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[1] Dual-permeability models contain a lumped mass transfer term that couples equations
for water flow in the soil matrix and fracture systems. Linear first-order transfer terms
cannot accurately calculate water transfer between the domains during early times of
pressure head nonequilibrium. In this study, a second-order equation for water transfer into
spherical rock matrix blocks [Zimmerman et al., 1993, 1996] was adapted and evaluated
comprehensively for water transfer into and out of variably saturated soil matrix blocks of
different hydraulic properties, geometries, and sizes, for different initial and boundary
conditions. Numerical solutions of the second-order term were compared with respective
results obtained with a first-order term and a one-dimensional horizontal flow equation.
Accurate results were obtained after implementing two modifications in the second-order
term. First, the hydraulic conductivity was calculated as a weighted arithmetic average
of conductivities that used pressure heads in matrix and fracture. For a time-variable
pressure head boundary condition, a fixed weighting factor of 17 could be applied
irrespective of texture, initial condition, and matrix block size up to 10 cm. Second, if
direction of water transfer changed (to or from matrix), the initial pressure head was reset
to the equilibrium pressure head at the time of transfer reversal. The modified second-
order term was implemented into a dual-permeability model, which closely approximated
reference results obtained with a two-dimensional flow model. For rectangular slab-type
or comparable geometry of soil matrix, the modified second-order term considerably
improves the accuracy of dual-permeability models to simulate variably saturated
preferential flow in soil. INDEX TERMS: 1875 Hydrology: Unsaturated zone; 1866 Hydrology: Soil

moisture; 1829 Hydrology: Groundwater hydrology; KEYWORDS: dual-permeability model, preferential flow,

second-order transfer term
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1. Introduction

[2] For simulating water exchange between regions of
contrasting hydraulic properties in a fractured porous
medium, many dual-permeability models rely on a linear
first-order, ‘‘Warren-Root’’-type [Warren and Root, 1963]
water mass transfer term that in its most general form can be
written as

Gw ¼ 1� wf

� �
Cm

dhm

dt
¼ aKm hf � hm

� �
; ð1Þ

where Gw [T�1] is the horizontal water flux (volumetric flux
per unit volume), wf [ ] is the volume fraction of the fracture
pore system, a [L�2] is a first-order water transfer

coefficient, Km [L T�1] is the hydraulic conductivity of the
matrix pore region, hf [L] is the pressure head of the fracture
pore region, hm [L] is the average pressure head of the
matrix region, and Cm [L�1] equal to dqm/dhm is the specific
water capacity of the matrix, where qm is the water content
in the matrix. A mathematical derivation of equation (1) was
given, for instance, by Zimmerman et al. [1993, 1996].
[3] A first-order transfer term such as equation (1) suffers

two drawbacks compared with the full description of flow
using, e.g., Richards’ equation. First, it is theoretically valid
only for quasi-steady water transfer [Zimmerman et al., 1993]
and therefore underestimates highly transient transfer flux for
early times [e.g., Zimmerman et al., 1993; Gerke and van
Genuchten, 1993a]. Second, in a lumped formulation such as
equation (1), Km needs to be evaluated as some block-
averaged, effective hydraulic conductivity function of the
pressure head in the matrix and fractures that best represents
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the conductivity of the actual pressure head profile at all
times. Gerke and van Genuchten [1993a] evaluated the
conductivity in equation (1) as an arithmetic average function
of pressure heads in both matrix and fractures and scaled the
first-order transfer term to match the exact solution at 50%
of the cumulative horizontal infiltration. Moreover, they
assumed an effective hydraulic conductivity at the fracture-
matrix interface, Ka [L T�1], affected by fracture coatings
[Gerke and van Genuchten, 1993a], to obtain following
modified first-order transfer term:

Gw ¼ 1� wf

� �
Cm

dhm

dt
¼ aGvGKa hf � hm

� �
ð2aÞ

aGvG ¼ gw
b
a2

ð2bÞ

Ka ¼ 0:5 Ka hf
� �

þ Ka hmð Þ
� �

; ð2cÞ

where the transfer coefficient aGvG includes the geometry-
dependent coefficient b [ ], a dimensionless scaling factor
gw, and the diffusion length a [L], representing the radius
for spheres (or cylinders) or the half width for cubes (or
rectangular plates). On average, a scaling factor gw of 0.4
was deemed to give best results. However, best fit scaling
factors differed by up to 5 times for different initial pressure
head values between �30 and �3000 cm and varied by
20% or less between medium and fine textured soils
[Gerke and van Genuchten, 1993a, Tables 2 and 3]. Even
for the best fit scaling factors, the relative cumulative
horizontal infiltration was initially underestimated and later
overestimated, revealing the inherent limitations of the first-
order approach. A transfer term similar to equation (2) was
subsequently used by Gwo et al. [1995] and Ray et al.
[1997], among others.
[4] An accurate coupling term for a saturated dual-

permeability system was suggested by Dykhuizen [1990].
The approach consisted of two different equations applica-
ble to early- and late-time lateral imbibition. A nonlinear
ordinary differential equation accurate for all times was
presented by Zimmerman et al. [1993]. Their second-order
water transfer term, derived by differentiating an analytical
solution adapted from Vermeulen [1953], accurately approx-
imates the exact solution for the pressure response of a
spherical matrix block to a step function increase in the
pressure head at its outer boundary [Zimmerman et al.,
1993]. The term was subsequently modified for variably
saturated conditions [Zimmerman et al., 1996] and in the
notation of this paper is given by

Gw ¼ 1� wf

� �
Cm

dhm

dt
¼ bKm

2a2
hm � hi
� �2� hf � hi

� �2
hm � hi
� � ; ð3Þ

where t is time [T] and hi [L] is the initial pressure head, i.e.,
a value that is assumed to be the same in the fractures and
matrix being initially in equilibrium. The second-order term
(3) closely approximated reference solutions of horizontal
infiltration into saturated porous spheres and cubes
[Zimmerman et al., 1993]. For unsaturated horizontal
infiltration into a 200-cm-thick rectangular rock slab, results
obtained with the dual-permeability transport of unsaturated
groundwater and heat (TOUGH) model with the second-
order mass transfer term were also in excellent agreement

with the numerical reference simulation. However, for
structured soils, matrix aggregate sizes are much smaller
than 200 cm while matrix hydraulic conductivities are
generally much larger as compared with rock systems. It
was also shown that diffusion for fundamentally different
geometries like spheres and cylindrical macropores cannot
be described with a single, geometry-based model [van
Genuchten and Dalton, 1986; Young and Ball, 1997].
Hence it is not clear how the second-order term applies to an
aggregated soil and to the geometry of a cylindrical
macropore system.
[5] In this paper we will evaluate equation (3) with three

modifications for flow in macroporous soil systems. The first
modification is that for variably saturated water flow, Kmwill
be evaluated as a block-averaged, effective function hence-
forth denoted Km. No hydraulic resistance at the fracture-
matrix interface will be assumed for Km as opposed to Ka in
equation (2). Second, to allow for variable directions of
transfer between fracture and matrix with nonmonotonic
variation of hf, equation (3) is modified in a way that ensures
that d�hm/dt always has the same sign as (hf � �hm), as was
shown and explained in detail by Zimmerman et al. [1993,
Appendix B] for the saturated system. Third, the initial
pressure head in equation (3) is considered to be a dynamic
variable, hi

d. Every time the transfer direction changes, hi
d is

reset to the pressure head value at the crossover point of
matrix and fracture pressure heads, i.e., the equilibrium
pressure head at the time of transfer reversal. With these
modifications, equation (3) changes to

Gw ¼ 1� wf

� �
Cm

dhm

dt
¼ bKm

2a2
hf � hm
� �

hm � hdi
�� ��þ hf � hdi

�� ��� �
hm � hdi
�� �� :

ð4Þ

[6] The primary objective of this study is to evaluate and
enhance the accuracy of a second-order transfer term to
improve predictions of dual-permeability models for vari-
ably saturated preferential flow in structured soils. The
second-order mass transfer term (4) is evaluated in two
steps. In the first step, water transfer predictions obtained
with the first- and second-order transfer terms are compared
with a reference numerical solution of a horizontal flow
equation. Specific tasks with regard to the evaluation and
improvement of the second-order term are (1) to analyze the
effects of hydraulic properties, initial and boundary con-
ditions, matrix size, and geometry, (2) to find the best single
estimation scheme for Km, and (3) to improve predictions of
the second-order term for variable transfer directions. In the
second step, the performance of one-dimensional dual-
permeability models with first- and second-order transfer
terms is assessed by comparing their results with numerical
reference solutions of the two-dimensional Richards’ equa-
tion assuming different flow scenarios.

2. Comparison of the First- and Second-Order
Mass Transfer Terms With Horizontal
Flow Equation

2.1. Procedure

[7] In numerical dual-permeability models, water transfer
between the matrix and fractures is assumed to be perpen-
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dicular to the direction of flow and has to be calculated for
each discretization element. Since preferential flow in soils
typically tends to be vertical, water transfer is essentially
horizontal. Therefore, as a starting point, water transfer
calculated with the first- and second-order mass transfer
terms will be compared with reference results obtained with
the following equation describing the horizontal water flow
in variably saturated rectangular matrix slabs:

@qm x; hmð Þ
@t

¼ @

@x
Km x; hmð Þ @hm x; tð Þ

@x

� �
0 � x � a; ð5Þ

where x [L] is the local horizontal coordinate between the
fracture boundary at x = 0 and the center of a slab at x = a.
Figure 1 shows a schematic representation of a correspond-
ing dual-permeability medium. For the purpose of compar-
ing transfer terms and the horizontal flow equation, the
vertical flow direction indicated by the vertical axis in
Figure 1 is neglected. A discretized form of equation (5)
was numerically solved using HYDRUS-1D [Simunek et
al., 1998] with a very small element size of 0.05 cm. On the
basis of results for qm in equation (5), effective values of the
matrix pressure heads h were calculated from the average
saturation of the matrix block Se, using the inverse of van
Genuchten’s [1980] relation:

h ¼ a�1 S
n

1�n

e � 1
h i1

n ð6aÞ

Se ¼
Za
0

qm � qm;r
qm;s � qm;r

dx; ð6bÞ

where qm,r and qm,s are the local residual and saturated water
contents of the matrix, respectively, and a and n are
empirical constants for the matrix (here without index m for
better legibility of equation (6a)).

[8] For numerical solution, the first-order transfer
term (2) and the second-order transfer term (4) are expressed
in the following discretized forms (7) and (8) without the
term (1 � wf ) so that they can be directly compared with
equation (5).

Dhm

Dt
¼ 0:4bKm

a2Cm

hf � hm
� �

ð7Þ

Dhm

Dt
¼ bKm

2a2Cm

hf � hm
� �

hm � hdi
�� ��þ hf � hdi

�� ��� �
hm � hdi
�� �� : ð8Þ

The nonlinear functions Cm and Km were evaluated using
the van Genuchten [1980] equations of the soil hydraulic
properties. In equation (7), Km is evaluated according to
equation (2c) with Ka replaced by Km. The first- and
second-order mass transfer equations (7) and (8), respec-
tively, were solved for hm iteratively at each time step using
Matlab (Mathworks, Inc.). Multiplying the solutions of
equations (7) and (8) in terms of Dhm/Dt with Cm provided
the transfer flux Gw , which was compared to the solution of
equation (5).
[9] To evaluate the second-order term, different textures,

initial conditions, matrix sizes, and boundary conditions
were assumed, initially limiting the analysis to rectangular
slab-type geometry of matrix blocks. Geometry was repre-
sented by a factor b in equations (7) and (8). Values for b in
equation (7) could be derived, for example, by comparing
the solution of the first-order transfer term, assuming a
certain geometry and a step-function boundary condition,
with a Laplace transform of the linearized horizontal water
flow equation (e.g., b equals 3 for slab-type matrix blocks)
[Gerke and van Genuchten, 1993a]. By analogy, the same
b values were used in equation (8).
[10] For the standard scenario, rectangular slab-type

(b = 3) matrix blocks with a half width a of 5 cm were
considered. Two values of hi, equal to �100 and �1000 cm,
were selected for initial conditions. To represent the matrix
soil hydraulic properties, van Genuchten [1980] parameters
representing textures ‘‘silty clay,’’ ‘‘silt,’’ and ‘‘loamy sand’’
were chosen from a database of Carsel and Parrish [1988]
(Table 1). The following expressions for calculating the
effective hydraulic conductivity, Km, in equation (8) were
used:

Matrix Km ¼ Km hmð Þ ð9aÞ

Fracture Km ¼ Km hf
� �

ð9bÞ

Arithmetic Km ¼ Km hmð Þ þ Km hf
� �� �

=2 ð9cÞ

Geometric Km ¼ Km hmð ÞKm hf
� �� �0:5 ð9dÞ

Integral Km ¼ 1

hf � hm

Zhf
hm

Km hð Þdh ð9eÞ

Figure 1. Schematic representation of an elementary unit
of a dual-permeability system consisting of parallel
rectangular matrix blocks of half-width a separated by
fractures of half width b. White lines represent fictitious
pressure heads.
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When the van Genuchten [1980] model is used to calculate
Km, the integral approach (9e) requires numerical integra-
tion. Hence, for each time step within the numerical solution
of equation (8), equation (9e) was itself numerically solved
utilizing an integral, adaptive Simpson quadrature as
implemented in the Quad routine of Matlab (Mathworks,
Inc.). Note that for consistency, Cm was always evaluated
with the same respective scheme as Km. Evaluation of Cm

affects the prediction of hm but not of transfer flux, Gw .
[11] Statistical analysis was performed for results of

different approaches subject to the step-increase boundary
condition in order to select the most appropriate approach
for further analyses using transient boundary condition.
The root-mean-square error (RMSE), quantifying devia-
tions between observations Oi (horizontal flow equation
solution) and estimates Ei (mass transfer term solution),
was calculated and normalized with the arithmetic mean
of observations, O, to yield a normalized RMSE or
coefficient of variation (CV) [Green and Stephenson,
1986]:

CV %½ � ¼ 100

O

Pn
i¼1 Oi � Eið Þ2

n

 !1=2

¼ 100

O
RMSE ð10Þ

2.2. Results for the Fracture-to-Matrix Transfer Using
a Step-Increase Boundary Condition

[12] The following initial condition and step-increase
boundary conditions were assumed for the horizontal flow
equation (5):

hm x; t ¼ 0ð Þ ¼ hi ð11aÞ

hm x ¼ 0; t > 0ð Þ ¼ h0 ð11bÞ

q x ¼ a; t 	 0ð Þ ¼ 0; ð11cÞ

where equation (11c) implies zero flow across the midplane
of rectangular slabs. For water transfer terms (7) and (8), the
corresponding initial and boundary conditions were

hm t ¼ 0ð Þ ¼ hf t ¼ 0ð Þ ¼ hi ð12aÞ

hf t > 0ð Þ ¼ h0: ð12bÞ

Since the water transfer terms are spatially nondimensional,
ordinary differential equations, equation (12b) is only a

conceptual boundary condition. Practically, equation (12b)
means that hf in equations (7) and (8) was kept constant
when solving the initial value problem.
[13] Simulated water transfer at the initial pressure head

of �1000 cm is shown in Figure 2. Note the decrease in
timescale and increase in total water transfer from silty clay,
silt, to sandy loam. Using the matrix approach (8a), the
second-order model significantly underestimated cumula-
tive transfer for all textures (Figure 2). The estimation
somewhat improved with finer texture, characterized by
smaller hydraulic conductivity. This may explain why
Zimmerman et al. [1996] found an excellent agreement
between the second-order model and the numerical refer-
ence simulation of unsaturated horizontal imbibition into a
rock slab. Zimmerman et al. [1996] considered the saturated
hydraulic conductivity of rock matrix 4 orders of magnitude
smaller than Km of our silty clay.
[14] The second-order termwith the fracture approach (9b)

overestimated the water transfer (Figure 2) with CV values
smaller than those for the matrix approach (Table 2). Only
minor improvements were gained with the arithmetic ap-
proach (9c) that provided predictions relatively close to the
fracture approach (Figure 2). The geometric approach (9d)
revealed the strongest sensitivity to a change in texture
(Figure 2). The best overall approximation, relatively
independent of texture, was achieved with the integral
approach (9e) (Figure 2, Table 2). The scaled first-order
transfer model (2) always overestimated water transfer
(Figure 2). Only for sandy loam (Figure 2c) was the
agreement relatively good with a comparably low CV value
(Table 2). No approach satisfactorily described the reference
solution for all three textures.
[15] Figure 3 shows results for the initial pressure head of

�100 cm. The reference curve was somewhat better matched
by all approaches and particularly by the first-order term (2).
The CV values of most approaches were smaller for the
initial pressure head of �100 cm than for �1000 cm, which
shows that the variably saturated transfer term predictions
improve for smaller pressure head gradients between the
domains. Still better results were found for the initial
pressure head of �10 cm (not shown).
[16] Using scaling factors as described by Gerke and van

Genuchten [1993a] to match the dimensionless cumulative
transfer at 0.5 with the second-order term yielded results
only slightly better than the first-order term (2) for all three
soils and both initial conditions of �100 and �1000 cm (not
shown). Therefore the scaling approach was not considered
further. Instead, in order to better match both early- and late-
time water transfers, we tested the following weighted
arithmetic averaging scheme for evaluating Km:

Weighted arithmetic Km ¼ pKm hmð Þ þ Km hf
� �� �

= pþ 1ð Þ; ð13Þ

where p is a weighting factor calibrated to achieve the best
fit to the reference model (5). Excellent agreement between
the results obtained with the second-order term using the
weighted arithmetic scheme (13) and the cumulative
reference water transfer (Table 2) could be achieved during
the entire time range for both initial conditions of �1000
and �100 cm and all textures (Figures 4 and 5). Note that
no considerable improvement over the scaling approach of
Gerke and van Genuchten [1993a] could be obtained by

Table 1. Van Genuchten [1980] Parameters Used for

Horizontal, Two-Dimensional, and Vertical Dual-Permeability

Flow Simulationsa

qr qs a, 1/cm n Ks, cm/d

Silty clay 0.070 0.36 0.005 1.09 0.48
Silt 0.340 0.46 0.016 1.37 6.0
Sandy loam 0.065 0.41 0.075 1.89 106.1
Sand 0.045 0.36 0.145 2.68 712.8

aParameters from Carsel and Parrish [1988].
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implementing the weighted arithmetic scheme (13) into the
first-order transfer term (7) (results not shown).
[17] For the second-order term, the weighting factor p

varied between 8 (sandy loam) and 59 (silty clay) (Table 2).
This variation of p with texture can be explained to some
degree by comparing the progression of the horizontal dis-
tributions of pressure heads and hydraulic conductivities
with time. For the initial pressure head of �1000 cm,
Figure 6 shows horizontal profiles of pressure heads and
relative hydraulic conductivity calculated with the reference
approach (5) for different fractions of themaximum time tmax,
defined as the time when simulated pressure heads exceeded
�0.005 cm in the entire profile. Pressure head increase
became more abrupt in the textural order of silty clay, silt,
and sandy loam, leading to sharp hydraulic gradients in the
sandy loam. For similar positions of the pressure front, the
hydraulic conductivity dropped faster from its maximum
value at the (fracture) boundary for silty clay than for silt
and sandy loam. Hence, for horizontal infiltration into a fine-
textured porous medium assuming a step-increase bound-
ary condition, ‘‘effective’’ hydraulic conductivity can be

expected to dependmore on pressure heads inside the domain
than at the (constant head) fracture boundary. This phenom-
enon is particularly significant for fine textured soils and less
so for coarse textured soils, which is reflected by decreasing p
values in the order silty clay, silt, and sandy loam (Table 2).

2.3. Results for the Fracture-to-Matrix Transfer Using
a Variable-Head Boundary Condition

[18] The step-type boundary conditions (11b) and (12b)
represented only an approximation of the real process, since
pressure heads in capillary fractures do not change in steps.
In our subsequent simulations, the imposed pressure head at
the boundary, h0, in the boundary conditions (11b) and
(12b) was assumed to be a time-dependent function, h0(t).
The values for h0(t) were generated using the HYDRUS-1D
simulations of infiltration at the zero pressure head upper
boundary condition into a vertical, 80-cm-deep highly
permeable porous medium, conceptually representing a
‘‘fracture system,’’ being initially at either �1000 or
�100 cm pressure head. A 30-min time series of the
simulated pressure heads at 40-cm depth was taken as

Figure 2. Cumulative water transfer into silty clay, silt, and sandy loam matrix slabs of 5-cm half width
at the initial pressure head of �1000 cm for a step increase of the boundary pressure head to 0 cm.
Simulation results are for the horizontal flow equation (5) (denoted ‘‘reference’’ in the legend), the first
order-term (7) (denoted ‘‘first-order’’), and the second-order term (8) with different evaluation schemes
for Km (matrix, fracture, arithmetic, geometric, and integral, corresponding to equations (9a), (9b), (9c),
(9d), and (9e), respectively).

Table 2. Coefficients of Variation Between Numerical Solutions of Horizontal Flow Equation (5) and the Second-Order Term (7) With

Different Estimation Methods for Km as Given by Equations (9a)–(9e) and (12), and Between Equation (5) and the First-Order Term (6)

Coefficient of Variation, %

Matrix Fracture Arithmetic Geometric Integral
Weighted
Arithmetic p [ ]

First-
Order

hi = �1000 cm
Silty clay 1899 84.4 73.4 42.3 16.9 3.1 59 45.5
Silt 5238 77.0 71.2 19.3 22.0 4.1 29 44.4
Sandy loam 533300 71.5 57.8 2948.0 24.9 3.7 8 19.8

hi = �100 cm
Silty clay 20 46.9 44.5 30.5 15.9 1.0 45 11.5
Silt 85 63.0 49.5 35.1 27.0 2.4 19 6.5
Sandy loam 8460 64.7 81.7 58.5 26.5 3.6 8 6.4
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h0(t) in equations (11b) and (12b) for water transfer into the
matrix blocks. This procedure gives values for h0(t) similar
to those that would be obtained for the fracture region of a
dual-permeability model with zero or negligible transfer
into the matrix. In this way, the h0(t) values represent the
most abrupt, ‘‘worst-case’’ increase of fracture pressure
heads to be expected under natural conditions. Figure 7
shows the h0(t) boundary condition values rising from
�1000 to 0 cm in less than 10 min and the matrix pressure
head response calculated with the reference model (5)
(reference-h). The figure also shows the relative water
transfer estimated with equations (5) (reference-q), (7),
and (8) in terms of the cumulative transfer normalized with
the total transfer necessary to obtain full saturation.
[19] The reference matrix pressure heads rose faster in silt

than in silty clay (Figure 7) due to faster water transfer into
the more conductive silt. The first-order approach (7) did
not match well with the relative water transfer for either
texture (Figure 7). Similarly, the second-order term with the
matrix, fracture, geometric, and arithmetic approaches failed
to describe the reference curves, while the integral approach

gave a good approximation for silty clay but not for silt (not
shown). On the average, the second-order term with the
weighted arithmetic scheme and p = 17 most accurately
described water transfer into silty clay and silt (Figure 7).
For the initial pressure head of �100 cm, best agreement
was also found for p = 17 (Figure 8). Note that the h0(t)
values increase rather suddenly close to saturation between
�3 and 0 cm, since no matrix transfer was considered in the
derivation of h0(t). This sudden increase causes deviations
of the first-order term results from the reference curve for
silty clay but not so much for silt (Figure 8) since between
�3 and 0 cm, hydraulic conductivity increases tenfold for
silty clay but only twofold for silt. Only minor deviations of
the second-order term results were observed (Figure 8).
[20] The value of the empirical weighting factor p most

likely cannot be derived theoretically. However, for differ-
ent textures and initial conditions, values of p around 17
were obtained for step-increase boundary condition in the
reference model, provided that the second-order term was
solved with a variable-head boundary condition employing
the simulated pressure head values in the reference model

Figure 4. Same as Figure 2, but only simulation results for the horizontal flow equation (5)
(‘‘reference’’), and the second-order term using Km-evaluation scheme (13) (‘‘weighted arithmetic’’).

Figure 3. Same as Figure 2, but for the initial pressure head of �100 cm.
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domain at the first numerical node just inside of the
(fracture) boundary (results not shown). Hence a continuous
instead of sudden pressure head increase at the boundary
strongly reduces the dependence of p on texture and initial
condition.

2.4. Results for Matrix-to-Fracture Transfer

[21] To date, studies on soil water transfer have focused
only on fracture-to-matrix transfer. However, during drain-

age and evaporation periods, matrix-to-fracture transfer may
be more important. We analyzed water transfer, or horizon-
tal drainage, from an initially saturated matrix block subject
to a variable-head boundary condition at the fracture face.
On the basis of the fracture continuum concept [e.g.,
Dykhuizen, 1990; Zimmerman et al., 1993], our approach
assumes continuous water retention and hydraulic conduc-
tivity functions in a fracture continuum sustaining negative
pressures during matrix-to-fracture transfer. Such a fracture

Figure 5. Same as Figure 4, but for the initial pressure head of �100 cm.

Figure 6. Simulation results for the horizontal flow equation (5) of pressure heads and relative
hydraulic conductivities for cumulative water transfer into silty clay, silt, and sandy loam matrix slabs of
5-cm half width at the initial pressure head of �1000 cm for a step increase of the boundary pressure head
to 0 cm. Graphs represent results at 1/16, 1/8, 1/4, 1/2, and 1 of the respective simulation time tmax.
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continuum may physically represent a fracture network or a
soil fracture pore system (or macropore) partially refilled
with loose soil materials. We once again assumed rectan-
gular slab geometry and 5-cm half width. The h0(t) values
for boundary conditions (11b) and (12b) were generated by
simulating 10 days of drainage at a constant evaporation
rate of 0.3 cm/d from a vertical, 80-cm-deep, initially
saturated fracture system using HYDRUS-1D. Simulated
pressure heads at 2-cm depth below the evaporation bound-
ary were taken as h0(t) in equations (11b) and (12b). Again,

h0(t) values represent the fastest likely reaction of fracture
pressure heads under conditions of drainage and evapora-
tion. Figure 9 shows h0(t) values applied as a boundary
condition for water transfer out of initially saturated matrix
slabs, the average matrix pressure head response calculated
with the reference model (5) using equation (6), and the
cumulative matrix-to-fracture transfer as calculated with
equations (5), (7), and (8) and normalized with the reference
solution at 10 days. Average matrix pressure heads were
relatively close to the fracture pressure heads, especially for

Figure 7. Cumulative water transfer into silty clay and silt matrix slabs of 5-cm half width with the initial
pressure head of �1000 cm and increasing boundary pressure heads: the boundary pressure head (BC)
and the average matrix pressure head calculated using the horizontal flow equation (5) (‘‘reference-h’’);
and water transfer calculated using the horizontal flow equation (5) (‘‘reference-q’’), the first
order-term (7) (‘‘first-order’’), and the second-order term (8) using the weighted arithmetic scheme (13).

Figure 8. Same as Figure 7, but with the initial pressure head of �100 cm.
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silt (Figure 9). During matrix-to-fracture transfer, there
was only mild hydraulic nonequilibrium as compared with
fracture-to-matrix transfer, where differences between
matrix and fracture pressure heads were much larger (see
Figure 8). For both first- and second-order terms, only
results for matrix (9a) and fracture (9b) based Km evaluation
schemes are shown, as all other approaches yielded results
in between these two. The second-order term with the
matrix and fracture schemes, as well as the original first-
order term (1) without scaling coefficient, gave excellent
approximations of the reference solution of equation (5) for
both silty clay and silt (Figure 9). The first-order term (7)
with gw equal to 0.4 [Gerke and van Genuchten, 1993a]
underestimated matrix-to-fracture transfer (Figure 9). This
means that the scaling factor gw only improves the first-
order term description of fracture-to-matrix transfer, while
it is not applicable to matrix-to-fracture transfer. The direc-
tion-dependent use of gw is similar to a pseudohysteresis in
the first-order model.

2.5. Results for ReversibleWater Transfer Between the
Fracture and theMatrix Domain

[22] First- and second-order transfer terms were evaluated
for ‘‘field-like’’ conditions with changing water transfer
(matrix-to-fracture or fracture-to-matrix) directions.
The boundary pressure heads were again calculated using
HYDRUS-1D. The scenario (Figure 10) included 30-min
water transfer into the silty clay matrix slab initially at
�100 cm, followed by matrix-to-fracture transfer for
14400 min (10 days), and later water transfer back into
the matrix for the last 60 min. The prediction using the first-
order term underestimated, while the second-order term
with the weighted arithmetic scheme ( p = 17) matched
the first fracture-to-matrix transfer (Figure 10a). Although
boundary condition or fracture pressure heads decreased

after 30 min, they remained larger than the average
matrix heads for some time, and water transfer back into
the fracture was delayed (Figure 10a). For the second
fracture-to-matrix water transfer event that started after
10 days at the pressure head of �230 cm (Figure 10b),
the second-order term (8) with the weighted arithmetic
scheme (13) matched the reference solution poorly because
the initial pressure head hi was fixed at the original value of
�100 cm. When hi was adjusted to the new initial value
(�230 cm), the result was in excellent agreement with the
reference solution (Figure 10b). Hence the assumption
underlying the second-order term of pressure head equilib-
rium between matrix and fracture continuum at the time of
transfer reversal, while simplified with respect to the actual
matrix pressure head profile (not shown), evidently allows a
close approximation of the real process.

2.6. Effect of Matrix Block Size on
Water Transfer Results

[23] We analyzed the sensitivity of the second-order
transfer term with the weighted arithmetic scheme to the
size of rectangular slabs. Figure 11 shows results for water
transfer into silty clay matrix blocks with half widths of 1, 5,
and 10 cm. In general, the second-order transfer term
approach was more accurate than the first-order transfer
term approach. Results for the second-order term with the
weighted arithmetic scheme (13) came close to the reference
solution for the smaller half widths, whereas agreement
deteriorated for large matrix blocks of 20-cm diameter
(Figure 11). The poor agreement was caused mainly by
the boundary pressure heads increasing steeply from �3 cm
to zero. Changing the weighting factor p from 17 to 59 at
this intermediate step of pressure increase as discussed in
the previous section (the value of 59 being calibrated for
water transfer subject to a step-increase boundary condition)

Figure 9. Matrix-to-fracture water transfer for initially saturated silty clay and silt matrix slabs of 5-cm
half width: the boundary pressure head (BC) and the average matrix pressure heads calculated using the
horizontal flow equation (5) (‘‘reference-h’’); and matrix-to-fracture water transfer calculated using the
horizontal flow equation (5) (‘‘reference-q’’), the second-order term (8) using Km-evaluation schemes (9a)
(‘‘second-order matrix’’) and (9b) (‘‘second-order fracture’’), and the first-order term (1) (‘‘first-order (1)’’)
and (7) using Km-evaluation schemes (9a) (‘‘first-order matrix’’) and (9b) (‘‘first-order fracture’’).
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improved weighted arithmetic simulation (Figure 11) but is
not a feasible modeling scheme. However, for most field
soils, the half width of aggregates will be smaller than
10 cm, justifying the use of a constant weighting factor in
the weighted arithmetic scheme.

3. Evaluation of the Second-Order Transfer Term
in a Dual-Permeability Model

3.1. Procedure

[24] The second-order transfer term with the weighted
arithmetic approach (13) with p = 17 was evaluated with
regard to its effect on dual-permeability model simulations of
preferential flow. The dual-permeability model of Gerke and
van Genuchten [1993b] as implemented into HYDRUS-1D
[Simunek et al., 2003] uses two mixed-type Richards’
equations to describe water flow in the fractures (14a) and
the matrix (14b):

@qf
@t

¼ @

@z
Kf

@hf
@z

þ Kf

� �
� Gw

wf

ð14aÞ

@qm
@t

¼ @

@z
Km

@hm
@z

þ Km

� �
þ Gw

1� wf

: ð14bÞ

A positive mass transfer term Gw denotes the fracture-to-
matrix transfer, while a negative Gw signifies the matrix-to-
fracture transfer. The system of two dual-permeability flow
equations for matrix and fracture was solved sequentially,
first for the matrix and then for the fracture pore system,
using the method of finite differences. The volume fraction
of the fracture pore system, wf, was calculated depending on
geometry as follows:

wf ¼
b

aþ b
parallel plates; ð15aÞ

wf ¼
b2

aþ bð Þ2
hollow cylindrical macropore; ð15bÞ

where a [L] is the half width of the matrix and b [L] is the
half width of the fracture or the radius of a cylindrical
macropore. For a dual-permeability medium consisting of
cylindrical macropores surrounded by soil matrix, the
following expression was adopted to calculate B [Gerke
and van Genuchten, 1996] in transfer terms (2) and (4):

b ¼ 1

0:19 ln 16V0ð Þ½ �2
; 1 < V0 < 100 ð16aÞ

V0 ¼ aþ bð Þ=b; ð16bÞ

where z0 [ ] is the outer-to-inner-radius ratio of the hollow
cylinder. The transfer terms (2) and (4) were implemented
into the dual-permeability model. As a reference model, we
applied the two-dimensional numerical model HYDRUS-2D
[Simunek et al., 1999] to a transport domain with two
vertical layers representing the matrix and fracture regions

Figure 10. Cumulative water transfer for silty clay matrix
slabs of 5-cm half width for a scenario with variable
boundary pressure heads: the boundary pressure head (BC)
and the average matrix pressure head calculated using the
horizontal flow equation (5) (‘‘reference-h’’); and water
transfer calculated using the horizontal flow equation (5)
(‘‘reference-q’’), the first-order term (7) (‘‘first-order’’), and
the second-order term (8) using evaluation scheme (13) with
p = 17 (‘‘weighted arithmetic’’ and ‘‘weighted arithmetic, hi
variable’’). In the hi variable scheme, the initial head in
equation (8) was reset at 14,436 min to the simulated
pressure head at that time. (a) Entire experiment duration.
(b) Results for time interval from 14,420 to 14,500 min.
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(Figure 12). HYDRUS-2D solves the mixed-type Richards
equation in two dimensions using the Galerkin finite element
method. We modified HYDRUS-2D to calculate water
transfer across the interfaces between two vertical layers
using a procedure similar to that for fluxes through the
boundary nodes with prescribed Dirichlet boundary condi-
tions [Simunek et al., 1999]. Nodal fluxes are calculated
from a finite element matrix equation that is obtained by
discretization of the Richards equation and assembled for all
elements on one side of the interface. The finite element
matrix equation for internal fluxes is calculated at the last
iteration after convergence for given time level had been
achieved. Fluxes calculated directly from the Richards
equation are much more accurate than fluxes calculated
using Darcy’s law and have the same accuracy as the overall
solution.
[25] Five scenarios as defined in Table 3 were selected

assuming an 80-cm-deep vertically structured soil profile.
The fracture system was represented by ‘‘sand’’ with van
Genuchten parameters given in Table 1 and was assigned a
half width b of 0.25 cm. A seepage face lower boundary
condition was assumed.

3.2. Results

3.2.1. Infiltration Into a Parallel-Slab-Type
Dual-Permeability Medium With the Silty Clay Matrix
(Scenario 1)
[26] Figure 13a shows the depth profiles of water transfer

Gw at 15 and 60 min during infiltration as simulated using
the dual-permeability model (DPM) with first- and second-
order mass transfer term and HYDRUS-2D assuming a
dual-permeability medium consisting of a silty clay matrix
with slab geometry adjacent to a fracture (see Figures 1
and 12). The Gw profiles at both 15 and 60 min were similar
for HYDRUS-2D and the second-order DPM, whereas the

first-order DPM failed to describe high peak values of
Gw near the infiltration front (Figure 13a).
3.2.2. Effect of the Silt Matrix (Scenario 2)
[27] The assumption that the matrix consisted of silt

instead of silty clay (in scenario 1) resulted into a signifi-
cantly slower vertical movement of the moisture front, since
the larger hydraulic conductivity of silt caused larger water
transfer rates into the matrix (Figure 13b). However, water
transfer in both two-dimensional and dual-permeability
model simulations was reduced to zero about 20 cm above
the infiltration front (Figure 13b). In this region, complete
equilibration between pressure heads in fracture and matrix
was obtained due to large transfer rates. Both first- and
second-order DPMs gave satisfactory approximations of the

Figure 11. Cumulative water transfer into silty clay matrix slabs with half width a = 1 cm, a = 5 cm,
and a = 10 cm for a scenario of variable fracture pressure heads (BC) calculated using the horizontal flow
equation (5) (‘‘reference’’), the first-order term (7) (‘‘first-order’’), and the second-order term (8) using
evaluation scheme (13) with p = 17 (‘‘weighted arithmetic’’) and with p changing from 17 to 59 at 10 min
(‘‘weighted arithmetic, p(17, 59)’’).

Figure 12. Finite element grid used in the two-
dimensional reference simulations.
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reference transfer rate, with the second-order DPM match-
ing closer to the transfer peaks. The good approximation of
the first-order term is due to the relatively fast transfer
reaching quickly its ‘‘late-time’’ phase for which the first-
order term is accurate [Zimmerman et al., 1993].
3.2.3. Effect of a Cylindrical Macropore With the
Large Matrix Mantle (Scenario 3)
[28] The cylindrical macropore occupied only 0.23% of

the dual-permeability medium (wf = 0.0023, Table 3) in this
scenario as compared with the first scenario where for the
same values of a (5 cm) and b (0.25 cm), the fracture
between plate-like matrix blocks occupied 4.76% of the
domain (wf = 0.476, Table 3). Figure 13c shows depth
profiles of simulated water transfer, Gw . In scenario 3 the
first-order DPM gave a slightly closer representation of the
reference transfer profiles than the second-order DPM. Note
that the first-order term is specifically suited for hollow
cylindrical systems. For instance, it described solute diffu-
sion in a hollow cylindrical system better as compared with
other geometries [van Genuchten and Dalton, 1986].
3.2.4. Effect of a Cylindrical Macropore With the
Small Matrix Mantle (Scenario 4)
[29] A matrix mantle radius a of only 1 cm resulted in a

macropore volume fraction wf of 0.04, thus being 17 times
larger than in scenario 3. Figure 13d shows depth profiles of
water transfer Gw at 60 and 180 min as simulated using
HYDRUS-2D, and the first- and second-order DPMs.
Reference transfer profiles revealed faster infiltration in
spite of larger transfer than was found for scenario 3 with
a equal to 5 cm (compare Figures 13c and 13d). This can
be explained by the larger macroporosity wf for a equal to
1 cm. The second-order DPM approximated the sharply
peaked reference transfer profiles considerably better than
the first-order DPM.
3.2.5. Effect of Flow Direction: Drainage (Scenario 5)
[30] Finally, a draining scenario is analyzed assuming a

soil system similar to scenario 1. The initially saturated
profile was subject to a seepage face lower boundary
condition and a flux upper boundary condition representing
evaporation from the matrix at 0.3 cm/d. Figure 13e shows
that the fracture-to-matrix (positive) transfer took place after
60 min in the upper part of the soil profile where evapora-
tion resulted in more negative pressure heads in the matrix
than in the fracture. Simultaneously, the matrix-to-fracture
transfer occurred in the lower part of the soil profile where
fast draining of the macropore caused pressure heads in the
macropore to drop below the corresponding values in
the adjacent matrix. The overall transfer rates are an

order-of-magnitude lower than in the first scenario (com-
pare Figures 13e and 13a). After 600 min, pressure heads
in two regions equilibrated near the soil surface, and thus
water transfer between the domains approached zero
(Figure 13f ). Both the first- and second-order DPMs
approximated the reference transfer profiles satisfactorily.
[31] Scenarios 1 and 2 demonstrated the significantly

higher accuracy of the second-order model for infiltration
into a dual-permeability medium of rectangular matrix slabs
separated by parallel fractures. As mentioned above, the
second-order term was derived for spherical blocks and has
been demonstrated to be also applicable to relatively similar
geometries as cubes [Zimmerman et al., 1993, 1996]. For
infiltration into a cylindrical system with large outer-to-
inner-radius ratio, z0 (scenario 3), the second-order term did
not give satisfactory results. It was documented in the
literature that the exact analytical solution for spherical
diffusion fails to describe diffusion in a cylindrical macro-
pore system, even when the geometry is embedded in
factor b [van Genuchten and Dalton, 1986]. The geometry
factor b accounts for the smaller surface-to-volume ratio of
the cylindrical macropore system as compared with spheres
[Gerke and van Genuchten, 1996], but it cannot always
compensate for the fundamentally different flow field in
the cylindrical macropore system. At early times, the
normalized water uptake is proportional to the surface-to-
volume ratio. The hollow cylinder has a small surface-to-
volume ratio (reflected by a small value of b) particularly
for a large outer-to-inner-radius ratio, z0 [Gerke and van
Genuchten, 1996], and so it will initially have a much
smaller water uptake than a sphere (cube, solid cylinder).
Only at late times will the flux be nearly the same for
the hollow cylinder and the sphere. However, the fourth
scenario indicated that the second-order term derived for
spherical geometry can be applied to a cylindrical macro-
pore system with small z0, i.e., increasing values for
surface-to-volume ratio and b.
[32] For soil systems with small macroporosity, a different

transfer equation may be needed. Unfortunately, analytical
solutions for diffusion in hollow cylindrical systems [e.g.,
van Genuchten et al., 1984] are mathematically rather
complicated, such that a procedure as that presented by
Vermeulen [1953] to derive a second-order expression for
diffusion into spheres may not be easily applicable for the
hollow cylindrical system.
[33] The primary significance of the water transfer

calculation might be its effect on advective solute transfer
which in dual-permeability models is calculated as

Table 3. Scenarios Used in HYDRUS-2D and the Dual-Permeability Model for Evaluating First- and Second-Order Water Transfer

Termsa

Scenario
Flow
Process Geometry

Matrix
Textureb hi,

c cm a, cm b wf

Upper Boundary
Condition

1 infiltration rectangular silty clay �100 5 3 0.0476 h = 0
2 infiltration rectangular silt �100 5 3 0.0476 h = 0
3 infiltration hollow cylindrical silty clay �100 5 0.82 0.0023 h = 0
4 infiltration hollow cylindrical silty clay �100 1 1.44 0.0400 h = 0
5 drainage rectangular silty clay 0 5 3 0.0476 q = 0

aIn all scenarios, profile depth = 80 cm, fracture pore system = sand (see Table 1 for van Genuchten parameters), b = 0.25 cm, seepage face lower
boundary condition.

bSee Table 1 for van Genuchten parameters.
cInitial pressure head.
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Figure 13. Water transfer rate versus depth as calculated with the two-dimensional (HYDRUS-2D)
model, and the dual-permeability model with the first- (DPM first-order) and second-order (DPM second-
order) water transfer terms using evaluation scheme (13) with p = 17 (weighted arithmetic). Infiltration
into dual-permeability medium with (a) silty clay and (b) silt matrix slabs of a half width of 5 cm;
infiltration into cylindrical dual-permeability medium with silty clay matrix mantle of (c) 5 cm and
(d) 1 cm; drainage and evaporation out of dual-permeability medium with silty clay matrix slabs of 5-cm
half width at (e) t = 60 min and (f ) t = 600 min.
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water transfer times concentration [e.g., Gerke and van
Genuchten, 1993b]. A detailed analysis of the impact of
advective solute transfer on the simulation of preferential
solute transport, however, is beyond the scope of this
study and will be addressed in a separate paper.

4. Concluding Remarks

[34] A second-order term originally derived for water
transfer between fractures and matrix in fractured rock
was adapted for variably saturated structured soils. The
hydraulic conductivity in the second-order term was eval-
uated as a weighted average function of pressure heads in
the matrix and fracture. This modification significantly
improved agreement between water transfer calculated with
the second-order term and a numerical solution of a refer-
ence equation for horizontal flow. A single weighting factor
of 17 proved successful to describe water transfer for a
range of initial and boundary conditions, as well as for
different soil matrix block sizes and textures. Furthermore,
the initial pressure head in the second-order term was
treated as a dynamic parameter to be reset upon change of
flow direction between matrix and fracture domains. With
this adjustment the second-order term does not show
pseudohysteresis for varying directions of water transfer,
as opposed to the second-order term with constant initial
pressure head and the first-order term with scaling factor.
Implemented in a dual-permeability model, the modified
second-order transfer term improves the accuracy of
preferential soil water flow simulations as compared with
a first-order term, particularly for geometries other than
hollow cylinders. The modified second-order term is as
versatile as first-order terms with regard to its application in
dual-permeability models for studying variably saturated
flow in field soils.

[35] Acknowledgment. This work was supported by the National
Science Foundation (grant EAR 0296158 and STC Program, EAR
9876800).
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