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1.7.1 Introduction

Experimentalists often collect data that later need to be summarized to infer or in-
vestigate cause–effect relationships. The data sets and derived relationships can be
either static or dynamic. Soil water retention data (relating soil water matric head
with soil water content; Section 3.3) or hydraulic conductivity data (relating un-
saturated hydraulic conductivity with soil water matric head or water content; Sec-
tion 3.5) represent typical examples of such data sets. The data can be expressed
in a graphical form by simply drawing an eye-balled curve, or in functional form
by fitting a curve from a selected class of functions through the data. The fitting
process is called curve fitting or model fitting, depending on whether an arbitrary
or theoretically derived function was selected to describe the behavior of the phys-
ical and/or chemical system under observation. For example, fitting a soil water re-
tention curve (e.g., van Genuchten’s [1980] equation) can be considered as curve
fitting since the equation is almost completely empirical, whereas fitting a solute
breakthrough curve can be viewed as a model fitting process if the fitted function
is an analytical solution of the convection–dispersion equation (see Sections 6.3 and
6.5). Alternatively, fitting the van Genuchten–Mualem unsaturated hydraulic con-
ductivity function (van Genuchten, 1980) is a combination of curve and model fit-
ting since the conductivity function is derived theoretically from a pore-size dis-
tribution model, but uses an empirical retention function. Although, in principle,
curve and model fitting are not much different, curve fitting is more arbitrary. One
typically selects an arbitrary function and the best-fit criterion is often formulated
independent of statistical considerations (Bard, 1974). For model fitting, the func-
tional relationship is well defined and only the parameters are unknown. Thus, func-
tions obtained from curve fitting summarize the available data without necessarily
increasing insight into the nature of observed processes and are generally limited
to the measurement range.

The process of model fitting is closely related to parameter estimation. The-
oretically derived models (i.e., relationships describing a particular physical process)
include parameters that describe physical properties of the observed system (e.g.,
the saturated hydraulic conductivity, porosity, diffusion coefficient, cation ex-
change capacity, infiltration rate, or others). Hence, one would expect that fitting
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a correct model produces estimated parameters that describe these physical prop-
erties with a certain accuracy. Consequently, the results of model fitting can often
be extrapolated to beyond the measurement range. By comparison, parameters ob-
tained by curve fitting generally have little or no physical significance.

A simple case of curve or model fitting arises when fitting a functional rela-
tionship between a dependent variable y and a set of n variables xi, i = 1,..., n. A
more complex problem arises when the fitting model is represented by one or more
differential equations, with the measured variables representing either primary or
secondary variables (the latter being derived from the primary variables). A typi-
cal example of such a problem involves the transient variably saturated water flow
equation. The model is represented by the Richards equation, while the measured
variables are matric heads and/or water contents (primary variables), or water
fluxes and the sample soil water storage (secondary variables). To match the model
with experimental variables, selected parameters in the soil hydraulic properties are
usually fitted to functional relationships.

In this section we briefly describe the process of parameter estimation. We
include a discussion on least-squares and maximum-likelihood estimators, mini-
mization techniques, significance of optimized parameters and their confidence in-
tervals, and goodness of fit. Readers interested in more details are encouraged to
study the texts of Bard (1974) and Beck and Arnold (1977), among many others.
Detailed descriptions of proven experimental techniques that utilize parameter es-
timation to estimate soil hydraulic and transport properties are presented in Sec-
tions 3.6.2 and 6.6, respectively.

1.7.2 Maximum-Likelihood and Weighted Least-Squares Estimator

The general approach in model fitting is to select a merit or objective func-
tion that is a measure of the agreement between measured and modeled data, and
which is directly or indirectly related to the adjustable parameters to be fitted. The
best-fit parameters are obtained by minimizing (or maximizing, depending on how
the function is defined) this objective function. If no model and measurement er-
rors exist, this minimum value would be zero. However, even if the model is per-
fect, experimental errors will generally create a non-zero minimum value for the
objective function. An excellent discussion on data modeling and optimization can
be found in Press et al. (1992).

When measurement errors follow a multivariate normal distribution with zero
mean and covariance matrix V, the likelihood function can be written as (Bard, 1974)

L(ββ) = (2π)−n/2(detV)−1/2exp{(−1/2)[q* − q(ββ)]TV−1[q* − q(ββ)]} [1.7–1]

where L(ββ) is the likelihood function, ββ = {β1, β2,..., βm} is the vector of optimized
parameters, m is the number of optimized parameters, q* = {q*

1, q*
2,..., q*

n} is a vec-
tor of observations, q(ββ) = {q1, q2,..., q*

n} is the corresponding vector of model pre-
dictions as a function of the unknown parameters being optimized, and n is the num-
ber of observations. The differences between measured and computed quantities,
q* − q(ββ), are called residuals. The likelihood function L(ββ) is defined as the joint
probability density function of the observations and identifies the probability of the
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data, given the parameter vector ββ (Bard, 1974). The maximum-likelihood estimate
is that value of the unknown parameter vector ββ that maximizes the value of the like-
lihood function. Since the logarithm is a monotonically increasing function of its
argument, the values of ββ that maximize the likelihood function L(ββ) also maximize
lnL(ββ). This property of the logarithm is frequently used in parameter identifica-
tion studies since lnL is a simpler function than L itself. Hence, Eq. [1.7–1] is re-
formulated as the log-likelihood or support criterion (Carrera & Neuman, 1986a)

ln L(ββ) = −(L*/2) = −(n/2) ln(2π) − (1/2) ln(detV)

− (1/2) [q* − q(ββ)]T V−1 [q* − q(ββ)] [1.7–2]

The notation of L* is used in Section 1.7.5. The maximum of the likelihood func-
tion must satisfy the set of m ββ-likelihood equations

[∂ln L(ββ)]/∂βi = 0 i = 1,...., m [1.7–3]

If all elements of the covariance matrix V are known, then the value of the unknown
parameter vector ββ which maximizes Eq. [1.7–3] must minimize Φ:

Φ(ββ) = [q* − q(ββ)]TV−1[q* − q(ββ)] [1.7–4]

which constitutes the last term of Eq. [1.7–2].
If information about the distribution of the fitted parameters is known before

the inversion, that information can be included in the parameter identification pro-
cedure by multiplying the likelihood function by the prior probability density func-
tion, p0(ββ), which summarizes this prior information. Estimates that make use of
prior information are known as Bayesian estimates, and lead to the maximizing of
a posterior probability density function, p*(ββ), given by

p*(ββ) = cL(ββ)p0(ββ) [1.7–5]

in which c is a constant that insures that the integral of the posterior probability den-
sity function is equal to one. The posterior density function is proportional to the
likelihood function when the prior distribution is uniform. Inclusion of prior in-
formation leads to the following expression to be minimized

Φ(ββ) = [q* − q(ββ)]TV−1[q* − q(ββ)] + (ββ* − ββ)TVβ
−1(ββ* − ββ) [1.7–6]

where ββ* is the parameter vector containing the prior information and Vβ is a co-
variance matrix for the parameter vector ββ. The first term in Eq. [1.7–6] penalizes
for deviations of model predictions from measurements, while the second term pe-
nalizes for deviations of parameter estimates ββ from the prior estimate of the pa-
rameters ββ*; this prior estimate may be viewed as a reasonable first guess of ββ
(McLaughlin & Townley, 1996). The second term of Eq. [1.7–6], also called the
penalty function, ensures that the obtained parameter estimate is constrained to a
physically meaningful range of values. The solution of the minimization problem,
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Eq. [1.7–6], is a compromise between the best-fit estimate associated with mini-
mization of the first term, and the prior estimate associated with the second term
(McLaughlin & Townley, 1996). Russo et al. (1991) showed that the use of a
penalty function can significantly improve the uniqueness of the estimated param-
eters.

The covariance matrices V and Vβ are also referred to as weighting matrices
and provide information about measurement accuracy and correlation between
measurement errors, V, and between parameters, Vβ (Kool et al., 1987). When the
covariance matrix V has only non-zero diagonal elements, then the measurement
errors are uncorrelated. No prior information about the optimized parameters ex-
ists if all elements of Vβ are equal to zero. In that case, the problem simplifies to a
weighted least-squares problem

n

Φ(ββ) = Σ wi[qi
* − qi(ββ)]2 [1.7–7]

i=1

where wi is the weight of a particular measured point. The weighted least-squares
estimator of Eq. [1.7–7] is a maximum-likelihood estimator as long as the weights,
wi, contain the measurement error information such that

wi = 1/σi
2 = 1/variance of measurement error of qi

* [1.7–8]

However, in many applications, the measurement errors are either unknown
or weights are not specified based on probabilistic assumptions. It is then difficult
to interpret the resulting optimized parameters, their confidence intervals, correla-
tions, and in general their relationship with the true parameter values (Bard, 1974).
Weights significantly affect the shape and the absolute values of the objective
function, and when selected arbitrarily, this arbitrariness is reflected in all subse-
quent statistical evaluations given in Sections 1.7.4 and 1.7.5. Improper selection
of weights can influence not only the confidence regions of optimized parameters,
but also the location of the minimum of the objective function (Hollenbeck & Jensen,
1998).

The robustness of the least-squares criterion for the estimation of model pa-
rameters has recently been questioned by Finsterle and Najita (1998). They pointed
out that the least-square criterion causes outliers to strongly influence the final val-
ues of optimized parameters. Hence, outliers (e.g., individual data points with
large measurement errors, as is often the case with field measurements) can intro-
duce a significant bias in the estimated model parameters. Finsterle and Najita (1998)
studied several other more robust estimators with different error distributions that
reduce the effect of outliers on the optimized parameters. For example, they sug-
gest use of the least absolute deviates or L1 estimator if errors follow a double ex-
ponential distribution:

n

Φ(ββ) = Σ (1/σi)|qi
* − qi(ββ)| [1.7–9]

i=1

and the maximum-likelihood estimator for measurement errors that follow a Cauchy
distribution:
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n

Φ(ββ) = Σ log{1 + (1/2)wi[qi
* − qi(ββ)]2} [1.7–10]

i=1

Still other estimators that do not correspond to any standard probability density func-
tion were suggested by Huber (1981) and Andrews et al. (1972). Robust estima-
tors decrease the relative weights of outliers and thus make the estimated parame-
ters less affected by the presence of random errors following a heavy tailed
distribution (Finsterle & Najita, 1998).

Uniqueness, identifiability, stability, and ill-posedness are terms often en-
countered in the parameter estimation literature. Since exact definitions and detailed
discussions of these terms were given by Carrera and Neuman (1986b), we will only
present a brief definition of each. The solution is said to be nonunique whenever
the minimization criterion (i.e., the objective function) is nonconvex, that is, has
multiple local minima or the global minimum occurs for a range of parameter val-
ues. The convexity of the objective function can be enhanced by inclusion of prior
information, Eq. [1.7–6], in the analysis. The parameters are nonidentifiable when
different combinations of parameters lead to a similar system response, thereby im-
plying that a unique solution is impossible. Stability is achieved if the optimized
parameters are insensitive to measurement errors, that is, small errors in the sys-
tem response must not result in large changes in the optimized parameters. Finally,
the inverse problem is ill-posed if the identified parameters are unstable and/or
nonunique. Inverse problems used to estimate parameters of the unsaturated soil hy-
draulic functions are often ill-posed, but can become well-posed in case of well-
designed experiments for homogeneous soils with small measurement and model
errors (Hopmans & Šimçnek, 1999). An ill-posed problem can be replaced by a well-
posed problem by adding more or other type of measurements, and/or by con-
straining the value range of the set of adjustable parameters.

1.7.3 Methods of Solution

Many techniques have been developed to solve the nonlinear minimization
or maximization problem (Bard, 1974; Beck & Arnold, 1977; Yeh, 1986; Kool et
al., 1987). Most of these methods are iterative by requiring an initial estimate ββ i of
the unknown parameters to be optimized. The behavior of the objective function,
Φ(ββ), in the neighborhood of this initial estimate is subsequently used to select a
direction vector vi, from which updated values of the unknown parameter vector
are determined, that is,

ββ i+1 = ββ i + ρivi = ββ i − ρiRipi [1.7–11]

The direction vector is computed so that the value of the objective function decreases,
or

Φi+1 < Φi [1.7–12]

where Φi+1 and Φi are the objective functions at the previous and current iteration
level, Ri is a positive definite matrix, pi is the gradient vector, and ρi is the step size.
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Methods based on Eq. [1.7–11] are called gradient methods. The various gradient
methods used in the literature (e.g., steepest descent, Newton’s method, directional
discrimination, Marquardt’s method, the Gauss method, variable metric methods,
and the interpolation–extrapolation method) differ in their choice of the step di-
rection, vi, and/or the step size, ρi (Bard, 1974). The steepest descent method uses
ρi = 1 and Ri = I, where I is an identity matrix. The Newton method uses ρi = 1 and
Ri = H−1, where H is the Hessian matrix of Φ(ββ):

Hij (ββ) = (∂2Φ/∂βi∂βj) i, j = 1,...., m [1.7–13]

The steepest descent method is often inefficient, requiring many iteration steps to
reach the minimum, and consequently is not recommended. The Newton method
is usually not recommended because it requires evaluation of second derivatives,
thus making it computationally inefficient, especially for problems involving so-
lution of partial differential equations.

The Gauss–Newton method simply neglects the higher-order derivatives in
the definition of the Hessian matrix and assumes that H can be approximated by a
matrix N using only the first-order derivatives. For nonlinear weighted least squares
this leads to

H ≈N = Jw
TJw [1.7–14]

where Jw is the product of the Jacobian matrix J

∂[qi
* − qi(ββ)] ∂qi(ββ)

Jij = ____________ = − ________ [1.7–15]∂βj ∂βj

and the lower triangular matrix L of the Cholesky decomposition of V −1 (Jw = LJ).
Marquardt (1963) proposed a very effective method, commonly called the

Marquardt–Levenberg method, which has become a standard in nonlinear least-
square fitting among soil scientists and hydrologists (van Genuchten, 1981; Kool
et al., 1985, 1987). The method represents a compromise between the inverse-Hes-
sian and steepest descent methods by using the steepest descent method when the
objective function is far from its minimum, and switching to the inverse-Hessian
method as the minimum is approached. This switch is accomplished by multiply-
ing the diagonal in the Hessian matrix (or its approximation N), sometimes called
the curvature matrix, with (1 + λ), where λ is a positive scalar, leading to

H ≈ Jw
TJw + λDTD [1.7–16]

where D is a diagonal scaling matrix whose elements coincide with the absolute
values of the diagonal elements of the matrix N. When λ is large, the Hessian ma-
trix is diagonally dominant, resulting in the steepest descent method. On the other
hand, when λ is zero, Eq. [1.7–16] reduces to the inverse-Hessian method. A com-
mon strategy is to initially select a modest value of λ (e.g., 0.02) and then decrease
its value as the solution approaches the minimum (e.g., multiply λ by 0.1 at each
iteration step).
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The computationally most time-consuming part of both the Gauss–Newton
and Marquardt–Levenberg methods is the evaluation of Jacobians. The sensitivity
coefficients may be calculated using three different methods (Yeh, 1986): the in-
fluence coefficient method (finite differences), the sensitivity equation method, and
the variational method. When using the influence method, one has to balance trun-
cation errors that increase with ∆ββ, with rounding errors that decrease with ∆ββ. A
common practice is to use a one-sided difference method, that is, to change the op-
timized parameters by 1%

∂qi qi(ββ + ∆ββej) − qi(ββ)___ ≈ _______________ [1.7–17]∂βj ∆βj

where ej is the jth unit vector, and ∆ββ is the small increment of ββ (e.g., 0.01ββ). With
a total number of m fitting parameters, the governing equation must be solved (m
+ 1) times during each iteration of the nonlinear minimization. A better estimate
of the sensitivity coefficients can be obtained by using a central difference scheme

∂qi qi(ββ + ∆ββej) − qi(ββ − ∆ββej)___ ≈ _____________________ [1.7–18]∂βj 2∆βj

However, since this scheme requires evaluation of the objective function for two
additional parameter values for each optimized parameter, contrary to only a sin-
gle evaluation for a one-sided difference scheme, the central difference approach
is usually not recommended.

Depending upon the problem being considered (e.g., measurement errors,
number of optimized parameters, type of measurements), the objective function Φ
may be topographically very complex without a well-defined global minimum
and/or having several local minima in parameter space. The behavior of the objec-
tive function is often analyzed using contour plots of response surfaces. Specifically,
the objective function is calculated for two selected perturbed parameters, while the
other optimized parameters are kept constant, so that the contours can be graphi-
cally represented in a two-parameter plane. Contours of the objective function will
reveal the presence of local minima, parameter sensitivity, and parameter correla-
tion. Since a response surface analysis studies only cross-sections of the full pa-
rameter space, such an analysis can therefore only suggest how the objective func-
tion might behave in the full m-dimensional parameter space (Hopmans & Šimçnek,
1999).

Minimization methods can be highly sensitive to the initial values of the op-
timized parameters. Depending upon the initial estimate, the final solution may not
be the global minimum, but instead a local minimum. Consequently, when using
gradient-type minimization techniques, it is generally recommended to repeat the
minimization problem with different initial estimates of the optimized parameters
and to select those parameter values that minimize the objective function. More ro-
bust minimization techniques have recently been used by Pan and Wu (1998), who
used the annealing-simplex method; by Abbaspour et al. (1997), who used a se-
quential uncertainty domain parameter fitting (SUFI) method; and by Vrugt et al.
(2001), who used a genetic algorithm.
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In recent years, the increased interest in robust minimization algorithms has
led to global optimization techniques (e.g., Barhen et al., 1997) that uniquely
search for the global minimum. These methods include fast simulated annealing,
a stochastic approximation method, evolution algorithms, a multiple-level single-
linkage method, an interval arithmetic technique, taboo search schemes, subenergy
tunneling, and non-Lopschitzian terminal repellers (Barhen et al., 1997), but have
not yet, or only sparingly, been used for unsaturated zone flow and transport prob-
lems.

1.7.4 Correlation and Confidence Intervals

Since parameter estimation involves a variety of possible errors, including
measurement errors, model errors, and numerical errors, an uncertainty analysis of
the optimized parameters constitutes an important part of parameter estimation. Pa-
rameter uncertainty analyses usually assume that the solution converges to a global
minimum, and that the model error is zero, so that parameter uncertainty is limited
to measurement errors only. A confidence region of the parameter estimates can then
be defined exactly by using a maximum allowable objective function increment
(from its minimum)

|Φ(ββ) − Φmin| ≤ ε [1.7–19]

where Φmin is the best attainable value of the objective function Φ, and ε is the largest
difference between risks that one is willing to consider as being insignificant (Bard,
1974). The set of values ββ that satisfies this equation is known as the ε−indiffer-
ence region. If ε is sufficiently small so that Φ can be approximated by means of
its Taylor series expansion, the indifference region has a typical m-dimensional el-
lipsoid-type shape. An exact confidence region for nonlinear problems can be ob-
tained by contouring the objective function with reference to some fixed levels of
confidence (ε). This procedure is rather computationally expensive, especially for
problems involving numerical solution of partial differential equations, since it usu-
ally requires discretizing the parameter space and computing the objective function
value for each grid point (Hollenbeck et al., 2000). The appropriate contour value
ε for a desired level of confidence can be selected based on a chi-square or F dis-
tribution (Beck & Arnold, 1977; Press et al., 1992; Hollenbeck et al., 2000).

The approximate estimate of the parameter standard error is based on the
Cramer–Rao theorem (e.g., Press et al., 1992), defining an estimate of the lower
bound of the parameter covariance matrix

C ≥ H−1 [1.7–20]

Since this estimate of the standard error is derived from linear regression analysis,
it holds only approximately for nonlinear problems. The inequality in Eq. [1.7–20]
becomes an equality if the model is linear in the parameters ββ, and the confidence
region becomes an ellipsoid.

Under the stated assumptions, the parameter covariance matrix C (previously
referred to as Vβ when used as a weighting matrix for prior information) can be es-
timated directly from the variance, se

2, of the residuals e (= q* − q)
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se
2 = (eTe)/(n − m) [1.7–21]

and the Jacobian or derivative matrix J (Eq. [1.7–15]) (Carrera & Neuman, 1986a;
Kool & Parker, 1988)

C ≈se
2(Jw

TJw)−1 [1.7–22]

The estimated standard deviation of the parameter βj can then be determined from
the diagonal elements of C as follows

sj = %Cjj&& [1.7–23]

from which γ% (γ = 1 − α) confidence intervals can be estimated using the Student’s
t distribution

βj,min = βj − tv,1−α/2sj

βj,max = βj + tv,1+α/2sj [1.7–24]

where v denotes the number of degrees of freedom (n − m). The uncertainty in the
parameter estimates is underestimated when the parameters are correlated. A con-
servative way to find the confidence interval for correlated parameters is to find the
projections of the confidence ellipsoid on the parameter axes by multiplying the pa-
rameter standard error sj with the square root of ε (Press et al., 1992; Hollenbeck
et al., 2000).

Correlation between optimized parameters can be estimated using the diag-
onal and off-diagonal terms of C. The parameter correlation matrix R can be di-
rectly obtained from the covariance matrix as follows

Rij = Cij/(%Cii&&%Cjj&&) [1.7–25]

The correlation matrix quantifies changes in model predictions caused by small
changes in the final estimate of a particular parameter i, relative to similar changes
as a result of changes of the other parameter j. The correlation matrix reflects the
nonorthogonality between two parameter values. A value of −1 or +1 suggests a
perfect linear correlation, whereas 0 indicates no correlation. The correlation ma-
trix may be used to select the nonadjustable parameters because of their high cor-
relation with other fitting parameters. Interdependence of optimized parameters can
cause a slow convergence rate and nonuniqueness, and increase parameter uncer-
tainty.

Although restrictive and only approximately valid for nonlinear problems, an
uncertainty analysis provides a means to compare confidence intervals between pa-
rameters, thereby indicating those parameters that should be measured or estimated
independently (Hopmans & Šimçnek, 1999). Alternatively, on the basis of the sen-
sitivity analysis, one can collect observations of dependent variables at locations
and times that will reduce confidence intervals and allow independent estimation.
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1.7.5 Goodness of Fit

The maximum-likelihood approach leads to optimized parameters for a se-
lected model without questioning the adequacy of the given model. Different cri-
teria may be used to characterize the goodness of fit. The most popular criteria are
given below.

Absolute Error (AE):

n

AE = Σ |qi* − qi(ββ)| [1.7–26]
i=1

Root Mean Squared Error (RMSE):

n

Σ wi [qi
* − qi (ββ)]2

i=1RMSE = _______________ [1.7–27]r n − m

Akaike Information Criterion (AIC):

AIC = L* + 2m [1.7–28]

(Akaike, 1974; Russo et al., 1991), where L* is the negative log likelihood for the
fitted model (see Eq. [1.7–2]) and m is the total number of independently optimized
parameters. For a Gaussian process, AIC can be estimated from the residual sum
of squares (RSS) of deviations from the fitted model:

AIC = n{ln(2π) + ln[RSS/(n − m)] + 1} + m [1.7–29]

Bayesian Information Criterion (BIC):

BIC = (AIC − 2m) + mlnn [1.7–30]

(Akaike, 1977).

Hannan Criterion (φφ):

φ = L* + cmln(lnn) [1.7–31]
(Hannan, 1980), where c is a constant larger or equal to 2 (Carrera & Neuman,
1986a).

Kashyap Criterion (dM):

dM = L* + mln(n/2π) + ln|FM| [1.7–32]

(Kashyap, 1982), where FM is the Fisher information matrix. The Kashyap crite-
rion minimizes the average probability of selecting the wrong model among a set
of alternatives.

The best model is the one that minimizes AIC, BIC, φ, or dM. The Akaike and
Bayesian information criteria, or Hannan and Kashyap criteria, all penalize for
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adding fitting parameters; that is, everything else being equal, the model with the
smallest number of parameters is preferred.

r2 Value. An important measure of the goodness of fit is the r2 value for re-
gression of observed, qi*, vs. fitted, qi(ββ), values:

{Σwiqi
*qi − [(Σwiqi

*Σwiqi)/Σwi]}2
r2 = ________________________________________ [1.7–33]

{Σwiqi
*2 − [(Σwiqi

*)2/Σwi]}{Σwiqi
2 − [(Σwiqi)2/Σwi]}

The r2 value is a measure of the relative magnitude of the total sum of squares as-
sociated with the fitted equation, with a value of 1 indicating a perfect correlation
between the fitted and observed values.

Of the above goodness of fit criteria, the AE and the r2 value only relate ob-
served and calculated quantities, whereas the RMSE, AIC, BIC, φ, or dM also take
the number of optimized parameters into consideration.

1.7.6 Examples and Optimization Programs

Many curve fitting and/or parameter optimization codes have been developed
in the past two decades. One of the most widely used codes is the RETC (RETen-
tion Curve) program (van Genuchten et al., 1991) for estimating parameters in the
soil water retention curve and hydraulic conductivity functions of unsaturated
soils. The RETC program uses the parametric models of Brooks–Corey (Brooks
& Corey, 1966) and van Genuchten (1980) to represent the soil water retention curve,
and the theoretical pore-size distribution models of Mualem (1976) and Burdine
(1953) to predict the unsaturated hydraulic conductivity function from observed soil
water retention data (see Sections 3.3.4 and 3.6.3). Figure 1.7–1 shows one appli-
cation in which RETC was used to simultaneously fit six hydraulic parameters to
observed retention and conductivity data of crushed Bandalier Tuff (Abeele, 1984;
van Genuchten et al., 1991). The observed hydraulic data were obtained by means
of an instantaneous profile type drainage experiment involving an initially saturated
6-m-deep and 3-m-diameter caisson (lysimeter), as well as from independent lab-
oratory analyses at relatively low water contents (Table 1.7–1).

The soil hydraulic properties were described using the van Genuchten–
Mualem model (van Genuchten, 1980) (see also Section 3.3.4):

θ(hm) − θr 1
Se(hm) = ________ = __________ [1.7–34]θs − θr (1 + |αhm|n)m

K(θ) = KsSe
l[1 − (1 − Se

1/m)m]2 [1.7–35]

where θ is the volumetric water content (L3 L−3), hm is the soil water matric head
(L), K is the hydraulic conductivity (L T−1), Se is effective fluid saturation (-), Ks is
the saturated hydraulic conductivity (L T−1), θr and θs denote the residual and sat-
urated water contents (-), respectively; l is the pore-connectivity parameter (-), and
α (L−1), n (-), and m (= 1 − 1/n) (-) are empirical shape parameters. The above hy-
draulic functions contain six unknown parameters: θr, θs, α, n, l, and Ks.

SOIL SAMPLING AND STATISTICAL PROCEDURES 149



The objective function was defined as a weighted least-squares problem as
follows

n1 n2

Φ(ββ) = Σ wi[θ*(hm,i) − θ(hm,i,ββ)]2 + W Σ wi[lnK*(θi) − lnK(θi,ββ)]2 [1.7–36]
i=1 i=1

where n1 and n2 are numbers of retention and hydraulic conductivity data pairs, re-
spectively, θ*(hm,i) is the measured water content at the matric head hm,i, K*(θi) is
the measured hydraulic conductivity for the water content θi, and W is the weight
that insures that proportional weight is given to the two different types of data; that
is, it corrects for the difference in number of data points and for the effect of hav-
ing different units for θ and K (van Genuchten et al., 1991):

n2 n2

W = [n2 Σ wiθ*(hm,i)]/[n1 Σ wi|ln K*(θi)|] [1.7–37]
i=1 i=1
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Fig. 1.7–1. Observed and fitted unsaturated soil hydraulic functions for crushed Bandalier tuff. The (a)
calculated retention and (b) hydraulic conductivity curves are based on the van Genuchten (1980)
model.



Although this type of weighting, as well as the logarithmic transformation of con-
ductivities, has no support in the maximum-likelihood theory (Hollenbeck et al.,
2000), it proved to be useful for a simultaneous fitting of retention and hydraulic
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Table 1.7–1. Observed retention and conductivity data of crushed Bandalier tuff (Abeele, 1984).

Matric head Water content Water content Hydraulic conductivity

cm cm d−1

Laboratory data Laboratory data
−293.9 0.165 0.0859 0.000411
−322.5 0.162 0.0912 0.000457
−409.6 0.147 0.0948 0.000719
−453.2 0.139 0.0982 0.00087
−596.6 0.127 0.102 0.00149
−641.5 0.125 0.108 0.00314
−801.5 0.116 0.114 0.00377
−860.1 0.113 0.125 0.00635
−949.7 0.109 0.140 0.018

−1192.0 0.103 0.161 0.0303
−1298.0 0.101 Caisson data
−1445.0 0.0988 0.165 0.0262
−1594.0 0.0963 0.169 0.0317
−1760.0 0.0915 0.175 0.0548
−1980.0 0.0875 0.177 0.0852

Caisson data 0.180 0.0623
−16.9 0.319 0.183 0.0940
−25.1 0.313 0.184 0.0691
−27.2 0.294 0.191 0.114
−43.7 0.289 0.196 0.132
−61.5 0.294 0.199 0.194
−64.0 0.268 0.201 0.133
−66.4 0.257 0.205 0.140
−79.8 0.264 0.210 0.160
−85.2 0.257 0.214 0.267
−91.6 0.257 0.215 0.161
−91.2 0.248 0.218 0.418
−98.6 0.239 0.219 0.273

−104.8 0.241 0.219 0.185
−118.2 0.237 0.224 0.339
−122.4 0.236 0.234 0.550
−136.2 0.219 0.235 0.400
−142.6 0.226 0.239 0.878
−142.0 0.222 0.239 0.680
−150.2 0.222 0.247 0.769
−160.7 0.215 0.256 0.804
−169.9 0.200 0.256 1.219
−180.9 0.212 0.256 1.394
−190.9 0.208 0.262 1.573
−201.8 0.197 0.267 2.335
−204.1 0.183 0.288 3.286
−228.1 0.191 0.293 1.650
−232.6 0.184 0.294 3.143
−234.0 0.182 0.313 6.275
−229.3 0.177 0.320 9.715
−263.2 0.177 0.330 12.83
−287.3 0.170
−307.7 0.165



conductivity data. The optimized parameters were as follows: θr = 0.028, θs = 0.325,
α = 0.0113 cm−1, n = 1.58, l = 0, and Ks = 19.5 cm d−1.

Effluent curves derived from the laboratory miscible displacement column
experiments often have been analyzed using the CFITIM (van Genuchten, 1981),
CXTFIT (Parker & van Genuchten, 1984; Toride at al., 1995), and STANMOD
(Šimçnek et al., 1999b) codes. These programs may be used to solve the inverse
problem by fitting analytical solutions of theoretical transport models, based on the
advection dispersion equation, to experimental results (see Sections 6.3 through 6.5).
Figure 1.7–2 shows measured and fitted breakthrough curves of a nonreactive
(3H2O) solute for transport through a Glendale clay loam soil. A tritiated water pulse
of 3.102 saturated pore volumes was applied to a 30-cm-long column, with the
breakthrough curve being determined from the effluent (Table 1.7–2). An analyti-
cal solution for a two-region (mobile–immobile) physical nonequilibrium model
(van Genuchten, 1981) was used for the analysis (see Eq. [6.3–42] in Section 6.3).

The objective function was defined as the least-squares problem

n

Φ(ββ) = Σ wi[c*(ti) − c(ti,ββ)]2 [1.7–38]
i=1

with weights wi equal to one. With the pore water velocity known (v = 37.5 cm d−1)
and assuming that the retardation factor R is equal to 1 for 3H2O, only three pa-
rameters were optimized against the breakthrough curve: the dispersion coefficient
D (= 15.6 cm2 d−1), the dimensionless variable β (= 0.823) for partitioning mobile
and immobile water in nonequilibrium transport models, and the dimensionless mass
transfer coefficient ω (= 0.870). Unfortunately, the optimized parameters are highly
correlated with a positive correlation for parameters D and β with the correlation
coefficient RDβ = 0.96, and a negative correlation for parameters D and ω with RDω
= −0.93, and β and ω with Rβω = −0.985. The high correlation between optimized
parameters leads to a relatively large uncertainty of final parameter estimates, cal-
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Fig. 1.7–2. Breakthrough curves for nonreactive tritium as analyzed with the two-region physical non-
equilibrium model.



culated using the Student’s t distribution with the 95% confidence intervals, as fol-
lows: D ∈ (7.13, 24.0 cm2 d−1), β ∈ (0.76, 0.89), and ω ∈ (0.33, 1.41).

Figure 1.7–3 shows the contours of the objective function, Eq. [1.7–38], cal-
culated at the cross-sections through the global minimum. Notice the long valleys
in the horizontal direction in the D–β plane and in the vertical direction in the β–ω
plane, which explains the large confidence intervals for the D and ω variables, re-
spectively. Also notice that the contours around the minimum are only approximately
elliptical.

Soil hydraulic parameters are increasingly being estimated from transient vari-
ably saturated flow experiments (see Section 3.6.2). Several optimization codes have
been developed that can be used only for specific applications, such as one-step
(Kool et al., 1985b) or multistep outflow (van Dam et al., 1994; Chen et al., 1999)
experiments. More versatile codes that can be applied to a wider range of problems
with various initial and boundary conditions and several different soil layers have
also been developed (Kool & Parker, 1987; Šimçnek et al., 1998, 1999a). The SFIT
model (Kool & Parker, 1987) may be used to estimate soil hydraulic parameters,
while the HYDRUS-1D and HYDRUS-2D models (Šimçnek et al., 1998, 1999a)
can estimate simultaneously or independently both soil hydraulic and solute trans-
port parameters from one- and two-dimensional experiments, respectively. The SFIT
and HYDRUS models also consider hysteresis in the unsaturated soil hydraulic prop-
erties.

In addition to codes designed specifically for estimation of soil hydraulic prop-
erties, general optimization codes, such as PEST (Doherty, 1994), LM-OPT (Claus-
nitzer & Hopmans, 1995), and UCODE (Poeter & Hill, 1998), can be coupled with
any parameter estimation problem. Alternatively, one can also interface optimiza-
tion algorithms as listed in Press et al. (1992) with specific flow and transport sim-
ulation codes. In addition, software such as MS EXCEL can now be used simply
and conveniently to solve a variety of parameter estimation problems (e.g., Wraith
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Table 1.7–2. Measured breakthrough curve of a nonreactive solute (3H2O) for transport through a Glen-
dale clay loam soil (fine-silty, mixed, superactive, calcareous, thermic Typic Torrifluvents).

Pore volume Concentration Pore volume Concentration

0.512 0.001 3.342 0.986
0.599 0.016 3.516 1.015
0.686 0.082 3.712 0.971
0.73 0.138 3.842 0.838
0.817 0.296 3.951 0.638
0.904 0.465 4.038 0.48
0.992 0.593 4.125 0.353
1.079 0.685 4.255 0.236
1.166 0.764 4.386 0.166
1.253 0.806 4.516 0.118
1.34 0.85 4.777 0.066
1.428 0.901 5.037 0.038
1.558 0.915 5.385 0.018
1.646 0.923 5.818 0.008
1.754 0.947 6.251 0.004
2.016 0.967 6.791 0.002
2.604 0.981 7.331 0.006
3.125 1 7.439 0.0003
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Fig. 1.7–3. Contours of the objective function (Eq. [1.7–38]) as calculated at the cross-sections through the global minimum.



& Or, 1998). Many examples illustrating the versatility of parameter optimization
methods for estimating soil hydraulic and solute transport parameters are pre-
sented in Sections 3.6.2 and 6.6, respectively.

1.7.7 Discussion

During the past two decades, curve and model fitting have become relatively
standard techniques to analyze a variety of biophysicochemical data involving the
unsaturated zone. Such curve fitting codes as RETC and CXTFIT are now widely
used for analyzing experimental data, such as retention and conductivity data,
breakthrough curves, as well as other data. A major recent promise in applying pa-
rameter estimation and nonlinear fitting techniques is the effective coupling of op-
timization and advanced numerical codes, and applying these codes to complex tran-
sient flow and transport experiments (see Sections 3.6.2 and 6.6). Many commonly
used inversion methods (e.g., CXTFIT) are based on analytical solutions for trans-
port or Wooding’s solution for tension infiltrometry that require relatively simple
initial and boundary conditions. The resulting optimization approach then often re-
quires experiments that repeatedly achieve steady-state or equilibrium conditions.
The form of the hydraulic and transport properties is also often severely restricted
using analytical methods. Application of inverse modeling techniques can allevi-
ate some of these difficulties. Coupling of parameter estimation and nonlinear fit-
ting techniques with numerical models provides greater flexibility by allowing dif-
ferent experimental boundary and initial conditions. This is important especially
for field experiments where it is difficult and expensive to control the initial and
boundary conditions on a large scale; parameter estimation methods permit con-
ditions encountered in the field to be analyzed more easily. In addition, more gen-
eral soil hydraulic and transport property models can be used to better represent field
behavior.

Analytical methods were generally preferred some 20 yr ago because of lim-
itations in numerical methods and computer technology, thus compromising ex-
perimental procedures for the purpose of keeping the mathematics as simple as pos-
sible. Recent advances in computer software and hardware now make it possible
to couple sophisticated parameter estimation algorithms with state-of-the-art, in-
tegrated numerical flow and transport codes that do not sacrifice experimental as-
pects for numerical expediency.

The limitations of this type of parameter estimation are mostly related to fac-
tors that determine the well-posedness of the solution. For example, which variables
to measure and which parameters to optimize is not known a priori for flow and
transport experiments. Also, it is not obvious, in advance, whether or not a given
type of experiment, or a given data set, will result in a well-posed inverse problem
and how many parameters can be uniquely estimated. Since it is not always clear
what is causing nonunique or unstable solutions, an inverse problem always requires
in-depth analysis to determine whether it is well-posed and, if not, the cause of the
ill-posedness (see also Section 3.6.2).

Because of its generality (in terms of the definition of the objective function,
the possible combination of boundary and initial conditions, options for consider-
ing multilayered systems, and flexibility in selecting optimized parameters), pa-
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rameter estimation by inverse modeling can be an extremely useful tool for ana-
lyzing a broad range of steady-state and transient, laboratory and field, flow and
transport experiments.
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