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a b s t r a c t

Numerical solution of the advectionedispersion equation, used to evaluate transport of solutes in porous
media, requires discretization schemes for space and time stepping. We examine use of quadratic
upstream interpolation schemes QUICK, QUICKEST, and the total variation diminution scheme ULTIMATE,
and compare these with UPSTREAM and CENTRAL schemes in the HYDRUS-1D model. Results for purely
convective transport show that quadratic schemes can reduce the oscillations compared to the CENTRAL
scheme and numerical dispersion compared to the UPSTREAM scheme. When dispersion is introduced
all schemes give similar results for Peclet number Pe < 2. All schemes show similar behavior for non-
uniform grids that become finer in the direction of flow. When grids become coarser in the direction
of flow, some schemes produce considerable oscillations, with all schemes showing significant clipping
of the peak, but quadratic schemes extending the range of stability tenfold to Pe < 20. Similar results
were also obtained for transport of a non-linear retarded solute transport (except the QUICK scheme) and
for reactive transport (except the UPSTREAM scheme). Analysis of transient solute transport show that all
schemes produce similar results for the position of the infiltration front for Pe ¼ 2. When Pe ¼ 10, the
CENTRAL scheme produced significant oscillations near the infiltration front, compared to only minor
oscillations for QUICKEST and no oscillations for the ULTIMATE scheme. These comparisons show that
quadratic schemes have promise for extending the range of stability in numerical solutions of solute
transport in porous media and allowing coarser grids.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The transport of solutes in soils is usually described using the
advectionedispersion equation, with extra terms to account for
adsorption and reactions (�Sim�unek and van Genuchten, 2006;
Zheng and Bennett, 2002). The form of these extra terms varies
according to the constituents and soil types and can take forms
such as linear or non-linear adsorption, or first- and second-order
reactions. The one-dimensional convectionedispersion equation
of a solute is described by:
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where t is time [T], C is a solute concentration [M L�3], u is the
velocity of the fluid [L T�1], D is the dispersion coefficient [L2 T�1], x
is the space dimension [L], and S(C, x, t) is a source/sink term,
accounting for reactions [M L�3 T�1]. Although in the examples
described below more complex forms of the convection-
edispersion equation are used (e.g. with variable water contents
and/or linear/non-linear retardation factors), the simpler form
shown in Eq. (1) is used here to simplify the description of the
numerical methods.

For most problems of interest, whenwater flow is transient, and
soil properties and initial conditions are non-uniform, analytical
solutions are generally not available and/or cannot be derived, so
numerical methods must be employed for the solution of the
governing equations (Vanderborght et al., 2005). Numerical
methods are in general more suitable for solving practical problems
involving complicated geometries that reflect complex natural
geologic and hydrologic conditions, spatially and temporarily
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variable flow and transport parameters, more realistic initial and
boundary conditions, and/or non-linear constitutive relationships
(�Sim�unek and van Genuchten, 2006). However, numerical
modeling of advection dominated problems in the presence of
discontinuities and steep concentration fronts is not trivial
(Leonard, 1979, 1991) and robust numerical methods are still being
sought.

A large number of methods are available to solve Eq. (1)
numerically, but they can be broadly grouped as Eulerian,
Lagrangian, and mixed LagrangianeEulerian methods. In the
Eulerian methods, the transport equation is discretized by means
of a finite difference or finite element method on a fixed grid
system, while for the Lagrangian approach the mesh moves along
with the flow or remains fixed in a deforming coordinate system.
In the Lagrangian-Eulerian approach, a two-step method is used.
The first step is to estimate convective transport using particle
trajectories in a Lagrangian approach, with all other processes
modeled with an Eulerian approach in the following step
(�Sim�unek, 2005). While Lagrangian methods are widely used
when simulating transport in groundwater, the most common
methods used to solve Eq. (1) for transport in unsaturated zone
are Eulerian, including methods of finite differences, finite
elements, and/or finite volumes, and these are the methods solely
discussed here. Many groundwater flow problems are either
steady-state problems or problems with gradually changing flow
fields in time, and use relatively coarse spatial discretization. The
Lagrangian methods are either well suited for such conditions
(former) or even required (latter), because of the stability
constraints on Eulerian methods. On the other hand, the flow
problems in the vadose zone are inherently transient with quickly
changing water contents and velocities in time and space. Euler-
ian methods are often considered suitable for such conditions,
since the numerical solution of the highly non-linear Richards
equation often requires stricter constrains on temporal and
spatial discretization than groundwater flow problems.

The finite difference method can be used to solve the advec-
tionedispersion equation either using backward, forward, or
central temporal differencing. However, for certain problems such
as convection-dominated transport or the transport of steep fronts
this method can lead to artificial oscillations (under or over
shooting) or numerical dispersion due to truncation errors of the
discretization. The use of forward differencing in the temporal
discretization (explicit method) can often lead to non-convergent
schemes. If a backward scheme (implicit formulation) is chosen,
the method is always convergent but can result in numerical
oscillations in the form of “wiggles” with under and over shooting
of the solution (Leonard,1979). The use of central differencing (such
as CrankeNicholson schemes) improves accuracy but is more
computational expensive than explicit methods and is still prone to
numerical oscillation. Numerical oscillation can be minimized by
the use of upstream weighting, but this can lead to considerable
numerical dispersion owing to truncation errors (e.g. Zheng and
Bennett, 2002).

One alternative is the introduction of an apparent numerical
diffusion coefficient, to artificially damp the numerical dispersion
introduced by the discretization (Huang et al., 1997; Moldrup et al.,
1994; van Genuchten and Gray, 1978), but this can only be used for
simple problems where the numerical dispersion coefficient can be
estimated (Zheng and Bennett, 2002). The introduction of artificial
damping also affects the accuracy of the method (Leonard, 1979).
Another solution to problemswith artificial oscillations is the use of
finer grids, with a choice based on the dimensionless Peclet
number:

Pe ¼ u$Dx=D (2)
where Dx is the grid spacing. Spatial discretization resulting in
a Pe number smaller than 2 can eliminate numerical oscillations,
while a Pe number smaller than 10 can greatly reduce such
oscillations. However, the associated computational cost due to
excessively fine grids may become impractical in some appli-
cations (Huyakorn and Pinder, 1986) usually associated with
groundwater flow, multi-dimensional calculations, or multi-
component solute transport.

Two methods that potentially can be used to overcome these
oscillation and truncation problems were proposed by Leonard
(1979), using quadratic upstream interpolation to solve the
advection diffusion equation. These explicit methods are known as
QUICK (Quadratic Upstream Interpolation for Convective Kine-
matics) and QUICKEST method (QUICK with Estimated Upstream
Terms). Both schemes have little numerical dispersion, and the
later scheme has a large (in comparison to other methods) stability
region and shows minimal oscillations.

In many applications the presence of even minimal oscillations
(such as negative concentrations) can corrupt the solution. As
noted by Leonard (1991), there exists a large family of schemes that
aim to suppress such oscillations, commonly referred to as Total
Variation Diminution (TVD) schemes (e.g. MUSCL (Van Leer, 1979);
Superbee (Roe,1985)). Leonard (1991) derived a scheme to improve
the solution near steep gradients and remove under and over shoot
problems by preserving local monotonicity. This scheme is known
as ULTIMATE (the Universal Limiter for Transient Interpolative
Modeling of Advective Transport Equation). While these three
methods by Leonard (1979, 1991) have been used widely in a broad
range of convectionedispersion problems in hydrodynamics and
computational fluid mechanics (e.g. Cole and Wells, 2006; Lin and
Falconer, 1997; Romero et al., 2004), the use of TVD schemes in the
subsurface hydrology has been limited to only few studies. In
porous media the non-monotonic QUICK and QUICKEST schemes
have been used in groundwater (Carter et al., 1984; Lin andMedina,
2003) and QUICK in soil (Chu and Marino, 2007), with the ULTI-
MATE scheme used for groundwater (Zheng and Wang, 1999) and
soils (Neumann et al., 2009).

The objective of this study is to demonstrate the imple-
mentation of the explicit QUICK, QUICKEST, and ULTIMATE
schemes into HYDRUS-1D (�Sim�unek et al., 2008a), one of the most
widely used flow and transport programs in vadose zone
hydrology. The implementation of the quadratic schemes is
verified for a series of problems of increasing complexity, against
analytical solutions for purely convective transport problems and
against standard implicit schemes in HYDRUS-1D for non-linear
transport or transient flow problems. Performance of the
numerical schemes for uniform and non-uniform grids, uniform
and non-uniform velocities, reactive transport and other condi-
tions will be discussed. The results will demonstrate the
improvements provided by some of the quadratic schemes for
situations of larger Peclet numbers or steep fronts, where non-
oscillatory behavior is attained.
2. Methods

In this section the QUICK, QUICKEST, and ULTIMATE schemes, and themain ideas
behind them, are briefly introduced. Complete descriptions are presented by
Leonard (1979, 1991), while the othermethods implemented in HYDRUS-1D are also
discussed in detail elsewhere (�Sim�unek et al., 2008a). The QUICK and QUICKEST
schemes, both explicit methods, for the solution of Eq. (1) are derived using
a control-volume approach for spatial discretization and finite differences approach
for temporal discretization of Eq. (1). This results in the requirement to calculate the
discrete fluxes entering and leaving the control-volume, or the so-called face values,
associated with a nodewithin the grid. The control-volume for node i, and upstream
and downstream nodes are defined as shown in Fig. 1.

Using definitions from Fig. 1, the concentration at a nodal point i for a new time
level (j þ 1) can be calculated as:



Fig. 1. Schematic showing a control-volume for node i (indicated by the dashed lines),
concentrations C at upstream and downstream nodes, grid spacing and face velocities
(ul, ur). Subscripts FL, L, C, R, and FR refer to the far left, left, central, right, and far right
nodes. Subscripts l and r refer to the left and right faces.

Fig. 2. Quadratic upstream interpolation for face values of concentrations Cl (a) and Cr
(b), and definition of face concentration gradients (vC/vx)l and (vC/vx)r used by the
QUICK method (Leonard, 1979).
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where superscripts j and j þ 1 refer to previous and new time levels, Dt is the time
step, C*

l and C*
r are concentrations at the left (l) and right (r) faces of the finite

volume i, S is the average sink term for the control-volume during the time step, Dl

and Dr are corresponding dispersion coefficients, and ðvC=vxÞ*l and ðvC=vxÞ*r are
associated concentration gradients. The estimation of the face and gradient values is
discussed below.

2.1. The QUICK method

The QUICKmethod uses a quadratic upstream interpolation to obtain face values
of concentrations as shown in Fig. 2. The method can be interpreted as a linear
interpolation, given by the first term on the right hand side of Eq. (4), corrected by
a term proportional to the upstream-weighted curvature, given by the second term
on the right hand side.

For flow to the right and for uniform grids the face values are estimated as:
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and for non-uniform grids we obtain:
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The general formula for the QUICK scheme is shown in Eq. (6). Note that the
QUICK scheme uses the concentrations at the beginning of the time step to calculate
the face values.
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where Curv represents (upstream-weighted) concentration curvatures and Grad
concentration gradients (compare Eq. (5) and (6) for their definitions). Similar
equations can be derived for flow in the opposite direction (to the left). For the
QUICK scheme, the concentration gradients in Eq. (3) are identical to the ones used
in Eq. (6). As discussed by Leonard (1979), the stability criteria for QUICK are more
restrictive than in the case of central differencing, but in theory QUICK can be used
for cases when Pe > 2. However, as will be shown in the next section, the QUICK
method is still prone to oscillations.
2.2. The QUICKEST method

Rather than using the quadratic upstream interpolation only at the old-time
level to obtain face concentration values as in the QUICK scheme, the QUICKEST
method attempts to obtain these values as an average over a time increment Dt
between the old and new time levels. The average face concentrations are estimated
assuming that the concentration profile approximated using the quadratic upstream
interpolation at the old-time level is “swept” downstream unchanged, as shown in
Fig. 3. The QUICKEST formulation uses the same approach of averaging over a time
step for the physical diffusion terms and the effect of diffusion on wall values.

This leads to the following definition of the right face concentration and
concentration gradient values, respectively:
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where Grad and Curv are defined as above. Similar equations can be derived for the
left face values and for flow in the opposite direction (to the left).

Eq. (7) and (8) contain two dimensionless terms, the Courant number and the
diffusion parameter c, defined respectively as:

Cor ¼ urDt
Dx

(9)

cr ¼ DrDt
Dx2r

(10)



Fig. 4. Normalized node values in the case of locally monotonic behavior. Hatching
shows necessary conditions on the face value of interest Cnorm

f , and on the corre-
sponding upstream control-volume face value Cnorm

u (Leonard, 1991).

Fig. 3. Control-volume face values Cl and Cr are estimated in the QUICKEST method as
an average of C(j) and C(jþ1). C(tþDt) is obtained by simply translating C(t) to the right
by a distance uDt, assuming pure (retarded, when adsorption is considered)
convection.
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Leonard (1979) demonstrated that the QUICKEST method is stable in the (Co,c)
plane if 0 � Co � 1 and 0 < c � 0.5. The stability region is extended to parts of the
(Co,c) plane if Co > 1 and c < 0.5, and to c > 0.5 if Co < 1. The method is also stable
for the region where pure convective flow dominates (c ¼ 0) if the Courant number
does not exceed unity.

The adoption of the estimated upstream terms using the new time level in the
QUICKEST scheme greatly reduces the amount of over and under shooting and
numerical dispersion. However, as demonstrated in the next sections and also by
Leonard (1991) the QUICKEST method is still prone to small oscillations and/or
overshooting, especially near sharp gradients. The presence of such oscillations can
lead to negative concentration values. The presence of these oscillations can be
eliminated by using a scheme that preserves local monotonic resolution.

2.3. The ULTIMATE method

The ULTIMATEmethod adopted here aims to suppress oscillation by using a TVD
scheme to preserve local monotonicity of the solution. The ULTIMATE scheme is
derived using the Normalized Variation Diagram (NVD) concept, based on
normalized variables defined as:

Cnorm
C ¼ Cj

C � Cj
U

Cj
D � Cj

U

(11)

Cnorm
f ¼ C*

r � Cj
U

Cj
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U

(12)

where Cj
U and Cj

D are the concentration upstream and downstream of the central
node “C” at time step “j”. The ULTIMATE scheme uses the normalized variables from
the NVD concept to set the boundaries, between which each nodal value must
remain to suppress oscillations. Fig. 4 shows the necessary conditions imposed on
Cnorm
C used in the ULTIMATE scheme to preservemonotonicity, based on the fact that

Cnorm
D ¼ 1 and Cnorm

U ¼ 0.
In order to preserve monotonicity, the following limits for the maximum

normalized face values are:

Cnorm
C � Cnorm

f � 1 for 0 � Cnorm
C � 1 (13)

Cnorm
f � Cnorm

C
Co

for 0 < Cnorm
C � 1 (14)

If Cnorm
c < 0 or Cnorm

c > 1, it is simple to just set Cnorm
f ¼ Cnorm

C , which is the
equivalent of setting the wall face value to the node value. The adoption of the
ULTIMATE strategy involves minimal extra computational load and as will be shown
in the following section, it avoids oscillations that could lead to appearance of
negative concentrations near steep fronts.

2.4. Implicit schemes used in HYDRUS-1D

The governing flow and transport equations are solved in HYDRUS-1D numer-
ically using Galerkin-type linear finite element schemes. Mass lumping is invoked by
redefining the nodal values of the time derivative as weighted averages over the
entire flow region. The Galerkin method is used only for approximating the spatial
derivatives while the time derivatives are discretized by means of finite differences.
Different finite difference schemes can be selected by users depending upon the
value of the time-weighting coefficient e (¼0: explicit scheme, ¼ 0.5:
CrankeNicholson scheme, ¼1: fully implicit scheme). Higher-order approximations
for the time derivative in the transport equation as derived by van Genuchten and
Gray (1978) are implemented.

Upstreamweighing is provided as an option in HYDRUS-1D tominimize some of
the problems with numerical oscillations when relatively steep concentration fronts
are being simulated. For this purpose the flux term of Eq. (1) is not weighted using
regular linear basis functions, but instead with the special non-linear functions that
ensure that relatively more weight is placed on the flow velocities of nodes located
at the upstream side of an element. The extent of increased weight on upstream
nodes is evaluated using the equation of Christie et al. (2005); a larger weight is
placed on upstream nodes for larger Peclet numbers and a standardweight is placed
on them for small Peclet numbers.

The acronym CENTRAL is used below in the Results Section for the
CrankeNicholson implicit scheme with central spatial differencing. The acronym
UPSTREAM is used below for the CrankeNicholson implicit schemewith upstream
spatial weighting. The results obtained using the quadratic explicit schemes (i.e.,
QUICK, QUICKEST, and ULTIMATE) are compared only with the results obtained
using the CrankeNicholson implicit schemes, since these schemes are considered
either less prone to numerical instabilities or superior in view of solution preci-
sion than explicit and fully explicit schemes, respectively (�Sim�unek et al., 2008a).
Note that the explicit scheme, although in general available in HYDRUS-1D, is
disabled in its graphical user interface, in order to discourage HYDRUS-1D users
from its use.
3. Results

Implementation into HYDRUS-1D of various quadratic upstream
interpolation schemes, i.e., QUICK, QUICKEST, and ULTIMATE, and
their performance is verified in this section onmultiple problems of
increasing complexity. The first set of problems involves chal-
lenging purely convective transport with uniform grids and
velocities, with the results compared against analytical solutions.

The second set of problems introduces dispersion and non-
uniformity of grids, with results compared against the results
obtained using the standard implicit finite element numerical
schemes of HYDRUS-1D that have been verified many times before
(e.g. Scanlon et al., 2002; �Sim�unek et al., 2008a; Vanderborght et al.,
2005). In particular, the central spatial weighting and the
CrankeNicholson temporal differencing are used for this purpose.
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The final set of more complex problems involves cases with
transient water flow, non-uniform velocities and reactions. All
results discussed below, other than those in which negative
concentrations were set to zero, were mass conservative and
produced mass balance errors significantly less than 1% for the
overall simulations over the entire domain.

Boundary conditions for the quadratic schemes are prescribed
by either assigning a node concentration value (Dirichlet) or a cell
face concentration value as described in Tkalich (2006, 2007). From
the point of view of numerical stability, both Dirichlet and Cauchy
boundary conditions behaved similarly and did not present any
problems. All problems presented here used a Dirichlet boundary
condition, with the exception of the last problem where we have
used a Cauchy boundary condition by prescribing the flux at the
boundary and used a zero concentration gradient at the bottom.
3.1. Purely convective transport

As outlined in previous sections, standard numerical schemes,
such as CrankeNicholson Finite Element (or Finite Difference)
schemes with central spatial differencing are not suited to deal
with purely convective flow, producing spurious oscillations. The
quadratic upstream interpolation schemes presented here were
designed to overcome partly or fully this oscillatory behavior. We
compare below these new numerical schemes using two test
examples involving (a) a unit step change at the boundary
(Leonard, 1991), and (b) the transport of an isolated sine-squared
wave (Sweby, 1984). Results obtained using standard implicit
schemes are shown for comparison.

3.1.1. A unit step change at the boundary
A unit step change in concentration at the boundary at time zero

represents a basic test for most numerical schemes. The following
physical parameters are used in this example. The transport
domain is 1 m long and is discretized using 101 nodes (Dx ¼ 0:01 ).
Since dispersion, D, is assumed to be zero, the Peclet number
(Pe ¼ vDx=D) is equal to infinity. Mean pore water velocity, v, is
assumed to be equal to 1m/d. A constant time step (Dt) of 0.001 d is
used and the final time (tmax) is 0.5 d. The corresponding Courant
number (Co ¼ vDt=Dx) is equal to 0.1.

Fig. 5 compares results obtained using the implicit schemes (i.e.,
CENTRAL and UPSTREAM) with the explicit schemes (QUICK,
Fig. 5. Comparison of various numerical schemes (CENTRAL, UPSTREAM, QUICK,
QUICKEST, and ULTIMATE) against the analytical solution for a unit step change
example.
QUICKESTand ULTIMATE) and the analytical solution. The CENTRAL
scheme shows, as expected, clear oscillations behind the concen-
tration step, with a maximum oscillation wave on the order of 0.2.
Oscillations, propagating all the way toward the inflow boundary,
would keep increasing for longer simulation times, eventually
corrupting the entire solution. On the other hand, the UPSTREAM
scheme shows, again as expected, a very gradual change of
concentrations around the front, rather than the abrupt change as
predicted by the analytical solution. While this scheme is mono-
tonic, i.e., it does not display any oscillations, it clearly introduces
large artificial numerical dispersion, which is an inherent property
of this numerical scheme.

The QUICK scheme shows the largest oscillations both in front of
and behind the traveling concentration step (the largest oscillation
is about 0.4). Compared to the CENTRAL scheme, oscillations
quickly dissipate toward the inflow boundary. The sharp change in
concentrations is better approximated than by the CENTRAL
scheme. Leonard (1979) suggests that oscillations in the QUICK
method are less likely to corrupt the solution.

The QUICKEST scheme significantly reduces oscillations toward
the inflow (there is actually only a single overshoot wave of about
0.05) compared to the QUICK scheme, while preserving a good
approximation of the step increase due to small numerical
dispersion. Finally, the ULTIMATE scheme entirely removes the
oscillations both in front of and behind the concentration step,
while still preserving a good description of the concentration step.
Since all these results correspond closely with results of Leonard
(1991), we can conclude that all three new explicit numerical
schemes were likely implemented into HYDRUS-1D correctly.

3.1.2. An isolated sine-squared wave
While in the previous test example, the concentration change

was imposed using the boundary condition, in this example
concentrations are specified using the initial condition. This test
follows Sweby (1984) by specifying an isolated sine-squared wave
of width 20Dx as an initial condition:

Cðx; t ¼ 0Þ ¼ sin2
� px
20Dx

�
for 0 � x � 20Dx

¼ 0 otherwise
(15)

This function represents a relatively smooth profile with
a continuously changing gradient on both sides of a single local
maximum (Leonard,1991). All other physical conditions, i.e., spatial
and temporal discretizations and velocity, are the same as for the
unit step change example.

Fig. 6 compares results obtained using the implicit schemes
with the explicit schemes and the analytical solution. Two solutions
are shown with the CENTRAL scheme, one where negative
concentrations are not allowed (by resetting them to zero; denoted
CENTRAL1), and a second denoted CENTRAL2 without any reset-
ting. Apart from minor oscillations behind the traveling wave, the
standard CENTRAL scheme shows a very good approximation of the
traveling sine-squaredwave.When negative concentrations are not
allowed (by resetting them to zero), the CENTRAL1 scheme shows
an almost perfect description of the traveling wave. The UPSTREAM
scheme shows, again as expected, an unacceptably large clipping
(underestimation of maximum concentrations) of the concentra-
tion peak due to numerical dispersion, even though the scheme is
monotonic and free of any oscillations.

The worst results were obtained using the QUICK scheme that
quite dramatically overestimated the concentration peak, as well as
displayed significant oscillations behind the traveling wave. Once
again, the QUICKEST scheme improves on the QUICK results, with
an almost perfect description of the traveling wave. It shows a small
amount of clipping as it slightly underestimated the concentration



Fig. 7. Comparison of various numerical schemes (CENTRAL, UPSTREAM, QUICK,
QUICKEST, and ULTIMATE) for an isolated sine-squared wave and a convective-
dispersive transport with Pe ¼ 2.

Fig. 6. Comparison of various numerical schemes (CENTRAL, UPSTREAM, QUICK,
QUICKEST, and ULTIMATE) against the analytical solution for an isolated sine-squared
wave and purely convective transport.
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peak (Cmax ¼ 0.982). The scheme also shows small undershoot both
in front of and behind the traveling wave (<0.018). Minor oscilla-
tions produced by the QUICKEST schemewere completely removed
by the ULTIMATE scheme, although at the expense of a small
increase in clipping (Cmax ¼ 0.96).

All schemes, other than the UPSTREAM scheme, described well
a continuously changing gradient on both sides of a single local
maximum of the sine-squared traveling wave.
Fig. 8. Comparison of various numerical schemes (CENTRAL, UPSTREAM, QUICK,
QUICKEST, and ULTIMATE) against the analytical solution for an isolated sine-square
wave, a purely convective transport, and a gradually finer grid.
3.2. Convective-dispersive transport

3.2.1. Uniform grids
As described earlier, numerical oscillations in implicit numerical

schemes (e.g. CENTRAL) can be virtually eliminated when local
Peclet numbers do not exceed about 2. Although acceptably small
oscillations may be obtained with local Peclet numbers as high as
10 (Huyakorn and Pinder, 1986) unacceptably large oscillations are
obtained when local Peclet numbers are larger than 10 (as shown
above in Fig. 5). As such, for cases where Pe equals 2 all numerical
schemes should converge to the true solution.

The previous example with a traveling isolated sine-squared
wave was modified by introducing a diffusion coefficient D equal
to 0.005 m2/d and keeping all other parameters the same, so the
local Peclet number is equal to 2 (P ¼ vDx/D ¼ 1 � 0.01/0.005 ¼ 2).
The result is shown in Fig. 7 and, in this particular example, results
of all numerical schemes, other than QUICK and UPSTREAM,
converged to the same solution. While the QUICK scheme slightly
overestimated the concentration peak (by about 0.02), the
UPSTREAM scheme underestimated the concentration peak more
significantly (by about 0.05). Even for the local Peclet number of 2,
the UPSTREAM scheme introduced some, although limited,
numerical dispersion.

3.2.2. Non-uniform grids
All numerical schemes were further tested using spatially non-

uniform grids, with the grid spacing either gradually increasing or
decreasing. All other physical parameters other than the initial
condition and spatial discretization are identical to the example for
a purely convective transport shown in Fig. 6. In both cases the
transport domainwas discretized using 101 nodes; in the first case,
the largest element was on the left side of the grid, and the grid was
made gradually finer from left to right using a multiplication factor
of 1/1.01. In the second case, the smallest element was on the left
side of the grid, which wasmade gradually coarser from left to right
using a multiplication factor of 1.01. In both cases the smallest
element was 0.00181818 m and the largest 0.0181818 m. In both
cases an isolated sine-squared wave was specified as an initial
condition over the same number (i.e., 20) of grid nodes. Conse-
quently, different solute mass was initially in the transport domain
in these two cases since the initial sine-squared wave was spread
over different parts of the domain (grids have different sizes).

As shown in Fig. 8, all numerical schemes, except for UPSTREAM
which again produced significant numerical dispersion, performed
reasonably well when the grid becomes finer in the direction of
flow. However, none of the numerical schemes performed well
when the grid becomes increasingly coarser in the direction of flow,
as shown in Fig. 9. In this case both oscillatory schemes, i.e.,
CENTRAL and QUICK, suffered from large (larger than for the
uniform grid) oscillations behind the traveling wave, and as in the
uniform grid case, oscillations of the CENTRAL scheme propagated



Fig. 9. Comparison of various numerical schemes (CENTRAL, UPSTREAM, QUICK,
QUICKEST, and ULTIMATE) against the analytical solution for an isolated sine-squared
wave, a purely convective transport, and a gradually coarser grid.

Fig. 10. Comparison of various numerical schemes (CENTRAL, QUICKEST, and ULTI-
MATE) for a convective-dispersive transport characterized by a Peclet number of 2 (a),
20 (b), and 200 (c) on a gradually coarser grid. CENTRAL# represents the CENTRAL
scheme on a very fine grid, representing the true solution.
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much further upstream than for the QUICK scheme. All non-
oscillatory schemes produce significant clipping of the peak
concentration and the QUICKEST scheme again produced only
a single undershoot at both sides of the traveling wave, with no
undershoot in the ULTIMATE case. Once more, the UPSTREAM
scheme produced much higher levels of numerical dispersion,
although in this case, all non-oscillatory regimes are affected by
numerical dispersion.

Although this is clearly a disturbing finding, it is important to
emphasize that these results are for purely convective transport, for
which the standard numerical schemes, such as CENTRAL and
UPSTREAM, are not expected to be either stable or accurate. In most
soil applications (if not all), such conditions are not encountered as
the transport is likely to also always contain dispersion.

It is thus necessary to investigate, for what conditions with
gradually coarser grids these quadratic upstream weighting
schemes (mainly QUICKEST and ULTIMATE) provide reasonable
solutions. Fig. 10 presents the same problem with additional
dispersion so that the three scenarios shown have Peclet numbers
2, 20 and 200. To provide a benchmark, these three additional runs
are compared to the CENTRAL scheme (denoted below as
CENTRAL#) applied on a much finer uniform grid, for which the
stability conditions were satisfied, i.e., Pe < 2.

As expected all numerical schemes studied, i.e., CENTRAL,
QUICKEST and ULTIMATE converged to a true solution provided by
CENTRAL# when the Peclet number was equal to 2. Relatively good
results were still obtained for a Peclet number equal to 20 by the
QUICKEST and ULTIMATE schemes, which only slightly under-
estimated the concentration peak. The CENTRAL scheme already
shows relatively minor oscillations beyond the sine-squared wave.
Finally, for a Peclet number of 200, all three schemes produced
significant clipping, similarly as for purely convective transport,
while the CENTRAL scheme additionally suffered from significant
oscillations and the QUICKEST scheme shows undershooting before
and after the sine wave. Significant oscillations encountered with
the CENTRAL scheme caused slight lagging of the sine wave front
behind the analytical solutions.

Although for increasingly coarser non-uniform grids the
QUICKESTand ULTIMATE schemes cannot be used for infinite Peclet
numbers (i.e., purely convective flow), they nevertheless quite
dramatically expand the interval of stability (Pe ¼ 20, i.e., at least
ten times) compared to standard implicit schemes.
3.3. Non-uniform velocities and adsorption

Non-uniform velocities cannot be generated for a one-
dimensional problem without compensating at the same time for
changes in velocities by changes in water contents, which would
lead to a transient water flow problem (addressed below).
However, non-uniform “retarded” velocities can be generated by
considering transport of a solute undergoing non-linear sorption
while keeping water contents constant (unity so far). In this case
the convectionedispersion equation

R
vC
vt

¼ �u
vC
vx

þ D
v2C
vx2

(16)

can be reformulated using the so-called retarded velocities (vR) and
retarded dispersion coefficients (DR) (Jury and Horton, 2004) as
follow:

vC
vt

¼ �u
R
vC
vx

þ D
R
v2C
vx2

vC
vt

¼ �uR
vC
vx

þ DR
v2C
vx2

(17)



Fig. 11. Comparison of various numerical schemes (CENTRAL, UPSTREAM, QUICK,
QUICKEST, and ULTIMATE) for a traveling wave problem.
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where for non-linear sorption the retardation factor R is defined as:

R ¼ 1þ rds
qdC

(18)

and for the Freundlich adsorption isotherm:

s ¼ KdC
n

R ¼ 1þ rnKdC
n�1

q

(19)

where s is the sorbed concentration [MM�1], r is the soil bulk
density [ML�3], q is the water content [-], and Kd [M1 � nL3n M�1]
and n [-] are empirical Freundlich coefficients. Note that Eq. (17)
with retarded velocity and dispersion has the same form as Eq.
(1), for which the quadratic numerical schemes discussed in this
paper were developed, and they can thus be used for problems
involving retardation, without any major modifications.

However, for the QUICKEST (and consequently ULTIMATE)
scheme, the method estimates the wall values as an average over
the time interval, so we solve a modified form of Eq. (16) with R
inside of the temporal derivative, and a different definition of R as
given below (Huang et al., 1997):

vRC
vt

¼ �u
vC
vx

þ D
v2C
vx2

(20)

R ¼ 1þ rKdCn�1

q
(21)

Note that the Freundlich exponent n appears as multiplicator in
the definition of the retardation factor in Eq. (19) and not in Eq. (21).
This is because the retardation factor defined by Eq. (19) is outside
of the temporal partial derivative in Eq. (17) and thus the sorbed
concentration was subject to the ordinary derivative given in Eq.
(18), while the retardation factor defined in Eq. (21) is inside of the
temporal partial derivative in Eq. (20). Since the explicit approach
was used for evaluating the retardation factor, i.e., the retardation
factor was evaluated using concentrations at the old-time level, no
iterative procedure was required for non-linear problems.

Thus, when there is a traveling concentration wave in the trans-
port domain, although actual water velocities may be uniform,
retardedvelocitieswillbenon-uniform,becauseof spatiallychanging
concentrations and consequently changing retardation factors.

The problem presented here, involving steady-state water flow
and non-linear solute transport in a homogeneous soil profile,
follows a benchmark traveling wave problem suggested by
Vanderborght et al. (2005) and an analytical solution by van der Zee
(1990). The physical parameters for this problem were as follows.
The soil column was 200 cm deep and was discretized using 101
nodes. The water content and velocities were uniform and equal to
0.004 and 0.05m/d, respectively. The soil profile was initially solute
free and the inflow concentration was 10 mg mL�1. The soil bulk
density was 1000 mgmL�1, the Freundlich exponent nwas 2/3, and
the Freundlich sorption coefficient Kdwas 0.001mLnmg�1mg(1 � n).
The dispersivity l was equal to 0.01 m, leading to a local Peclet
number (Pe¼ vDx/D¼ vDx/lv¼ Dx/l) of 2. A constant time step (Dt)
of 0.04 d was used and the final time (tmax) was 60 d. The corre-
sponding maximum local Courant number (variable in space
because of non-uniform vR, Co ¼ vRDt/Dx) was about 0.05.

Notice that due to the relatively low Pe number all numerical
schemes, except for theQUICK scheme, provided as expected almost
identical solutions similar to the one obtained by the analytical
solution (Fig. 11). The UPSTREAM schemes shows again limited
numerical dispersionbecauseof a relatively lowlocal Peclet number.

Similar verification for transport with the Freundlich exponent
larger than 1 (n ¼ 4/3) shows similar agreement between the
models. However, since concentration fronts for n < 1 are steeper,
and thus more difficult to solve numerically, only results for this
case (i.e., n ¼ 2/3) are presented here.

3.4. Convective-dispersive-reactive transport

The next problem involves, in addition to physical processes of
dispersion and retardation, also reactive chemical processes of
degradation and production. The problem involves first-order
decay and zero-order production. HYDRUS-1D has been shown in
multiple studies (e.g. �Sim�unek et al., 2008a; Vanderborght et al.,
2005) to correctly solve such problems, and thus in the following
example it is considered to provide a true solution that other
schemes will be compared against.

The following physical parameters are used in this example. The
transport domain is again 1 m long and is discretized using 101
nodes (Dx ¼ 0.01 m). Mean pore water velocity, v, is assumed to be
equal to 1 m/d. Since dispersion, D, is assumed to be 0.001 m2 d�1,
the Peclet number (Pe ¼ vDx/D) is equal to 10. The linear distri-
bution coefficient Kd is equal to 1 g�1 cm3. A constant time step (Dt)
of 0.005 d is used and the final time (tmax) is 1.0 d. The corre-
sponding Courant number (Co ¼ vRDt/Dx) is equal to 0.25. The
solute is additionally subject to the first-order decay with a rate
constant m equal to 1 d�1 and the zero-order productionwith a rate
constant g equal to 0.0001 g m�3 d�1. The reaction term of Eq. (1) is
thus defined as:

S ¼ �mcþ g (22)

Comparison of various numerical schemes for this reactive
transport problem is shown in Fig. 12. Notice that the CENTRAL,
QUICKEST and ULTIMATE schemes produce almost identical results,
similarly as in the two previous examples. The QUICK and
UPSTREAM schemes, similarly as above in Figs. 6 and 7, over-
estimate and underestimate the concentration peak, respectively.
When the dispersion D was increased to 0.005 m2 d�1, i.e., the
Peclet number was reduced to 2, the correspondence between
results obtained by individual numerical schemes (not shown) was
similar as in Fig. 7.

3.5. Transient water flow

An ultimate test for each numerical scheme for solute transport
is how it performs under transient water flow conditions. So in the



Fig. 13. Water contents (top) and concentrations (bottom) for the transient flow
example and dispersivity of 0.5 cm (Pe ¼ 2). Results obtained for t ¼ 1 day using
CENTRAL (solid lines), QUICKEST (B), and ULTIMATE (D) schemes at are also shown.

Fig. 12. Comparison of various numerical schemes (CENTRAL, UPSTREAM, QUICK,
QUICKEST, and ULTIMATE) for a transport of an isolated sine-squared wave subject to
retardation, production, convection, and dispersion.
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last example transient water flow conditions are generated by
imposing ponding (a pressure head of zero) at the surface of a 1-m
deep loamy soil profile.

The following physical parameters are used in this example. The
transport domain is discretized using 101 nodes (Dx ¼ 0.01 m).
Diffusion is not considered, but the dispersivity l is considered
using two values, either 0.005 or 0.0005 m. Even though the local
velocities are not constant, the local Peclet numbers are constant
throughout the profile when a uniform grid is used (since Pe¼ vDx/
vl ¼ Dx/l) and equal to 2 (l ¼ 0.005 m) and 20 (l ¼ 0.0005 m). The
former case is used to demonstrate that various numerical schemes
converge to the same solutions when Pe is about 2, while the latter
case shows the improvement of the ULTIMATE scheme for prob-
lems with high Peclet numbers.

To obtain transient values of water contents and pore water
velocities required by the convectionedispersion equation for
transient water flow, the Richards equation for variably-saturated
water flow in porous media was solved using standard numerical
techniques of HYDRUS-1D. Soil hydraulic parameters for loam from
the Carsel and Parrish (1988) database were used. For this soil, the
saturated hydraulic conductivity Ks is equal to 0.249 m d�1, the
residual and saturated water contents are 0.078 and 0.43, respec-
tively, and the van Genuchten shape parameters a and n (van
Genuchten, 1980) are 3.6 m�1 and 1.56, respectively. Initial pres-
sure head was equal to �100 cm and the free drainage boundary
condition was used at the bottom of the soil column.

The time step (Dt) was determined by requirements of the
numerical solution of the Richards equation and varied from the
initial value of 0.0001 d to a maximum value of 0.008 d. The final
time (tmax) was 1.0 d. The corresponding Courant numbers
(Co ¼ vDt/Dx) varied between 0.1 and 0.5. The solute was assumed
not to be subject to any chemical reactions. The governing con-
vectionedispersion equation for transient flow equation solved in
this case is:

vqc
vt

¼ �vuqc
vx

þ v

vx

�
qD

vc
vx

�
(23)

Similarly as above for the non-linear problem, the partially implicit
approach in the QUICKEST and ULTIMATE methods was applied
only to concentrations, and water contents, fluxes, and dispersion
coefficients were evaluated at the old-time level.
Fig. 13 shows generated water content profiles after 0.2, 0.4, 0.6,
and 1.0 d. The water content front reaches the depth of about
0.40 m after 0.2 d and the bottom of the soil profile after about
0.65 d. Fig. 13 also shows concentration profiles after 0.2, 0.4, 0.6,
0.8, and 1.0 d obtained using the CENTRAL, QUICKEST, and ULTI-
MATE schemes. All three numerical schemes converged to the same
solution since the local Peclet numbers were equal to 2, i.e., no
oscillations were expected to develop.

Fig. 14 shows concentration profiles for the same transient flow
conditions, however for transport conditions with the Peclet
number equal to 20. As discussed above, this is significantly above
the range of Peclet numbers for which the solution is expected to be
oscillation free for the CENTRAL scheme. And indeed, significant
oscillations developed behind the concentration front. In this case
the concentrations were constrained to positive values, similarly as
in the example shown in Fig. 6 above. If this constraint was not
used, small negative oscillations in front of the concentration front
and significantly larger oscillations behind the front would have
developed (data not shown). The QUICKEST scheme showed only
a minor undershoot and overshoot in front of and immediately
behind the concentration front, respectively. The ULTIMATE
scheme completely eliminated negative values ahead of the
concentration front and dramatically reduced the overshoot behind
the front.

4. Discussion

Test examples shown in the previous section demonstrate that
the quadratic interpolation schemes QUICKEST and ULTIMATE,



Fig. 14. Concentrations for the transient flow example and dispersivity of 0.05 cm
(Pe ¼ 20). Results obtained using CENTRAL (solid lines), QUICKEST (B), and ULTIMATE
(D) schemes.
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implemented in HYDRUS-1D, were able to adequately solve various
presented transport problems. It is also important to emphasize
that the examples, in which the standard implicit schemes, i.e.,
CENTRAL and UPSTREAM, failed or did not produce reasonable
results, were for purely convective transport or very large local
Peclet numbers. Such transport is only encountered in few appli-
cations and is very unlikely to occur in vadose zone hydrology. As
shown above, numerical oscillations in implicit numerical schemes
(e.g. CENTRAL) can be virtually eliminated when local Peclet
numbers do not exceed about 2. Furthermore with local Peclet
numbers as high as 10 (Huyakorn and Pinder, 1986) acceptably
small oscillations can still be obtained. Even for problems with
larger Peclet numbers, the oscillations can be minimized or virtu-
ally eliminated when the time step is adjusted appropriately.
Perrochet and Bérod (1993) proposed a stability criterion:

Pe$Cr � usð¼ 2Þ (24)

where us is the performance index [-]. This criterion indicates that
convection-dominated transport problems having large Peclet
numbers can be safely simulated provided Co (by, in fact, reducing
the time step) is reduced according to the equation above
(Perrochet and Bérod, 1993). Imposing these constraints, i.e., either
Pe<2 or us < 2, numerical oscillations can be virtually eliminated
and the CENTRAL scheme is expected to provide precise solutions
(�Sim�unek et al., 2008b). When small oscillations in the solution can
be tolerated, us can be increased to about 5 or 10.

For real-life one-dimensional problems encountered in vadose
zone hydrology, it is usually not a problem to adjust the spatial
discretization grid so that these criteria are fulfilled, and usually the
numerical solution of the Richards equation requires finer temporal
discretization than that required by solute transport. If needed,
having hundreds or even several hundreds of nodes, is usually not
a problem either in terms of memory or solution time for most one-
dimensional applications. It is worthwhile noting that, as shown in
Figs. 6, 10 and 14, the QUICKEST and ULTIMATE schemes quite
dramatically expand the stability range, compared to standard
implicit schemes, to Pe w 20 for non-uniform grids and up to
infinity for uniform grids.

There are, however, several other areas where these non-
oscillatory techniques can be used with a great advantage. One
such area is in multi-dimensional applications. Larger two-
dimensional, and certainly three-dimensional, applications in the
vadose hydrology can easily have several hundreds of thousands, or
even millions, of elements (volumes), as required by various
stability criteria. Reducing the number of elements for these
applications by relaxing the constraints on maximum grid spacing
can still produce significant computational savings. Both QUICKEST
and ULTIMATE schemes have been used in many multi-
dimensional codes of hydrodynamics (e.g. Cole and Wells, 2006;
Lin and Falconer, 1997; Romero et al., 2004) and it is our goal,
after this initial testing presented in this manuscript, to also
implement them in the multi-dimensional versions of HYDRUS
(�Sim�unek et al., 2008b).

The second area where these numerical schemes can be used
with a great advantage is in codes simulating multicomponent
reactive chemistry (e.g. Jacques et al., 2008; Wissmeier and Barry,
2010, 2011). Such codes are usually developed by coupling the
flow and transport codes with the reactive chemistry codes, such as
PHREEQC (Parkhurst and Appelo, 1999), and simulations with these
codes often fail when they are provided with negative element
concentrations by the transport codes. As shown in Figs. 13 and 14,
the ULTIMATE scheme does not produce oscillations and
suppresses negative concentrations. The ULTIMATE scheme
preserves sharp concentration fronts while maintaining mono-
tonicity of the solution, which is especially relevant in flow situa-
tions with high grid Peclet numbers.

As shown above, the accuracy of the ULTIMATE scheme greatly
exceeds the accuracy of commonly applied first- and second-order
schemes currently used in HYDRUS for problems, in which
convective transport dominates over the dispersive transport, and
other problems with sharp concentration fronts. Note that sharp
concentration fronts may not necessarily be a result of a dominant
convective transport, but can also be result of involved chemical
reactions, such a sorption (Borkovec et al., 1996; Frey, 1987), cation
exchange (Voegelin et al., 2000), or precipitation/dissolution (Lake
et al., 2002). All these reactions can under certain conditions (e.g.
for n < 1 in the Freundlich adsorption isotherm) lead to self-
sharpening concentration fronts, which are difficult to handle by
traditional implicit schemes.

5. Conclusions

Two quadratic interpolations schemes (QUICK and QUICKEST)
and one TVD scheme (ULTIMATE) have been successfully imple-
mented in HYDRUS-1D and tested against a series of analytical and
numerical solutions. Both quadratic schemes showed small
numerical dispersion. The QUICKEST scheme showed reduced
oscillatory behavior when compared to the QUICK scheme or
unbound central differencing. The incorporation of the TVD scheme
removed the oscillatory behavior near sharp fronts for large Peclet
numbers.

The QUICKEST and ULTIMATE schemes presented here have
a larger stability region in terms of the Peclet number, compared to
standard implicit schemes. Even if this advantage is of limited
application in 1D cases, it shows a large potential to be employed in
multi-dimensional applications to relax Peclet number constraints
on grid spacing.

Finally, the ULTIMATE scheme shows improved stability near
steep fronts due to non-oscillatory behavior and reduced numerical
dispersion. This suggests an improvement in stability in reactive
transport applications, as the absence of negative values is likely to
improve the convergence of such models.
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