onto 

the equilibrium and kinetic sorption sites in contact with the 

mobile zone, respectively.

Dual-Permeability Model with Two-Site SorpƟ on

Finally, simultaneous physical and chemical nonequilibrium 

processes are implemented in HYDRUS-1D by assuming applica-

bility of the Dual-Permeability Model (Gerke and van Genuchten, 

1993a; Šimůnek et al., 2003) and dividing the sorption sites of 

both the fracture and matrix domains into equilibrium and 

kinetic sites (Fig. 3e). Th is model leads to the following set of 

equations (Pot et al., 2005):
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 [22]

where k
ms  and k

fs  are sorbed concentrations of Type 2 (kinetic) 

sites in the matrix and fracture domains [M M−1], respectively; 

fm and ff are fractions of the exchange sites assumed to be in 

equilibrium with the solution phases (dimensionless) of the 

matrix and fracture domains, respectively; φf, φm, φf,k, and φm,k 

represent reactions in the equilibrium phases of the fracture and 

matrix domains and at the kinetic sites of the fracture and matrix 

domains [M L−3 T−1], respectively; and αch,m and αch,f are again 

fi rst-order rate constants for the matrix and fracture domains 

[T−1], respectively. Note that the distribution coeffi  cients can be 

diff erent in the diff erent regions (i.e., Kdf ≠ Kdm).

Numerical Implementa  on

All of the models presented here were implemented in the 

HYDRUS-1D software package and as such are all solved with 

very similar numerical techniques. Th e Galerkin-type linear fi nite 

element method was used for spatial discretization of the govern-

ing partial diff erential equations, while fi nite diff erence methods 

were used to approximate temporal derivatives. A fully implicit 

fi nite diff erence scheme with Picard linearization was used to 

solve the Richards equation, while a Crank–Nicholson fi nite 

diff erence scheme was used for solution of the advection–dis-

persion equations. For the dual-permeability models, we always 

fi rst solved the equations describing processes in the matrix, after 

which the equations describing processes in the fractures were 

solved. Complete details about the invoked numerical techniques 

are provided in the HYDRUS-1D technical manual (Šimůnek 

et al., 2008).

Implica  ons for Formula  on of the 
Inverse Problem

Th e physical and chemical nonequilibrium models both 

involve relatively large numbers of parameters, many of which 

cannot be (or cannot easily be) measured independently. Some 

parameters need to be obtained by calibrating a particular model 

against laboratory or fi eld measurements. Th is is usually done 

using a parameter estimation procedure (e.g., Šimůnek and 

Hopmans, 2002; Šimůnek et al., 2002) in which the sum of 

squared deviations between measurements and model predictions, 

organized in an objective function, is minimized. While the defi -

nition of the objective function for models that consider only 

uniform fl ow and transport may be relatively straightforward, the 

objective functions for calibration of the nonequilibrium models 

can become extremely complicated. For the equilibrium fl ow and 

transport models, one usually defi nes the objective function in 

terms of measured pressure heads, water contents, solution con-

centrations, or actual or cumulative water or solute fl uxes. Note 

from Fig. 1a that the system is always described using unique 

values of the water content, pressure head, or solution concen-

tration. In addition to the resident concentration, the objective 

function can also be defi ned using the fl ux concentration or the 

total solute mass at a specifi ed location. Th e total solute mass 

must include not only the mass in the liquid phase but also the 

mass sorbed to either instantaneous or kinetic sorption sites (the 

latter if a kinetic sorption model is used).

By comparison, when physical nonequilibrium models are 

used, one can encounter diff erent water contents such as the 

mobile water content, the immobile water content, the water con-

tent of the fracture domain, the water content of the matrix, or 

the total water content. Th e nonequilibrium models typically will 

also involve diff erent types of concentrations, including concen-

trations of the mobile and immobile zones, sorbed concentrations 
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associated with instantaneous and kinetic sorption sites, and total 

concentrations. Since diff erent measurement techniques may lead 

to diff erent types of concentrations (e.g., resident, fl ux, or total 

concentrations), a fl exible inverse approach should also allow for 

the diff erent modes of concentrations. Diff erent types of water 

and solute fl uxes can furthermore be defi ned in the nonequilib-

rium models, including total fl uxes, fl uxes in the mobile zone, 

or fl uxes in the fracture and matrix domains. To provide users 

with fl exibility during the model calibration process, these vari-

ous water contents, concentrations, and water and solute fl uxes 

must be considered in the objective function. Table 2 provides a 

list of variables in the diff erent equilibrium and nonequilibrium 

models that can be incorporated in the objective function when 

HYDRUS-1D is used for parameter estimation purposes.

Applica  ons
We now briefl y demonstrate the main features of selected 

transport models, including especially the sensitivity of calculated 

breakthrough curves to several key transport parameters. As before, 

we will focus only on solute transport, while assuming that water 

fl ow is at full saturation and steady state and thus that the various 

water contents and fl uxes are constant with depth and time. Steady-

state fl ow is initiated by fi xing all pressure heads in the system equal 

to zero (both the initial and boundary conditions).

Uniform Transport

Th e uniform (equilibrium) solute transport model during 

steady-state water fl ow is fully defi ned in terms of four parameters 

(Table 1). Of these, two parameters (the water content, θ, and 

the fl uid fl ux density, q) are related to water fl ow, and only two 

parameters (the dispersivity, λ, and the distribution coeffi  cient, 

Kd) are directly related to solute transport. Figure 4 shows the 

well-known eff ects of the dispersivity (left) and the distribution 

coeffi  cient (right) on calculated breakthrough curves. Notice that 

the red lines in Fig. 4 (left and right) represent the same simula-

tion. While higher values of the dispersivity lead to earlier arrival 

of the solute and more pronounced tailing compared with lower 

λ values, larger values of the distribution coeffi  cient delay the 

arrival of solute in the effl  uent. Note that the selected distribu-

tion coeffi  cients of 0, 1, and 3 lead to retardation factors of 1, 4, 

and 10, respectively. Also note that one pore volume (Eq. [10]) 

for the selected parameters corresponds to 1 d.

Physical Nonequilibrium Transport Models

Mobile–Immobile Water and Dual-Porosity Models

Since the immobile water content is constant for conditions 

of steady-state water fl ow for both the Mobile–Immobile Water 

and the Dual-Porosity models, the two models are identical with 

respect to solute transport. Th ese two models have three addi-

tional parameters compared with the Uniform Transport Model: 

the immobile water content (θim), the fraction of sorption sites in 

contact with mobile water (fmo), and the mass transfer coeffi  cient 

(ωmim) (Table 1). Figure 5 demonstrates the eff ect of the mass 

transfer coeffi  cient (left) and the fraction of mobile water (right) 

on calculated breakthrough curves. For the breakthrough curves 

in Fig. 5 (left), one pore volume (T = Lθmo/q) is equal to 1 d and 

the retardation factor of the mobile phase (R = 1 + fmoρKd/θmo) 

is equal to 4. Notice that the effl  uent concentration for the case 

with the lowest value of the mass transfer coeffi  cient (0.1 d−1), i.e., 

the case most resembling uniform transport in the mobile region, 

indeed reaches approximately 0.5 after about 4 d. Notice also that 

this breakthrough curve shows the most tailing resulting from the 

slow release of solute from the mobile zone into immobile liquid. 

Th e large value of the mass transfer coeffi  cient (10 d−1) leads to 

fast equilibration of the concentrations of the mobile and immobile 

zones, and thus to a breakthrough curve resembling uniform trans-

port in the entire pore system (T = 1.666 d and R = 4) characterized 

by a relatively sigmoidal curve. If the mass transfer coeffi  cient had 

been equal to zero (i.e., equilibrium fl ow in the mobile region), the 

resulting breakthrough curves would have been the same as in Fig. 

4. Figure 5 (right) demonstrates the eff ect of an increasing frac-

tion of immobile water and the corresponding fraction of sorption 

sites. Following Nkedi-Kizza et al. (1983), the ratios of mobile to 

total water (θmo/θ) and equilibrium to total sorption sites (f) were 

assumed to be the same. A smaller fraction of mobile water leads to 

earlier solute arrival and more pronounced tailing. Notice that the 

red lines in Fig. 5 (left and right) represent the same simulation.

Dual-Permeability Model

In the dual-permeability system, solute moves simultane-

ously through two overlapping porous regions, with the number 

of model parameters further increasing. Solute transport during 

steady-state water fl ow now requires the following nine param-

eters: two water contents (θm and θf ), two fl uxes (qm and qf ), 

two dispersivities (λm and λf ), distribution coeffi  cients for each 

domain (Kdm and Kdf), and a mass transfer coeffi  cient ωdp. Th e 

exchange of solute between the two pore regions is proportional 

to the mass transfer coeffi  cient ωdp. When this coeffi  cient is equal 

to zero (black lines in Fig. 6), solute will move independently 

through each of the two pore systems, in which case the transport 

process reduces to that of the uniform transport model applied 

separately to each of the two pore systems. Outfl ow concentra-

tions from the matrix (thin line), fracture (intermediate line), 

and the entire soil (thick line) are shown in Fig. 6. Note that 

due to accelerated transport in the dual-permeability system, the 

time scale in Fig. 6 is only 10 d, compared with 20 d in the 

preceding examples. For the selected parameters, the retardation 

factor for both regions is equal to 4 and the pore volumes are 

equal to 0.1666 and 1.666 d for the fracture and matrix domains, 

respectively. Th e solute front indeed arrives after about 0.6666 

and 6.666 d (TR) in the fracture and matrix domains, respec-

tively. Th e average outfl ow concentration can now be obtained 

as a weighted average of the outfl ow concentrations from each 

domain:
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( )

f f m m
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1

wc q w c q
c

wq w q

+ −
=

+ −
 [23]

As shown in Fig. 6, the average outfl ow concentration quickly 

increases initially, similarly as for the fracture domain, but then 

stabilizes at about 0.5 since only about half of the outfl ow comes 

from the fracture domain. When solute arrives also in the outfl ow 

from the matrix domain, the average outfl ow concentration gradu-

ally increases again until it reaches unit concentration. Th e solute 

breakthrough curves start deviating from those calculated using the 

Uniform Flow Model individually for the matrix and macropore 

regions when the mass transfer coeffi  cient is increased (red lines in 

Fig. 6) because of exchange of solute between the two regions. For 

relatively large values of the mass transfer coeffi  cient, this causes 
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T��½� 2. Variables that can be included in the objecƟ ve funcƟ on.

Model Variable Defi niƟ on
Uniform model Water content θ

Pressure head h
Resident concentraƟ on c
Flux concentraƟ on D c

c
q z

θ ∂
−

∂

Total solute mass (uniform transport) c(θ + ρKd) 
Total solute mass (One KineƟ c Site Model) cθ + ρsk

Total solute mass (Two-Site Model) c(θ + feρKd) + ρsk

Total solute mass (Two KineƟ c Sites Model) k k
1 2c s sθ+ρ +ρ

Dual-Porosity Water content θ = θmo + θ im
Pressure head hmo
Mobile-zone resident concentraƟ on cmo
Immobile-zone resident concentraƟ on cim
Mobile-zone fl ux concentraƟ on

mo mo mo
mo

mo

D c
c

q z

θ ∂
−

∂

Average liquid concentraƟ on
mo mo im im

Tl

c c
c

θ + θ
=

θ
Total solute mass (no chemical nonequilibrium) ( ) ( )mo mo mo d im im mo d1c f K c f K⎡ ⎤θ + ρ + θ + − ρ⎣ ⎦
Total solute mass (kineƟ c sorpƟ on) ( )

( )
mo mo mo em d
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⎡ ⎤ρ + θ + − ρ⎣ ⎦
Dual-Permeability Matrix water content θM = (1 − w)θm

Fracture water content θF = wθ f
Total water content θ = wθ f + (1 − w)θm
Matrix pressure head hm
Fracture pressure head hf
Matrix fl ux qm(1 − w)
Fracture fl ux qfw
Total fl ux qm(1 − w) + qfw
Fracture concentraƟ on cf
Matrix concentraƟ on cm
Flux concentraƟ on

f f m m

f m

(1 )
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wc q w c q

wq w q

+ −
+ −

Average liquid concentraƟ on
f f m m

f m

(1 )

(1 )

wc w c

w w

θ + − θ
θ + − θ

Total solute mass (no chemical nonequilibrium) wcf(θ f + ρfKdf) + (1 − w)cm(θm + ρmKdm) 
Total solute mass (kineƟ c sorpƟ on) ( )

( )

k
f f f f df f f

k
m m m m dm m m(1 )

w c f K s

w c f K s

⎡ ⎤θ + ρ +ρ +⎢ ⎥⎣ ⎦
⎡ ⎤− θ + ρ +ρ⎢ ⎥⎣ ⎦

Dual-Permeability with 
MIM

Matrix water content θM = (1 − w)(θm,m + θ im,m)
Fracture water content θF = wθ f
Total water content θ = wθ f + (1 − w)(θm,m + θ im,m)
Matrix pressure head hm
Fracture pressure head hf
Matrix fl ux qm(1 − w)
Fracture fl ux qfw
Total fl ux qm(1 − w) + qfw
Fracture concentraƟ on cf
Matrix immobile concentraƟ on cim,m
Matrix mobile concentraƟ on cm,m
Flux concentraƟ on

f f m,m m

f m

(1 )

(1 )

wc q w c q

wq w q

+ −
+ −

Average liquid concentraƟ on
f f m,m m,m im,m im,m

f m,m im,m

(1 )( )

(1 )( )

wc w c c

w w

θ + − θ + θ
θ + − θ + θ

Total solute mass (no chemical nonequilibrium) wcf(θf + ρfKdf) + (1 − w){cm,m(θm,m + fmρmKdm) + cim,m[θ im,m + (1 − fm)ρmKdm]} 
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F®¦. 6. Breakthrough curves calculated using the Dual-Permeability 
Model for a 10-cm-long soil column and the following parameters: 
qm = 3 cm d−1, qf = 30 cm d−1, θ  = θm = θf = 0.5, w = 0.1, λm = λf = 
1 cm, Kdm = Kdf = 1 cm3 g−1, ρb = 1.5 g cm−3, and ωdp = 0, 0.1, and 
0.5 d−1. Matrix, fracture, and total breakthrough curves are repre-
sented by thin, medium, and thick lines, respecƟ vely.

F®¦. 4. Breakthrough curves calculated using the Uniform Transport Model for a 10-cm-long soil column and the following parameters: q = 5 
cm d−1, θ  = 0.5, and ρb = 1.5 g cm−3; on the leŌ , Kd = 1 cm3 g−1 and λ  = 0.1, 1, and 10 cm; and on the right, λ  = 1 cm and Kd = 0, 1, and 3 cm3 
g−1.

F®¦. 5. Breakthrough curves calculated using the Mobile–Immobile Water Model for a 10-cm-long soil column and the following parameters: q 
= 3 cm d−1, θ = 0.5, λmo = 1 cm, Kd = 1 cm3 g−1, ρb = 1.5 g cm−3. On the leŌ : fmo = 0.6, θmo = 0.3, θim = 0.2, and ωmim = 0.1, 0.5, 10 d−1. On the 
right: ωmim = 0.5 d−1 and (a) fmo = 0.4, θmo = 0.2, θim = 0.3; (b) fmo = 0.6, θmo = 0.3, θim = 0.2; and (c) fmo = 0.8, θmo = 0.4, θim = 0.1.
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rapid equilibration of the concentrations of the two domains. Th e 

breakthrough curves from the two regions will then start converg-

ing and will again resemble the results of the uniform transport 

model applied to the entire soil (blue lines in Fig. 6). For a fully 

equilibrated system, R equals 4 and one pore volume equals 0.88 

d, causing the solute to arrive at approximately 3.5 d.

Dual-Permeability with Mobile–Immobile Water Model

Th e simulations above (red lines in Fig. 6) were further 

modifi ed by assuming the presence of immobile water (varying 

between water contents of 0 and 0.4) and a corresponding frac-

tion of sorption sites in the matrix region. Th e resulting model 

requires three additional parameters: the immobile water content 

of the matrix domain (θim,m), the fraction of sorption sites in 

contact with the mobile zone of the matrix domain (fm), and the 

mass transfer coeffi  cient characterizing solute exchange between 

the mobile and immobile zones of the matrix domain (αm). Since 

the same fl ux is forced through an increasingly smaller part of 

the matrix domain, the average pore water velocity increases and 

solute in the matrix region will arrive earlier at the end of the 

column (Fig. 7). Increased concentrations in the mobile zone of 

the matrix domain lead to smaller gradients between the fracture 

and matrix domains, and correspondingly less solute exchange 

between the two domains. Th is, in turn, causes less tailing in the 

breakthrough curve of the fracture domain. When only 20% of 

water in the matrix domain is mobile (θm = 0.5, θim,m = 0.1, θm,m 

= 0.4), the average pore water velocity is only half of that in the 

fracture domain (green lines in Fig. 7).

Chemical Nonequilibrium Transport Models

One KineƟ c Site Model

Th e simulation of Fig. 4 (red, uniform transport) was taken 

as a basis for evaluating the eff ect of kinetic sorption. Compared 

with the Uniform Flow Model, the One Kinetic Site Model 

requires only one additional parameter: the mass transfer coeffi  -

cient αk characterizing the sorption process. Th ree diff erent values 

for αk of 0.1, 0.5, and 10 d−1 were considered. Th e larger value 

of the mass transfer coeffi  cient (αk = 10 d−1) leads to relatively 

fast equilibration between the liquid- and solid-phase concentra-

tions, and therefore to a relatively sigmoidal breakthrough curve 

(blue line in Fig. 8) resembling uniform transport (red line in 

Fig. 4). Lower values of the mass transfer coeffi  cient lead to less 

sorption because of slower equilibration between the liquid and 

solid phases, and consequently to earlier solute arrival and more 

pronounced tailing (black line in Fig. 8).

Two-Site Model

Th e same simulations as for the One Kinetic Site Model were 

repeated with the Two-Site Model, assuming that 40% of the sorp-

tion sites were in equilibrium with the liquid-phase concentrations 

(Fig. 9, left). Th is model, compared with the One Kinetic Site 

Model, requires only one additional parameter: the fraction of sorp-

tion sites (fe) in equilibrium with the liquid-phase concentration. 

Th e eff ect on the breakthrough curve obtained with a mass transfer 

coeffi  cient, αk, of 10 d−1 was relatively small since this value by 

itself represents rapid sorption. Other breakthrough curves devi-

ated less from this simulation than for the One Kinetic Site Model 

because of the relatively high fraction of sorption sites that were at 

equilibrium with the liquid phase. Similarly to the One Kinetic Site 

Model, smaller values of the mass transfer coeffi  cient caused earlier 

solute arrival and more prolonged tailing, but to a lesser extent. 

Figure 9 (right) demonstrates the eff ect of the fraction of sorp-

tion sites in equilibrium with the liquid phase on the computed 

breakthrough curves. Th e red lines in Fig. 9 (left and right) again 

represent the same simulation. A smaller fraction of sorption sites 

in equilibrium with the liquid phase leads to less instantaneous 

sorption, more kinetic sorption, and more pronounced tailing, and 

thus correspondingly to earlier solute arrival than when a larger 

fraction of instantaneous sites is considered.

F®¦. 7. Breakthrough curves calculated using the Dual-Permeability 
Model with MIM for a 10-cm-long soil column and the following 
parameters: qm = 3 cm d−1, qf = 30 cm d−1, θ  = θm = θf = 0.5, w = 0.1, 
λm = λf = 1 cm, Kdm = Kdf = 1 cm3 g−1, ρb = 1.5 g cm−3, ωdp = 0.1 d−1, 
ωdpm = 0.1 d−1, θim,m (thim) = 0.0, 0.1, 0.3, and 0.4, and fm = 1, 0.8, 
0.4, and 0.2, respecƟ vely. Matrix, fracture, and total breakthrough 
curves are represented by thin, medium, and thick lines, respecƟ vely.

F®¦. 8. Breakthrough curves calculated using the One KineƟ c Site 
Model for a 10-cm-long soil column and the following parameters: 
q = 5 cm d−1, θ  = 0.5, λ  = 1 cm, Kd = 1 cm3 g−1, ρb = 1.5 g cm−3, and 
αk = 0.1, 0.5, and 10 d−1.
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Two KineƟ c Sites Model

Th e colloid attachment–detachment model has the same 

number of parameters as the One Kinetic Site Model, except that 

the parameters Kd and αk are replaced with attachment (ka) and 

detachment (kd) coeffi  cients. Since we considered two diff erent 

sorption sites, we have two pairs of attachment and detachment 

coeffi  cients (ka1, kd1, ka2, kd2). Here we used Eq. [19] to convert 

the One-Site Kinetic Model parameters (Kd = 1 cm3 g−1, αk = 

0.5 d−1; red line in Fig. 8) into attachment–detachment coef-

fi cients (ka1 = 1.5 d−1, kd1 = 0.5 d−1) for the fi rst fraction of 

sorption sites. Additionally, a fi nite (10-d) duration of the solute 

pulse was considered, while varying the attachment–detachment 

coeffi  cients (ka2 and kd2, respectively) for the second fraction of 

sorption sites. In the remaining examples, a fi nite solute pulse is 

used so that both increasing and decreasing limbs of the break-

through curves can be displayed. Increased attachment to and 

detachment from the second fraction of sorption sites reduced the 

outfl ow concentrations during the fi rst part of the breakthrough 

curves, but increased them during the second part (Fig. 10).

Physical and Chemical Nonequilibrium Flow and Transport Models
Dual-Porosity Model with One KineƟ c Site

Compared with the Dual-Porosity Model, this model has 

two additional parameters characterizing kinetic sorption in the 

mobile zone, i.e., the fraction of sorption sites (fem) in equilib-

rium with the liquid-phase concentration of the mobile zone, 

and the mass transfer coeffi  cient (αch). Th e simulations in Fig. 5 

obtained with the Dual-Porosity Model were modifi ed by assum-

ing the presence of kinetic sorption sites in the mobile zone. We 

fi rst assumed that 40% of the sorption sites in the mobile phase 

(fem = 0.4) was at equilibrium with the mobile liquid phase and 

that the remaining sites were kinetic, using mass transfer coef-

fi cients, αch, of 0.1, 0.5, and 10 d−1 (Fig. 11, left). We next 

assumed that αch was constant and equal to 0.1 d−1 while the 

fraction of sorption sites in the mobile phase at equilibrium with 

the liquid concentration of the mobile water varied (fem = 0.1, 0.4, 

0.7, and 1) (Fig. 11, right). We further assumed in both sets of 

simulations that the duration of the solute pulse was 10 d. Notice 

that the red lines in Fig. 11 (left and right) again represent the 

same simulation. Results presented in Fig. 11 (left) display the 

same characteristics as results shown in Fig. 9 for the Two Site 

Kinetic Model. Lower values of the mass transfer coeffi  cient lead 

to less sorption because of slower equilibration between the liquid 

and solid phases, and hence to earlier solute arrival and more 

pronounced tailing (black line in Fig. 11, left). A smaller fraction 

of sorption sites in equilibrium with the liquid phase leads to less 

instantaneous sorption and more kinetic sorption, and hence to 

earlier solute arrival than when a larger fraction of instantaneous 

sites is considered (Fig. 11, right).

Dual-Permeability Model with Two-Site SorpƟ on

Th is model, compared with the Dual-Permeability Model, 

has four additional parameters characterizing kinetic sorption in 

both regions, i.e., the fractions of sorption sites in equilibrium 

with the liquid-phase concentrations of both regions (fm and ff ) 

F®¦. 9. Breakthrough curves calculated using the Two-Site KineƟ c Model for a 10-cm-long soil column and the following parameters: q = 5 cm 
d−1, θ  = 0.5, λ  = 1 cm, Kd = 1 cm3 g−1, and ρb = 1.5 g cm−3; on the leŌ , fe = 0.4 and αk = 0.1, 0.5, and 10 d−1; and on the right, αk = 0.5 d−1 
and fe = 0.1, 0.4, and 0.8.

F®¦. 10. Breakthrough curves calculated using the Two KineƟ c Sites 
Model for a 10-cm-long soil column and the following parameters: 
solute pulse duraƟ on = 10 d, q = 5 cm d−1, θ  = 0.5, λ  = 1 cm, Kd = 1 
cm3 g−1, ρb = 1.5 g cm−3, ka1 = 1.5 d−1, kd1 = 0.5 d−1, and ka2 = 0.0, 
0.3, and 3.0 d−1 with kd2 = 0.0, 0.1, and 1.0 d−1, respecƟ vely.
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and the mass transfer coeffi  cients for both regions (αch,m and 

αch,f ). Th e simulation in Fig. 6 (red line) with a mass transfer 

coeffi  cient, ωdp, of 0.1 d−1 was recalculated assuming the pres-

ence of kinetic and equilibrium sorption sites in both the matrix 

and fracture domains, and using a fi nite duration (10 d) of the 

applied solute pulse (Fig. 12). Outfl ow concentrations from the 

matrix (thin line), the fracture domain (intermediate line), and 

the entire soil (thick line) are shown in Fig. 12. As before for the 

One- and Two-Site models, kinetic sorption leads to slower sorp-

tion and thus to higher concentrations and earlier solute arrival 

in the effl  uent from both regions.

Discussion
Example calculations for the diff erent types of nonequi-

librium were presented. While HYDRUS-1D provides much 

information also about the water content and concentration 

distributions in the soil profi le and between diff erent phases 

(e.g., liquid and solid) and regions (e.g., mobile and immobile, 

matrix and fracture), here we limited the examples to only cal-

culated breakthrough curves. Th e calculations, among other 

things, show that a single breakthrough curve will probably not 

provide enough information to parameterize models involving 

both physical and chemical nonequilibrium. Nkedi-Kizza et al. 

(1984) previously showed that the traditionally used physical 

and chemical nonequilibrium transport models (i.e., the dual-

porosity model with mobile and immobile fl ow regions and the 

two-site sorption model, respectively), are mathematically identi-

cal when applied to solute breakthrough curves. By analyzing one 

breakthrough curve, it is hence often not possible to discrimi-

nate which process (physical or chemical) is responsible for the 

observed nonequilibrium process since both types of nonequi-

librium can produce the same or very similar results. In that case, 

one needs additional information, such as breakthrough curves 

measured simultaneously for a tracer and a reactive chemical, to 

better analyze the underlying transport processes. Interesting 

applications of some of these models were presented earlier by 

Pot et al. (2005) for steady-state water fl ow conditions and by 

Köhne et al. (2006) for transient-fl ow conditions. Both studies 

were performed on undisturbed soil columns and involved the 

transport of a nonreactive tracer as well as a reactive pesticide 

[isoproturon (N,N-dimethyl-N´[4-(1-methylethyl)phenyl]urea)]. 

While the tracer breakthrough curves were fi rst used in both stud-

ies to characterize the physical conditions of fl ow process, the 

pesticide breakthrough curves subsequently provided required 

information for characterizing the chemical conditions.

Similarly, Bradford et al. (2004) showed that experimental 

breakthrough curves of colloids or pathogenic microorganisms 

can be fi tted equally well using diff erent models with diff erent 

assumptions (e.g., attachment vs. straining), and that additional 

information (in their case, the spatial distribution of colloids) is 

needed to fully discriminate between the diff erent processes or 

models. Th orough studies are still needed to evaluate how much 

and what type of information is required to fully parameterize 

F®¦. 11. Breakthrough curves calculated using the Dual-Porosity Model with One KineƟ c Site for a 10-cm-long soil column and the following 
parameters: solute pulse duraƟ on = 10 d, q = 3 cm d−1, θ  = 0.5, θmo = 0.3, θim = 0.2, λmo = 1 cm, Kd = 1 cm3 g−1, ρb = 1.5 g cm−3, fmo = 0.6, α  = 
0.1 d−1; on the leŌ , fem = 0.4 and αch = 0.1, 0.5, and 10 d−1 ; and on the right, αch = 0.1 d−1 and fem = 1.0, 0.7, 0.4, and 0.1.

F®¦. 12. Breakthrough curves calculated using the Dual-Permeability 
Model with Two-Site SorpƟ on for a 10-cm-long soil column and the 
following parameters: solute pulse duraƟ on = 10 d, qm = 3 cm d−1, qf 
= 30 cm d−1, θ  = θm = θf = 0.5, w = 0.1, λm = λf = 1 cm, Kdm = Kdf = 1 
cm3 g−1, ρb = 1.5 g cm−3, ωdp = 0.1 d−1, αch,m = αch,f = 0.1 d−1, and ff 
= fm = 1, 0.7, and 0.4. Matrix, fracture, and total breakthrough curves 
are represented by thin, medium, and thick lines, respecƟ vely.
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selected models. To facilitate such studies, the objective function 

for the inverse problem in HYDRUS-1D can be formulated in 

terms of a large number of variables involving not only bound-

ary concentration fl uxes, but also water and solute distributions 

within the soil profi le and in diff erent phases (Table 2). For these 

reasons we believe that HYDRUS-1D is a very attractive tool for 

analyzing both forward and inverse fl ow and transport problems.

Conclusions
We summarized a wide range of nonequilibrium water fl ow 

and solute transport models that are available in the latest version 

of the HYDRUS-1D software package. Th e models range from 

classical models simulating uniform water fl ow and solute trans-

port, to traditional mobile–immobile water physical and two-site 

chemical nonequilibrium models, to more complex dual-perme-

ability models that consider both physical and chemical causes of 

nonequilibrium. Th e presented models form a hierarchical system 

from which diff erent formulations can be selected for diff erent 

applications, depending on available information and data.

Th e various models were divided into three groups: (i) physical 

nonequilibrium transport models, (ii) chemical nonequilibrium 

transport models, and (iii) physical and chemical nonequilib-

rium transport models. Physical nonequilibrium models include 

the Mobile–Immobile Water Model, Dual-Porosity Model, 

Dual-Permeability Model, and a Dual-Permeability Model with 

Immobile Water. Chemical nonequilibrium models include the 

One Kinetic Site Model, a Two-Site Model, and a Two-Kinetic 

Sites Model. Finally, physical and chemical nonequilibrium trans-

port models include a Dual-Porosity Model with One Kinetic 

Site and a Dual-Permeability Model with Two-Site Sorption. Th e 

fact that a large number of models has been developed over the 

years is in many ways refl ective of the extremely complicated 

nature of fi eld-scale processes in which many diff erent physical 

and chemical processes may combine to lead to nonequilibrium 

fl ow and transport.

Appendix

Variables for Water Contents and ConcentraƟ ons

θ water content [L3 L−3]

θf water content in the macropore (fracture) region of the dual-

permeability model (local pore region scale) [L3 L−3]

θF water content in the macropore (fracture) region of the 

dual-permeability model (global scale) [L3 L−3]

θim water content in the immobile region of the dual-porosity 

and mobile–immobile models [L3 L−3]

θm water content in the matrix region of the dual-permeability 

model (local pore region scale) [L3 L−3]

θM water content in the matrix region of the dual-permeability 

model (global scale) [L3 L−3]

θm,im water content in the immobile part of the matrix region 

of the dual-permeability model [L3 L−3]

θm,mo water content in the mobile part of the matrix region of 

the dual-permeability model [L3 L−3]

θmo water content in the mobile region of the dual-porosity 

and mobile–immobile models [L3 L−3]

c liquid-phase concentration [M L−3]

cf liquid-phase concentration in the macropore (fracture) 

region of the dual-permeability model [M L−3]

cim liquid-phase concentration in the immobile region of the 

dual-porosity model and of the mobile–immobile model 

[M L−3]

cm liquid-phase concentration in the matrix region of the dual-

permeability model [M L−3]

cm,im liquid-phase concentration in the immobile part of the 

matrix region of the dual-permeability model [M L−3]

cm,mo liquid-phase concentration in the mobile part of the matrix 

region of the dual-permeability model [M L−3]

cmo liquid-phase concentration in the mobile region of the 

dual-porosity and mobile–immobile models [M L−3]

S solute content in the liquid phase [M L−3]

se sorbed concentration in equilibrium with the liquid-phase 

concentration [M M−1]

sk sorbed concentration at kinetic sorption sites [M M−1]
k
1s  sorbed concentration at the fi rst fraction of kinetic sorp-

tion sites [M M−1]
k
2s  sorbed concentration at the second fraction of kinetic sorp-

tion sites [M M−1]
e
ims  sorbed concentration in equilibrium with the liquid-phase 

concentration in the immobile region of the dual-porosity 

model [M M−1]
e
mos

 
sorbed concentration in equilibrium with the liquid-phase 

concentration in the mobile region of the dual-porosity 

model [M M−1]
k
mos

 
sorbed concentration at kinetic sorption sites in contact with 

the mobile region of the dual-porosity model [M M−1]
e
ms  sorbed concentration in equilibrium with the liquid-phase 

concentration in the matrix region of the dual-permeabil-

ity model [M M−1]
k
ms  sorbed concentration at kinetic sorption sites in contact 

with the liquid-phase concentration in the matrix region 

of the dual-permeability model [M M−1]
e
fs  sorbed concentration in equilibrium with the liquid-phase 

concentration in the macropore (fracture) region of the 

dual-permeability model [M M−1]
k
fs  sorbed concentration at kinetic sorption sites in contact 

with the liquid-phase concentration in the macropore (frac-

ture) region of the dual-permeability model [M M−1]
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