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A comprehensive description of water flow in environmental and agricultural systems requires an
account of both surface and subsurface pathways. We present a new model which combines a 1D over-
land flow model and the 2D subsurface flow HYDRUS-2D model, and uses the multi-objective global
search method AMALGAM for inverse parameter estimation. Furthermore, we present data from
bench-scale flow experiments which were conducted with two 5-m long replicate soil channels. While
rainfall was applied, surface runoff was recorded at the downstream end of the soil channel, subsurface
drainage waters were sampled at three positions equally spaced along the channels, and pressure heads
were recorded at five depths. The experimental observations were used to evaluate the performance of
our modeling system. The complexity of the modeling approach was increased in three steps. First, only
runoff and total drainage were simulated, then drainage flows from individual compartments were addi-
tionally evaluated, and finally a surface crust and immobile soil water were also considered. The results
showed that a good match between measured and observed surface runoff and total drainage does not
guarantee accurate representation of the flow process. An inspection of the Pareto results of different
multiobjective calibration runs revealed a significant trade-off between individual objectives, showing
that no single solution existed to match spatial variability in the flow. In spite of the observed crust for-
mation, its consideration in the more complex model structure did not significantly improve the fit
between the model and measurements. Accounting for immobile water regions only slightly improved
the fit for one of the two replicate soil channels. Discrepancies between relatively complex model simu-
lations and seemingly simple soil channel experiments suggest the presence of additional unknowns,
such as heterogeneity of the soil hydraulic properties. Nevertheless, with its versatile subsurface options
and powerful inverse method, the model system shows promise for studying hillslope flow problems
involving both surface runoff and subsurface flow.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Overland flow during storm events may affect the water and
mass balance of environmental and agricultural systems. However,
current vadose zone flow models include at most a simplified
description of this process, such as instant removal of saturation/
infiltration excess water as surface runoff (e.g., Ahuja et al.,
ll rights reserved.
2000). As an alternative, combined models of overland and subsur-
face flow were developed.

The diffusion wave or kinematic wave approximations of the
Saint-Venant equation are frequently used to describe overland
flow, while the Green-Ampt or Richards equations are used to
model infiltration or subsurface flow. Earlier approaches usually
relied on analytical solutions, limiting their applications to
relatively simple boundary conditions and homogeneous soil
(Govindaraju et al., 1990; Wallach et al., 1997). Numerical solutions
then allowed various generalizations, such as time-dependent
boundary conditions (e.g., Govindaraju and Kavvas, 1991; Motha
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and Wigham, 1995; Woolhiser et al., 1990) or spatial variability of
soil hydraulic properties (e.g., Corradini et al., 1998; Merz and
Plate, 1997), and allowed consideration of runon in addition to
rainfall (e.g., Nahar et al., 2004). While many approaches relied
on 1D overland flow and pseudo-2D (staggered independent 1D
vertical columns) subsurface flow, extensions to two dimensions
were also used for both overland flow (e.g., Gandolfi and Savi,
2000; Merz and Plate, 1997) and subsurface flow (e.g., Govindaraju
and Kavvas, 1991; Singh and Bhallamudi, 1998). A 1D surface and
quasi-3D subsurface (2D planes) model was introduced by
Wöhling and Schmitz (2007) and successfully applied by Wöhling
and Mailhol (2007). A comprehensive coupled 2D surface and 3D
subsurface watershed model was introduced by Panday and
Huyakorn (2004). A few models also considered the effect of
infiltration and vertical gravity flow in macropores (e.g., Léonard
et al., 2001; Merz and Plate, 1997), also in combination with
heterogeneity in soil hydraulic properties (Herbst et al., 2006). A
review of various surface–subsurface flow approaches has recently
been presented by Furman (2008).

None of the above studies focused on inverse parameter identi-
fication, and most approaches do not even have a provision for in-
verse estimation. However, while prediction of vadose zone
dynamics is already a challenge, adding surface flow to the model
analysis further increases the complexity. The main problem is to
characterize the spatial variability of soil hydraulic properties
caused by variations in soil texture, structure, and layer interfaces
(Kodesová et al., 2009; Kulli et al., 2003; Vogel et al., 2005), among
other effects. The difficulty of independent model parameteriza-
tion was the driving motivation behind exploring the benefit of
using inverse parameter estimation in this study.

For parameter estimation of vadose zone models, local search
methodologies are often employed that begin their iterative search
from a single initial point in the parameter space. A prominent
example is the nonlinear, gradient-based Levenberg–Marquardt
search algorithm (Marquardt, 1963). However, such local deriva-
tive-based search methods often fail to evolve towards the global
optimum in situations where the response surface exhibits multi-
ple local optima in the parameter domain (e.g., Schwefel, 1993). In
such cases, the final solution of the local search method is non-
unique and essentially dependent on the starting point in the
parameter space. While multi-start local search methods may help
to overcome this problem under some circumstances, the conver-
gence to the global solution cannot be guaranteed. As a response
to this problem, global search algorithms were developed that
use multiple concurrent searches from different starting points
to efficiently reduce the chance of getting stuck in a single area
of attraction (e.g., Deb et al., 2002; Madsen, 2003; Vrugt and
Robinson, 2007).

Since any model is a simplification of reality and the underlying
reality is never known exactly, model simulation results are inher-
ently uncertain. One expression of this uncertainty is equifinality,
characterized by multiple model structures and parameter sets
yielding acceptable fits to observed data (Beven, 2006). To better
understand the uncertainty and limitations of the model structure,
the optimization problem can be formulated in a multi-objective
context, where information contained in several data-sets is
exploited simultaneously (Gupta et al., 1998; Vrugt et al., 2003;
Wöhling and Vrugt, 2008). Among different multi-objective global
parameter optimization procedures, A MultiALgorithm Genetically
Adaptive search Method (AMALGAM) developed by Vrugt and
Robinson (2007) was found to be the most efficient algorithm for
finding best attainable parameter sets with the least number of
model evaluations (Wöhling et al., 2008).

The overall objective is to evaluate the usefulness of linking a
surface flow model with a comprehensive vadose zone model
(Simunek et al., 2003, 2008) and advanced multi-objective optimi-
zation techniques for studying the interacting flow-runoff behavior
in a sloping soil. In this context, data from the controlled bench-
scale flow experiment were utilized.
2. Material and methods

2.1. Overland flow model

The overland flow model is based on unpublished work by Šim-
ůnek (2003). Hortonian overland flow is typically described using
the kinematic wave equation, which is a simplification of the
Saint-Venant equations and an excellent approximation of most
overland flow conditions (Morris and Woolhiser, 1980; Singh
et al., 2005; Woolhiser et al., 1990):

@ho

@t
þ @Q o

@x
¼ R� I ð1Þ

where ho(x, t) is the unit storage of water (or mean depth for
smooth surfaces) in the overland flow (L), Qo(x, t) is the overland
discharge per unit width (L2 T�1), t is time (T), x is the distance coor-
dinate over the soil surface (L), R(x, t) is the local effective rainfall
rate (rain minus evaporation) (L T�1), and I(x, t) is the local infiltra-
tion (or exfiltration) rate (L T�1). The discharge Qo per unit width
can be calculated as follows:

Qo ¼ ahm
o ð2Þ

where a (L2�m T�1) and m (–) are parameters related to slope, sur-
face roughness, and flow conditions (laminar or turbulent flow).
Overland flow is often turbulent, with a large Reynolds number
Re = Qo/v > 500, where v is the kinematic viscosity of water
(L2 T�1). There is some evidence that turbulent flow conditions
may prevail during rainfall even at lower Reynolds numbers (Deng
et al., 2005). Flow for our experimental conditions was assumed to
be turbulent and the coefficients in Eq. (2) were thus evaluated
using the empirical Manning hydraulic resistance law and assuming
m = 5/3 (Wallach et al., 2001):

a ¼ k
S1=2

nM
ð3Þ

where S (–) is the slope, nM (–) is the Manning’s roughness coeffi-
cient for overland flow, and k is a conversion constant which in SI
units has the value of 1 and units of (L1/3 T�1). From Eqs. (2) and
(3) it can be seen that the nM coefficient depends not only on surface
roughness, but also on the slope and the overland discharge. For
bare field soils, nM typically ranges between 0.01 for a rather
smooth surface (flat slope and slow overland discharge), and
0.2 for a rough soil surface (steeper slope and faster discharge)
(Li and Zhang, 2001; Mohamoud, 1992; Sepaskhah and Bondar,
2002).

By substituting (2) into (1), and substituting R � I by the net
rate of local input, q(x, t) (L T�1), the following equivalent expres-
sions describing overland flow are obtained:

@ho

@t
þ @ahm

o

@x
¼ qðx; tÞ ð4Þ

@ho

@t
þ amhm�1

o
@ho

@x
¼ qðx; tÞ ð5Þ

A numerically stable, fully implicit four-point finite difference
method, similar to the one used in the Kineros model (Woolhiser
et al., 1990), was used to solve Eq. (1). The following discretization
scheme was applied (subscript o is omitted for convenience).
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Subscripts i are nodal numbers, superscripts j and j + 1 repre-
sent previous and current times, Dt and Dx are temporal and spa-
tial discretization steps, and e is the temporal weighting
coefficient; e = 1 for the implicit scheme (the Crank–Nicholson
scheme with e = 0.5 gave similar results). The resulting nonlinear
system of equations is solved using the Picard iterative approach,
similar to the one used for the solution of the Richards equation
in HYDRUS-2D (Šimůnek et al., 1999). The numerical model was
validated by comparing its results with the corresponding analyt-
ical solution of Eqs. (4), (5) (Šimůnek, 2003).

The one-dimensional equation for overland water flow requires
initial conditions, plus up to two boundary conditions; one for ru-
non (if any) at the upstream entrance and another for runoff at the
downstream exit. The initial conditions for overland flow are rep-
resented by the initial ponding depths, ho0(x), assumed to be equal
to the initial soil water pressure heads, h0(x, zsurf), along the soil
surface with the z-coordinate zsurf (L):

hoðx;0Þ ¼ ho0ðxÞ ¼ h0ðx; zsurf Þ for x; zsurf eCO ð7Þ

when the pressure head is positive (the soil surface is ponded), or
equal to zero when the pressure head is negative (the soil surface
is unsaturated).
Fig. 1. Conceptual schematic of the coupled runoff-subsurface flow model based on
HYDRUS-2D. An immobile region was assumed in the ‘MIM + Crust’ scenario,
whereas in the remaining scenarios water in the entire soil domain was assumed to
be mobile.
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Fig. 2. Schematic overview of the soil channel. The grey lines denoted ‘separator’ represen
the up-, mid-, and down-stream segments.
The boundary conditions for water flow represent water runon
at the entrance side (a Dirichlet boundary condition) with a pre-
scribed ponding head, and a zero gradient for the ponding depth
is assumed at the outlet side of the plot:

hoð0; tÞ ¼ ho0 for x ¼ x0; t > 0 ð8Þ
@hoðn; tÞ
@x

¼ 0 for x ¼ xn; t > 0 ð9Þ

If there is no runon, ho0(t) in (8) becomes zero. Since the lateral
runoff discharge, Qo, is calculated as a function of ho according to
(2), the runon is fully defined by Eq. (8), which is therefore equiv-
alent with a flux-type (Neumann) condition.

The numerical solution of the overland flow equation was iter-
atively coupled with HYDRUS-2D (Šimůnek et al., 1999, 2008).
Interactions with the HYDRUS-2D subsurface flow model are rep-
resented by the sink-source term I in Eq. (1). Coupling to overland
flow is accomplished via dynamic atmospheric boundary condi-
tions in the computation module of HYDRUS-2D as follows. During
unsaturated conditions, there is no surface runoff and water infil-
tration is similar to the applied rainfall rate, which is described
using a specified flux (Neumann) upper boundary condition. If
the pressure at the surface exceeds zero, i.e. ponding occurs, then
the upper boundary switches to a specified head (Dirichlet) condi-
tion (Šimůnek et al., 1999). Infiltration, I, is then calculated in the
subsurface model using the Richards equation, where the pressure
head in the subsurface domain at the upper boundary, h0(x, zsurf), is
assumed to be equal to the ponding water depth, ho0(x), which in
turn is calculated as overland flow depth according to (1). The
same Neumann–Dirichlet switch in boundary conditions was
implemented for runon at any location.

Finally, each drainage water outlet is represented by a single
node at the bottom of the transport domain with a seepage face
boundary condition. During each iteration, a saturated node of
the potential seepage face is treated as a prescribed pressure head
boundary with h = 0, while an unsaturated node is treated as a pre-
scribed flux boundary with Q = 0. While in the former case the un-
known boundary (drainage) flux Q is calculated, in the latter case
the unknown pressure head is calculated.

The soil structure generally invokes zones of different water
mobility in the soil. Often, preferential flow paths form highly mo-
bile regions, contrasting with relatively immobile zones in the soil
matrix. We coupled the model for overland flow with the dual-
porosity mobile-immobile water model (assuming the satura-
tion-based water transfer) in HYDRUS-2D. Then the pressure head
in the mobile region at the surface is assumed to be equal to the
ponding water depth, ho0(x). A schematic of the conceptual model
is shown in Fig. 1. The model was set-up to represent the experi-
mental system (Fig. 2).
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Fig. 3. Photo of the soil flow channel at INRA Orléans.

Table 1
Bulk densities of the Fontaine silt loam soil filled in the left (BoxL) and right (BoxR)
channels.

BoxL BoxR

Depth (cm) qb (g/cm3) ha Depth (cm) qb (g/cm3) ha

0–5 1.31 0.33 0–5 1.29 0.33
7.3–12.3 1.35 0.33 6.5–11.5 1.37 0.28
13.5–18.5 1.02 0.30 13–17 1.16 0.20
19.5–24.5 1.36 0.34 20–25 1.44 0.37
25–30 1.47 0.47 25–30 1.38 0.44

a Water content measured a few hours after the end of the experiment.

Table 2
Soil hydraulic van Genuchten–Mualem parameters for measurements on the Fontaine
silt loam soil (wind and permeameter measurements on undisturbed field samples:
two replicates; permeameter measurements on box soil samples: mean ± standard
deviation for 10 measurements).

Wind’s method (evaporation experiment) Permeameter

Field
sample

Box sample

hr hs n a
(1/cm)

qb

(g/cm3)
Ks

(cm/d)
Ks

(cm/d)
Ks

(cm/d)

0.000 0.483 1.36 0.0112 1.37 12.2 16.3 146.0 ± 43.6a

0.000 0.464 1.56 0.0105 1.34 12.8 16.3 9.1 ± 5.5b

a Soil samples below crust.
b Soil with crust.
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2.2. Runoff experiment

2.2.1. Experimental set-up
A runoff experiment was conducted in the Soil Science Labora-

tory of the Institut National de la Recherche Agronomique (INRA)
at Orléans (France). The experimental set-up was made of two rep-
licate soil-filled boxes integrated in a channel of 5 m length, 2 m
total width (1 m per replicate), and 0.3 m height, with a slope of
5% (Figs. 2 and 3). The left and right replicate boxes (Fig. 2) are sub-
sequently referred to as BoxL and BoxR. They were filled with
sieved soil obtained from a silt loam and silty clay loam, respec-
tively. The experiment was designed to study the transport of pes-
ticides with different sorbing properties as affected by interrill
erosion (Leguédois et al., 2006; Leguédois and Bissonnais, 2004).
In this study, however, we utilized only data from the silt loam soil,
which carries the local designation ‘Fontaine soil’ and is found in
the western part of the Paris Basin, Normandy (France). Fontaine
soil has an aggregated structure, but aggregates are unstable and
the soil is susceptible to erosion (Fig. 4) (Le Bissonnais et al.,
1998; Leguédois and Bissonnais, 2004). The soil material was sam-
pled from the Ap horizon of a plot on cultivated arable land near
Fontaine (Bourville, Seine-Maritime), from a depth of 0–0.3 m.

Filling the soil boxes was accomplished in two steps, as follows.
First, a 25-cm thick layer was built up by pouring dry-sieved
(<5 cm aggregates) soil in 5-cm increments. Natural compaction
of this 25-cm layer was realized by alternately applying about 10
recurring cycles of rainfall (until saturation) and drainage. Care
was taken to avoid any ponding, erosion, or crust formation. When
the soil stopped settling, the remaining 5 cm to the top were filled
with sieved (<2 cm) soil in two 2.5-cm increments. This filling pro-
cedure invoked slight differences in the soil bulk density and water
content with depth, as was measured on soil cores taken after the
experiment (Table 1). The soil surface was reshaped into a furrow-
Fig. 4. The soil flow channel with aggregates and furrow-ridge surface micro-topography
a rill revealing the surface crust (right).
ridge micro-topography (Leguédois and Bissonnais, 2004) parallel
to the slope with a 2-cm height-amplitude and a 10-cm wave-
length in a cross-section perpendicular to the slope (Fig. 4). The
channel box was equipped with five tensiometers at five soil
depths between 2 and 29 cm, centered at the mid position of
x = 2.5 m.

The bottom of the box was covered with highly permeable geo-
textile. At upstream (1.4 m), midstream (3 m), and downstream
(5 m) locations, metal sheets a few cm high at the bottom of the
box impeded lateral flow along the bottom. They served as gutters
channeling drainage water to the outlets (drains) representing dif-
ferent compartments, i.e., drain 1 – upstream (0–1.4 m), drain 2 –
midstream (1.4–3 m), and drain 3 – downstream (3–5 m). Surface
runoff was collected at the downstream end.

Soil hydraulic properties were independently measured in the
lab on undisturbed field-sampled soil cores (1 dm3) using the
Wind’s (1966) method (Tamari et al., 1993). The Wind method
yields uncertain results close to saturation, since the derived satu-
rated hydraulic conductivity, Ks, is an extrapolated value. Addition-
ally, Ks was measured using a permeameter method on samples of
1 dm3 in size (Table 2). The custom-made permeameter measured
the saturated water flux for an imposed constant head as a func-
tion of time. The final steady-state flux was assumed to be equal
to Ks.
, prior to rainfall (left) and thereafter (mid). Detailed view of a cross-section through



Table 3
Mass balance information for the left (BoxL) and right (BoxR) soil boxes at the end of the first and second irrigation, respectively.

Time (min) Rain (l) Runoff (l) Drain 1 (l) Drain 2 (l) Drain 3 (l) DrainR (l) Storage (l) DrainR (%) Runoff (%) Storage (%)

First rain event
BoxL 32.5 79.9 9.1 0.0 0.0 0.0 0.0 70.8 0.0 11.4 88.6
BoxR 32.5 74.5 16.3 0.0 0.0 0.0 0.0 58.2 0.0 21.9 78.1

Second rain event
BoxL 100 245.9 175.9 0.0 0.7 11.4 12.1 57.9 4.9 71.5 23.5
BoxR 100 229.2 197.9 3.2 14.2 16.4 33.9 �2.5 14.8 86.3 �1.1
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However, since hydraulic properties measured for undisturbed
soil may not represent the sieved soil material used for filling the
soil box, additional permeameter measurements were also con-
ducted on soil samples (5 cm height and diam.) collected from
the box after the experiments. Samples were taken from mini-
furrows with surface crust (11 measurements) and from small
ridges (10 measurements) (Table 2). Samples taken from ridges
had an order-of-magnitude higher Ks than samples taken from
furrows. The surface crust thus strongly reduced Ks. However, Ks

of samples from ridges were also much larger than Ks measured
on field samples. A possible explanation is that the filling proce-
dure may have caused development of inter-aggregate regions
that had increased Ks. Moreover, a relatively small sample size
may have caused an overestimation of mean Ks and its variability
(Mallants et al., 1997).
Table 4
Optimization scenarios. MIM – mobile and immobile regions. The + sign indicates an
2.2.2. Experiment
Two rainfall events were applied to each of the replicate soil

boxes. The rainfall simulator was designed to simulate rain events
of spatially uniform intensity. It was made of five oscillating noz-
zles at 1.1 m horizontal spacing and was placed at 6.4 m above
the soil surface. The device produced raindrops with 1.3 mm med-
ian diameter and a kinetic energy of 16 J mm�1 m�2. The rainfall
intensity received by the box was verified by placing a plastic sheet
on the soil surface and measuring the runoff. The spatial variability
of the rain intensity was measured within the experimental area
using rainfall gauges; the coefficient of variation was 15%. The
mass balance for both rainfall events and the two soil boxes is gi-
ven in Table 3. The rainfall rate differed slightly between 29 mm/h
(147.6 l/h) for BoxL (the total surface area of 5.09 m2), and
28.4 mm/h (137.5 l/h) for BoxR (the total surface area of
4.84 m2). The difference between left and right surface areas is
due to an imprecision when dividing the box into two parts by
placing a metal sheet of 5 m length in the middle. The width of
BoxL is 1.02 m (upstream) and 1.015 m (downstream), while for
BoxR it is 0.97 m (upstream) and 0.975 m (downstream),
respectively.

The first rainfall was applied to pre-wet the soil and did not pro-
duce any drainage. Runoff started after 20 min and 21 min for the
left and right boxes, respectively. Rainfall was stopped after
32.5 min when the surface runoff rate reached 10% of the applied
rainfall rate. Rapid formation of a seal crust in the mini-furrows
was visually observed within 10 min of the first simulated rainfall.
In the crust, boundaries between aggregates disappeared and the
surface appeared smoother and of lighter color (Fig. 4). After a
24-h interruption, the second rainfall of 100 min was applied,
using the same rate as for the first event.
objective.

Scenario Uniform-2 Uniform-3 MIM + Crust

Objectives 2 3 3
Runoff + + +
Total drainage + � �
Midstream drainage � + +
Downstream drainage � + +
2.3. Multi-objective optimization

2.3.1. Theory
The aim of the inverse modeling procedure is to find values of

model parameters that provide the best attainable fit between
model simulation and corresponding observations. The multi-
objective framework used herein comprised three different
criteria:

min FðuÞ ¼
F1ðuÞ
F2ðuÞ
F3ðuÞ

2
64

3
75 ð10Þ

where F1 to F3 are defined as the normalized Root Mean Square
Error (nRMSE) objective functions of the differences between
observed and simulated drainage fluxes at the midstream (F1) and
lower (F2) drains, and the surface runoff (F3) collected at the lower
end of the sand box, and u is the vector of model parameters to be
estimated. Here, u includes both the soil hydraulic van Genuchten–
Mualem (VGM) parameters (van Genuchten, 1980) and the Man-
ning’s roughness coefficient, nM, usually a not well-known overland
flow parameter.

A normalization is required to compensate for differences in
magnitude and variability of the objective functions, i.e., to balance
their weights in the global search. The objective function values are
transformed so that the minima of the objectives in the initial
sample of parameter sets exhibit a similar distance to the origin
(Madsen, 2000; Mertens et al., 2004; Wöhling and Vrugt, in press):

Fi ¼
fi

ri
þ /i i ¼ 1;2;3 ð11Þ

where fj is the non-transformed (RMSE) objective function, rj is the
standard deviation associated with fj of the initial sample, and /j is a
transformation constant given by

/i ¼max min
fj

rj

� �
; j ¼ 1;2;3

� �
�min

fi

ri

� �
i ¼ 1;2;3 ð12Þ

The AMALGAM method (A MultiALgorithm Genetically Adap-
tive search Method), recently developed by Vrugt and Robinson
(2007), was used for parameter estimation of the coupled sur-
face–subsurface model. AMALGAM is a population-based global
search algorithm that combines two concepts of a simultaneous
multi-algorithm search method with genetically adaptive offspring
creation for estimating the Pareto set of solutions of a given multi-
objective inverse problem. The Pareto optimal or Pareto efficient
solutions represent trade-offs among different objectives, having
the property of moving from one solution to another results in
the improvement of one objective while causing deterioration in
one or more of the others (Gupta et al., 1998; Vrugt et al., 2003).
An illustrative summary of the basic features of AMALGAM appears
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in Wöhling et al. (2008), while a more detailed description can be
found in Vrugt and Robinson (2007), and is therefore not repeated
here.
2.3.2. Optimization procedure and scenarios
A reliable model simulation requires the realistic definition of

initial and boundary conditions. Boundary conditions were set
equal to the applied rainfall rate. Initial conditions were defined
Table 5
Range of the optimized parameters.

Parameters hs n a (1/cm) Ks (cm/d)

Min 0.15 1.001 0.001 0.000
Max 0.70 9 (4a) 2 (1a) 14,400

a Only in the MIM + Crust scenario.
b Exponent in the van Genuchten Mualem model.
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Scenarios with different complexities should reveal the effects
of data available for model optimization, and of particular soil
properties. Among the six scenarios originally studied, three dis-
tinct scenarios were selected for this paper (Table 4). The ‘Uniform’
scenarios were built upon the assumption of homogeneous soil
hydraulic properties in the entire domain, represented by a single
set of VGM parameters. The ‘Uniform-2’ scenario includes two
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objective functions for runoff and total drainage, i.e., the sum of the
three individual drainage flows. This reduces Eq. (10) to two com-
ponents, i.e., F1 for drainage and F2 for runoff. The ‘Uniform-3’ sce-
nario includes three objective functions as defined in Eq. (10). Both
scenarios were compared to assess the potential importance of
using spatially resolved subsurface flow information.

The ‘MIM + Crust’ scenario considers mobile and immobile re-
gions in a soil with a thin crust layer placed on top of the soil. Crust
formation was observed during the experiment. The presence of
mobile and immobile regions was assumed to be an effective
way of accounting for any type of flow heterogeneity, such as fin-
gering flow in the layered soil system, inhomogeneous infiltration
due to the micro-funneled surface, or inter-aggregate percolation
through the aggregated soil. Furthermore, the ‘MIM + Crust’ opti-
mization includes 3 objective functions. Additionally, a ‘Crust’
(without MIM) scenario was simulated, but since its results did
not yield much additional information, we did not report them.

From the resulting Pareto surface, we selected four Pareto
points. The first three Pareto points were the best individual solu-
Fig. 7. Hydraulic functions (left) and corresponding model simulation results for surface
h), Ks (i–l), n (m–p), and Manning’s nM (q and r).
tions with respect to the individual objectives, which are hence-
forth denoted as Pareto extremes, F̂i. There is one Pareto extreme
for midstream drainage (F̂1), one for downstream drainage (F̂2),
and one for runoff (F̂3). The extremes are a subset of the Pareto
optimal or efficient solutions defined above. The fourth Pareto
point is subsequently referred to as the compromise solution,
where the sum of all three normalized root mean square error
objectives, Fi, is at its minimum (F̂0):

F̂0 ¼min
X3

i¼1

FiðuÞ ð13Þ

Only data for the second rain event for both BoxL and BoxR
were used, since the first rain event produced only little runoff
and drainage. For the same reason, drainage (drain 1) at the up-
stream position was not considered. Flux data for the recession
phase and tensiometer recordings were not included in the param-
eter estimation, but were utilized for independent model perfor-
mance evaluation.
runoff and subsurface drainage (right) based on different parameters a (a–d), hs (e–
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The different AMALGAM scenarios described herein were termi-
nated after the algorithm converged on a stable Pareto surface,
which occurred within 20,000–50,000 model evaluations, depend-
ing on the number of converging runs. Each scenario required 1–
2 weeks of run time in sequential mode using the Matlab R2008a
1F

(a) BOXL (b) BOXR

F2

Fig. 8. Uniform-2 scenario (two objective functions): Pareto trade-off planes
between objective functions F1 (runoff) and F2 (total drainage rate) for (a) BoxL
and (b) BoxR. Small grey dots – Pareto solutions, Big (red) dots – Pareto optimal
solutions, a cross – compromise solution. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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(64 bit) Microsoft Windows™ XP Professional (64 bit) modeling
environment on a Dell™ Precision 390 workstation with a Quad-
Core Intel� Core™2 Extreme processor QX6700 (2.67 GHz) and
4 GB of RAM. The run time could be reduced by at least a factor
of three by running AMALGAM in parallel mode on all four cores
of the workstation. The goodness-of-fit was evaluated by compar-
ing (i) simulated and observed runoff and drainage, and (ii) F̂i val-
ues of Pareto extreme and compromise solutions in the objective
function space as visualized in Pareto plots.

The total number of optimized parameters depended on the
scenario (Table 5). In the VGM model, the relation m = 1 � 1/n
was assumed, along with an air entry value of �2 cm (Ippisch
et al., 2006). The residual water content was set to zero, hr = 0. With
these assumptions, six parameters remained to be optimized in the
uniform scenario. These include Manning’s roughness coefficient,
nM, and five VGM parameters: the saturated water content, hs (–),
the curve shape parameters n (–) and a (L�1), the saturated hydrau-
lic conductivity, Ks (L T�1), and the exponent in the hydraulic con-
ductivity mode, s (–). The ‘MIM + Crust’ scenario considers mobile
and immobile soil water regions. Here, a version of the MIM model
was chosen in which the mass transfer between domains is based
on differences in saturation instead of pressure head (Köhne et al.,
2004; Simunek et al., 2003). With the residual water content as-
sumed as zero, the only additional parameters are the mobile
and immobile saturated water contents, hs,m and hs,im, and the
transfer coefficient, x. Thus, the ‘MIM + Crust’ scenario required
14 parameters, i.e., nM and x plus the set of six parameters (hs,m,
hs,im, n, a, Ks,s) for both the soil and crust. A large range was as-
signed to each parameter to permit AMALGAM to search the entire
possible space (Table 5).
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3. Results

3.1. Experimental results

Only the second rainfall event was studied, since the first event
did not produce any drainage and pressure head values indicated
very inhomogeneous moisture distribution prior to the first event.
Fig. 5 shows the experimental data for the second rainfall event,
including runoff and drainage responses in both replicates. Surface
runoff and drainage began approximately 5 min after the start of
rainfall. Final steady flow rates of about 2 dm3/min were 10 times
larger for surface runoff than for the largest drainage rates, which
were observed at the downstream drains (Fig. 5). The sum of
cumulative drainage and runoff from BoxR was approximately
equal to the rainfall amount of the second experiment after
100 min. For BoxL, a gap of 57 dm3 (23%) in the water balance sug-
gests a water content increase of 0.038. This hypothesis was qual-
itatively confirmed by the increase of pressure heads during a
rainfall event (Fig. 6). For BoxL, initial pressure heads ranged be-
tween�60 cm and�120 cm (Fig. 6a), suggesting more unsaturated
moisture conditions than in BoxR, where values of �50 to �60 cm
were measured (Fig. 6b). Moreover, in BoxL, the initial response
times for the pressure heads increased with soil depth and showed
a slow increase at depths below 7 cm. By contrast, the tensiome-
ters in BoxR showed a rapid succession of their initial response,
and the increase at the 23- and 28-cm depths was faster than at
the 15-cm depth (Fig. 6b), suggesting preferential flow in more
permeable soil regions embedded in less permeable (‘immobile’)
regions. The 15-cm depth was characterized by a low bulk density
and relatively dry moisture content recorded a few hours after the
experiment (Table 1). Apart from preferential flow caused by sur-
face topography or layer interfaces, filling the box with sieved
(<5 cm) soil aggregates might have created inter-aggregate flow
paths. Pressure heads could then show more rapid or slower re-
sponse, depending on whether the tensiometer is located in or be-
tween soil clods. Such immobile soil regions could also explain the
incongruity between the apparently closed water balance for BoxR
and the observed increase in pressure heads suggesting an increase
in water storage. Since immobile regions saturate and drain more
slowly than the remaining soil, they may not have reached equilib-
rium during the experiment.

After an initial fast increase, the surface runoff rate slowly con-
tinued to increase. This gradual increase in the runoff rate implies a
related decrease in the infiltration rate, which in turn suggests a
Table 6
Optimized parameters for the uniform scenario with two objectives optimization. RMSE –
simulated runoff, Fd – Pareto extreme solution for the simulation of total drainage.

Pareto results hs n a (1/cm) Ks (cm/d)

BoxL
Fd 0.451 1.80 0.00324 28.2
Fr 0.405 1.51 0.00285 90.6
F0 0.467 1.83 0.00322 41.3

BoxR
Fd 0.467 1.66 0.00506 76.5
Fr 0.499 1.37 0.00489 63.5
F0 0.500 1.37 0.00489 77.6
BoxL – manual calibration (Fig. 7)

0.4 1.5 0.003 31.7

Measured
hs n a Ks

Wind

0.483 1.36 0.0112 12.2
0.464 1.56 0.0105 12.8

a Soil samples with crust.
b Soil below crust.
corresponding decrease of surface hydraulic conductivity over
time. Indeed, the erosion of soil particles and the formation of a
crust on the soil surface were observed during the first rainfall
event, particularly for BoxL. During the experiment this crust
may have further settled and compacted, with a concurrent de-
crease in the soil surface hydraulic conductivity. For BoxR, a notice-
able increase of the runoff rate at approximately 50 min coincides
with the lowest pressure head measurement (at a 15-cm depth)
reaching saturation. While replicate experiments will never show
identical results, the differences between the hydraulic responses
of the two boxes appear to be larger than would be expected from
a random variation. Both received identical pre-treatment with 10
rainfall events. So what is the explanation that the two boxes do
not show more similar results? The differences in bulk densities
(Table 1) suggest either some spatial variability in the soil recon-
struction or some heterogeneity in the soil material.

Limited data were also collected to characterize the recessing
limb of the drainage and runoff hydrographs after the end of rain-
fall at 100 min (Fig. 5). For BoxR, drainage ceased within 2, 20, and
30 min, at drains 1–3, respectively (Fig. 5c), which is the opposite
sequence of the onset of drainage at the beginning (Fig. 5d). For
BoxL, drainage was essentially zero for drain 1, ceased within
2 min for drain 2, and lingered for 30 min for drain 3.

3.2. Model sensitivity

A qualitative sensitivity study was conducted in order to assess
the effect of changing parameter values on the simulation results
for runoff and drainage fluxes. The VGM parameters a, hs, Ks, n, s,
and Manning’s nM of the base case scenario were obtained by man-
ually calibrating the model to observations from BoxL (Fig. 7). The
calibrated parameters are mostly within the range of experimental
values (Table 2). For sensitivity analysis, all parameters were var-
ied by +/�50%. As an exception, the lower threshold for n was set
to�25%, since n has to be larger than unity. Using the same relative
variations for all parameters has the advantage of giving a quick
first impression of the sensitivity. However, the results need to
be seen in the light of differing range of parameter values for
describing different soils. This range is often smallest for hs, larger
for n, a, s, nM, and largest for Ks. Fig. 7 shows the changes in the soil
hydraulic functions and model responses to a change in the input
parameter values. Hydraulic functions are plotted in terms of
h(h) and K(h), since h(h) � K(h) and Se(h) � K(Se) do not respond
to a variation of some of the parameters.
normalized root mean square error, F0 – compromise solution, Fr – Pareto extreme for

s nM F1 F2 FR

�2.99 0.0011 0.222 0.542 0.764
�1.34 0.0019 0.717 0.194 0.911

1.74 0.0008 0.281 0.421 0.702

�0.41 0.114 0.226 2.462 2.688
0.88 0.0001 0.316 0.256 0.574
0.91 0.0001 0.240 0.281 0.521

�1 0.007

Permeameter (field) Permeameter (lab)

16.3 146.0 ± 43.6a

16.3 9.1 ± 5.5b
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Decreasing a shifts the point of the steepest slope of h(h) to-
wards more negative (larger absolute) values of h (van Genuchten,
1980). Hence, within the pressure head range of the experiment,
decreasing a increases h(h). While changing a does not affect the
shape of the K(h) curve, decreasing a indirectly increases K(h) by
limiting it to a more saturated range (Fig. 7a and b). Accordingly,
the soil saturates faster, leading to an earlier start of drainage
(Fig. 7c) and runoff (Fig. 7d).

A variation of hs by +/�50% results in seemingly very different
hydraulic functions (Fig. 7e and f), which invoke almost the same
flow responses as corresponding changes of a (Fig. 7g and h). The
explanation is that when a or hs are reduced, the slope of h(h) is less
steep in both cases, so that K(h) stays closer to its saturated end-
point, Ks.

Doubling or bisecting the value of Ks itself (Fig. 7i and j) does not
affect the onset and cessation of flows more than a or hs. However,
Ks is the single parameter that controls the partitioning between
runoff and drainage at saturated steady-state conditions (Fig. 7k
and i). When additionally considering its potentially largest range
of variation, Ks emerged as the most sensitive parameter.

The variation of n shows relatively complex results. As opposed
to a or hs, a decrease in n increases h(h) and decreases K(h). The net
effect on flows is not unidirectional; both a decrease by 25% or an
increase by 50% lead to an earlier onset of runoff and drainage. An
increase of n by 25% (not shown) would show a very similar onset
of runoff and drainage as the standard scenario.

When Manning’s roughness parameter, nM, is decreased so as to
represent a smoother surface, this leaves drainage onset unaffected
(Fig. 7q), but causes a more rapid rise of runoff to its maximum va-
lue (Fig. 7r). The recessions in both runoff and drainage are accel-
erated by a decrease in nM (Fig. 7r and q).

Finally, in this particular scenario, the tortuosity parameter, s,
had practically no effect on both K(h) and simulated flows. Never-
theless, s was included in the global optimization, since it cannot
be asserted that s will not show significant effects when the values
of the other VGM parameters differ. In the inverse analysis, a wide
range was chosen for all parameters in order to sample all possible
values. For s this range was set from �3 to +3.

3.2.1. Uniform-2 scenario
The Uniform-2 scenario considers a homogeneous soil and two

objective functions, i.e., F1 (F2) based on the normalized RMSE be-
tween simulated and observed total drain flow (runoff). First, in-
verse model results are studied in terms of the F1–F2 Pareto
plane (Fig. 8). Among all F1–F2 pairs (grey dots), the Pareto efficient
parameter solutions (red solid circles) form Pareto fronts, which
look different for the two replicates. For BoxL (left panel of
Fig. 8), the front is diagonal. For BoxR, the Pareto front shows a dis-
tinct corner located at F1 = 0.24 and F2 = 0.27, representing the
compromise solution, F̂0. These comparable values for F1 and F2

suggest a successful normalization. For BoxR, a parameter set can
be identified that fits both normalized objective functions equally
well. This is not the case for BoxL, where the Pareto front exhibits
a more distinguished trade-off between F1 and F2.

Observations and the corresponding model simulations are
compared in Fig. 9. The trade-off between Pareto extreme solutions
for BoxL is clearly illustrated (Fig. 9, left panel): a reduction in
drainage goes along with an increase in surface runoff, and vice
versa. For both Pareto extremes, the respective complementary
fluxes were overestimated. Accordingly, the compromise solution,
F̂0, slightly overestimates both drainage and surface runoff by
some 5%. This reveals that for scenario 1 and BoxL, no parameter
set exists for which the flow model will accurately represent the
experiment. Simulation results could be improved if experimental
data were not considered as error-free, but to some extent uncer-
tain. For example, if a 5% lower effective rainfall rate was assumed
in the model input, to account for lateral spray losses as suggested
by the slight gap in the water balance, model optimization would
certainly better match runoff and drain flow observations for BoxL.

For BoxR (Fig. 9, right panel), the Pareto extremes invoked very
different flow simulations. The model with parameters at Pareto
extreme F̂1 incorrectly predicted prolonged drainage after the
end of rainfall (where data were not included in the optimization),
along with an entirely wrong runoff pattern. The F̂0 compromise
solution fitted both runoff and drainage well, and also predicted
drainage recession.

The prediction of pressure heads, which were not included in
the model calibration, is shown in Fig. 9 (bottom panels). The sim-
ulations match the initial tensiometer response quite well. How-
ever, some observed pressure heads lag considerably behind
others. As discussed previously, some soil regions appear to be less
accessible to infiltrating water, which cannot be represented in the
model that assumes uniform homogeneous conditions. Moreover,
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observed maximum values for pressure heads below zero reveal
that there was no buildup of water pressure with depth during
conditions of ponding. By contrast, the simulation shows positive
pressures during ponding. Inserting a thin, highly conductive
drainage layer to mimic the geotextile below the soil would re-
move positive pressures from the simulation (not shown).

Optimized parameter values are shown in Table 6. For compar-
ison, the manually calibrated values (BoxL) and those obtained in
the experimental measurements are displayed also in Table 6.
Most VGM parameters do not deviate much between the F0 com-
promise solutions and independent measurements. The optimized
Ks values ranged between those measured on furrow and ridge
samples (Table 6). The Manning’s roughness parameter was very
small, nM < 0.001, suggesting an even surface. The surface of this
artificially prepared soil was indeed smooth compared to arable
soils in their natural settings. However, the effects of funneled run-
off pattern due to the interrill micro-topography may have been
lumped into the Manning’s nM parameter. In the experiment, sur-
face runoff was somewhat accelerated by being confined to
slope-parallel mini-furrows, whereas the model assumed sheet
flow covering the entire soil surface. The confinement of surface
flow to a smaller fraction of the soil surface may lead to a smaller
effective value of the Manning’s nM parameter. We tried to mimic
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for different Pareto extreme solutions for drainage at midstream (F̂1) and downstream (
BoxR (right).
this effect by assuming only half the width of the box. The optimi-
zation then produced a nM value increased by some 10%, while hs

doubled, and other VGM parameters changed considerably (not
further shown).

3.2.2. Uniform-3 scenario
The Uniform-3 scenario was defined by a search of three Pareto

extremes (see Eq. (10)). The bi-criterion F1–F2, F1–F3, and F2–F3 sur-
faces of the three-dimensional Pareto trade-off space (objective
space) are shown in Fig. 10 for BoxL and BoxR, respectively. There
is no common minimum for all three objectives for both replicates.
For BoxR, the bi-criterion fronts exhibit a curved shape, with the
compromise solution getting equal shares of normalized RMSE
from all objective functions (Fig. 10).

The observed and simulated cumulative runoff and drainage at
three drains are compared in Fig. 11. Cumulative data were used in
the optimization in an attempt to force it to match the mass bal-
ance of the observed volumetric flows. The compromise solution
F̂0 for BoxL (Fig. 11, left) fails to match midstream drainage, but fits
downstream drainage and surface runoff. The F̂1 Pareto extreme
matched only up- and midstream drainage well. The results dem-
onstrate that for this model scenario there is no F̂0 for BoxL that fits
all three objectives simultaneously.
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Table 7
Optimized parameters for the Uniform-3 and MIM + Crust Scenarios with three
objectives optimization. Fm, Fl, Fr – Pareto extreme solutions for the simulation of
drainage from the midstream and downstream drains, and for runoff, respectively.

Pareto result Uniform-3 (BoxL) Uniform-3 (BoxR)

F1 F2 F3 FR F1 F2 F3 FR

Fm 0.21 2.71 3.65 6.57 0.36 0.73 1.07 2.16
Fl 1.65 0.33 0.66 2.64 0.70 0.35 1.29 2.34
Fr 0.27 1.10 0.18 1.55 0.88 1.12 0.36 2.36
F0 0.27 1.10 0.18 1.55 0.37 0.64 0.63 1.63

MIM + Crust (BoxL)a MIM + Crust (BoxR)a

Fm 0.27 0.99 3.65 4.90 0.37 0.65 1.01 2.02
Fl 2.01 0.46 1.31 3.78 0.76 0.35 1.52 2.62
Fr 1.84 0.66 0.37 2.87 0.90 1.07 0.39 2.36
F0 0.77 0.72 0.90 2.40 0.46 0.71 0.59 1.76

a With constraint Ks(crust) < Ks(soil).
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In contrast, F̂0 better represents the different BoxR data (Fig. 11,
right). This is because the increase of drainage towards the down-
stream end is not as extreme as in the BoxL replicate. The Pareto
extreme for midstream drainage, F̂1, agrees with the observations
nearly as well. The minimal upstream drainage is difficult to ex-
plain and points to heterogeneity in the material properties at
the surface or subsurface. Upstream drainage was not included in
the fitting procedure, but is shown for completeness.

The inverse simulation reveals that even a relatively good
match of surface runoff and lumped drainage (Uniform-2 scenario)
does not guarantee a correct model description of the spatial pat-
tern of subsurface flow.

3.2.3. MIM + Crust scenario
The ‘MIM + Crust’ scenario considers mobile and immobile re-

gions in a soil with a surface crust. This scenario, motivated by
the aggregated structure of the soil and observed crust formation,
again includes the three objectives for overland flow and mid- and
downstream drainage. The bi-criterion fronts of the 3D Pareto
trade-off space (Fig. 12) look very similar to those obtained for
the Uniform-3 scenario (Fig. 11). We note that a constraint was im-
posed to keep the saturated hydraulic conductivity of the crust be-
low that of the soil (Ks(crust) < Ks(soil)), which was obtained for
only 1053 runs out of 20,000 for BoxL and 14,030 runs out of
50,040 for BoxR. This constraint filtered out some slightly lower
Pareto extremes for the MIM model, effectively without the sur-
faced crust. Overall, the Pareto extremes and the compromise solu-
tion did not improve the results compared to the Uniform-3
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example (Table 7). A more compact visualization of the objective
space is shown in Fig. 13 for the F1–F2 Pareto trade-off plane with
the color coded objective F3. Visually, cumulative midstream drain-
age and runoff were fitted slightly better for BoxR (Fig. 14) than in
the Uniform-3 scenario (Fig. 12), but the differences were rather
small.

Since no compromise solution could be found that would match
all data equally well, the optimized model parameters may not be
meaningful, and were thus omitted. Hence, the added model com-
plexity did not result in an improved match. If a local optimization
approach had been chosen, such as Levenberg Marquardt, it would
not have been possible to rule out a failure in the inverse procedure
behind this lack of agreement. Using multi-objective optimization
proved that there was a discrepancy between model structure and
experimental data.

Fig. 15 compares simulated surface runoff depths, ho, for the dif-
ferent scenarios at nine observation points along the surface. Max-
imum values for ho are less than 2.5 mm. For a given overland
discharge rate, Qo, the depth ho increases with nM (Eqs. (2) and
(3)). Hence, the differences between simulated ho originate mostly
from differences in the fitted nM values, since the optimized values
for Qo did not differ that much. For each scenario, ho increases
downhill. The onset of runoff, in response to rainfall, occurs almost
simultaneously at different positions along the slope. Some scenar-
ios differ with regard to the recessing limbs after the stop of rain-
fall. Only those scenarios with relatively high ho show faster
dissipation in the upslope part.

4. Discussion

In our case study, the task was to match drainage flows at mid-
and downstream hillslope positions and runoff. A ‘validation’ test
was added to predict (without fitting) the pressure heads, the
recession part of drainage flows, and the drainage hydrographs at
the upstream position. However, an increase in drainage in the
downslope direction could not be reproduced by any of the consid-
ered model scenarios. This could have been caused by soil layers
with different soil bulk densities that may have generated satu-
rated lateral flow on layer interfaces. Such a situation, which could
be captured by explicit consideration of layers in the model, was
not simulated because of the considerable increase in the number
of calibration parameters.

The use of a global optimization technique rules out the fitting
procedure itself as a possible pitfall. Since model assumptions were
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explicitly known, the difficulty of simultaneously matching all dif-
ferent data suggested the presence of some sort of heterogeneity of
soil hydraulic or surface properties that developed despite of the
highly controlled environment. The aggregated and layered soil
showed erosion and crust formation at the surface. The consider-
ation of a crust, although observed, was not highly relevant in
the flow simulation. Had the development of the crust been more
pronounced upstream than downstream, this could have explained
the increase in drainage flux towards the lower half of the box. The
spatial and temporal development of a surface crust and its effect
on infiltration was indeed measured and simulated recently
(Augeard et al., 2007), although on a much smaller soil system. This
kind of analysis was beyond the scope of this study. However, if
available, such information could be fed into the model.

The AMALGAM multi-objective global search method was use-
ful for proving that there was no common optimal parameter set
that described all observations at different spatial locations equally
well. The shape of the Pareto trade-off space illustrates clearly the
incommensurateness of the objective functions. The analysis thus
revealed the divergence between model structure or hypothesis,
and the experimental observations. In our case, the assumption
of having uniform and isotropic soil, or aggregated soil with crust,
does not accurately represent the spatial nature of the flow pro-
cess. Further information with regard to parameter uncertainty
could be gained by studying the parameter ranges for Pareto solu-
tions (e.g., Wöhling et al., 2008).

In vadose zone modeling, there is a large body of literature on
including different types of observations into the model calibration
and its effects on parameter identification (e.g., Friedel, 2005;
Vrugt et al., 2008; Wöhling and Vrugt, in press; Zhang et al.,
2003). However, to the best of our knowledge, similar studies
involving coupled surface–subsurface flow are so far missing.
Similar results, which we obtained for different scenarios and
parameter sets (Uniform-3 and MIM + Crust), point to the well-
known equifinality problem, where several underlying model
structures may yield similar simulation results (Beven, 2006). Rea-
sons are, among others, the incomplete knowledge of the natural
system and its inaccurate representation in the model. To account
for this type of uncertainty, (Klaus and Zehe, 2010) suggested to in-
clude multiple structural set-ups of a physically based model, e.g.,
by employing the Generalized Likelihood Uncertainty Estimation
method (Klaus and Zehe, 2010).
5. Conclusions

A coupled surface–subsurface flow model based on HYDRUS-2D
(Šimůnek et al., 1999) was presented and linked to the multi-
objective parameter search method AMALGAM (Vrugt and
Robinson, 2007). Further, results from a highly controlled bench-
scale experiment of surface and drainage flows in response to
rainfall was presented. The data were used to evaluate the model
performance and to test various hypotheses regarding different
flow processes. Multi-objective parameter estimation with differ-
ent normalized RMSE objective functions, Pareto trade-off space
analysis, and visual comparison between model results and exper-
imental observations were jointly used in this procedure.

The following conclusions can be drawn. Coupled surface–
subsurface flow is a complex problem which requires model
calibration to match several types of observations related to runoff
and soil water dynamics. While there is a large body of literature
related to inverse estimation for vadose zone models, more research
seems necessary to extend these techniques also to coupled mod-
els. To this end, the AMALGAM technique, along with Pareto plot
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analysis, was a useful tool for global optimization and for studying
trade-off patterns between multiple objectives. In our case study, it
showed that a common optimal parameter set to describe all types
of observations equally well did not exist.

The result could be used to rethink the design of experimental
set-ups and model structures. Moreover, the analysis revealed that
a good match between simulated and observed surface runoff and
total drainage does not guarantee an accurate representation of the
flow process.

Overall, the suggested model appears useful for studying the
hydraulics of overland flow and subsurface flow in sloping soils,
potentially up to a hillslope scale. The multi-objective model cali-
bration adds a powerful method for understanding the role of dif-
ferent hydraulic processes in such systems.
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