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Abstract

RETC is a public domain computer code for estimating parameters of the water retention curve and hydraulic
conductivity functions of unsaturated soils. RETC was developed at the US Salinity Laboratory and is now used

world-wide with thousands of copies distributed. Evaluation of the ®nal estimation results in the code has been
improved to yield a new version, RETCML, based on the maximum-likelihood theory for the special case of
weighted least-squares estimators. This paper ®rst explains the theory of maximum-likelihood and introduces the

principles of model adequacy and parameter uncertainty on a formal basis. Next, this paper presents a user guide
for the code. RETCML is also free and has been programmed to be almost fully compatible with the original
RETC input ®les, thus making it easy to re-analyze previous data. The output of RETCML includes a thorough
evaluation of estimation results. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The RETC (RETention Curve) code is a widely used
computer program developed at the US Salinity Lab-
oratory for estimating parameters of the retention
curve and hydraulic conductivity functions of unsatu-

rated soils (van Genuchten et al., 1991). While the

retention curve (often also called the soil water charac-

teristic curve) characterizes the energy status of the soil

water, the unsaturated hydraulic conductivity function

describes the ability of the porous medium to conduct

water. The RETC program uses the parametric models

of Brooks and Corey (1964) and van Genuchten

(1980a) to represent the soil water retention curve, and

the theoretical pore-size distribution models of Mua-

lem (1976) and Burdine (1953) to either predict the

unsaturated hydraulic conductivity function from

observed soil water retention data or to use those data

in the ®tting procedure also. The van Genuchten reten-

tion function (van Genuchten, 1980a) has been very

popular in the ®elds of soil physics and vadose zone
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hydrology. The suggested S-shape function and its

combination with the pore distribution model of Mua-
lem (1976) is used not only for the description of the
soil water characteristic curve (retention curve) but

also for functions describing oil retention and trans-
port properties.

The retention and hydraulic conductivity functions
constitute properties needed for simulating ¯ow and
solute transport in the unsaturated zone. Computer

models using analytical descriptions of soil hydraulic
properties are now routinely used in both research and
management to predict the movement of water and

chemicals in the vadose zone between the soil surface
and the groundwater table. Interest in the vadose zone

has dramatically increased in recent years because of
growing evidence that the quality of the subsurface en-
vironment is being adversely a�ected by industrial, mu-

nicipal, and agricultural activities (van Genuchten et
al., 1991).
The public domain RETC code, and its earlier ver-

sion SOHYP (SOil HYdraulic Properties) (van Gen-
uchten, 1978), have been freely distributed by several

agencies, including the US Salinity Laboratory (USSL)
of the US Department of Agriculture, Agriculture
Research Service (USDA, ARS), the US Environmen-

tal Protection Agency (EPA), the International
Groundwater Modeling Center (IGWMC), and others.
Hundreds of copies of RETC have been distributed by

USSL and IGWMC, thousands by EPA, while
uncounted numbers of copies have been downloaded

from internet sites of these and other agencies. Because
of the wide distribution of RETC (and its descendant/
successor programs), the implementation of the esti-

mation problem in RETC, including the statistical
analysis of estimated parameters, was carried over to
numerous other programs, including CFITM (van

Genuchten, 1980b), CFITIM (van Genuchten, 1981),
ONESTEP (Kool et al., 1985), SFIT (Kool et al.,

1987), MULTISTEP (van Dam et al., 1994), 3DADE
(Leij and Bradford, 1994), CXTFIT (Toride et al.,
1995), HYDRUS-1D (SÏ imunek et al., 1998) and

HYDRUS-2D (SÏ imunek et al., 1996), and probably
many others unknown to the authors. While these pro-
grams all correctly implement the estimation problem,

the statistical analysis concerning the ®nal estimated
parameters is limited because of its imperfect im-

plementation.
We here present an improved version of RETC,

called RETCML (RETention Curve Ð Maximum-

Likelihood), for which the uncertainty analysis is
based on maximum-likelihood theory for the special

case of weighted least-squares estimators. In
RETCML, two theorems for evaluating the estimation
results are exploited. The ®rst theorem allows an evalu-

ation of whether or not a selected parametric model is
``adequate''. Adequacy here signi®es that the model

predictions come so close to the data that any remain-
ing discrepancy is no larger than measurement error in

the underlying experiment. Given adequacy, the second
theorem provides a basis for evaluating uncertainty in
the estimated parameters as a function of measurement

uncertainty. To bene®t from RETCML's features, the
user thus has to specify the measurement uncertainty
in the input ®le. Users of all other above-mentioned

programs may also want to implement the suggested
changes in their codes in order to be able to more
thoroughly evaluate the model adequacy and con®-

dence intervals of optimized parameters in their par-
ticular applications.

2. About estimation

Parameter estimation refers to the problem where a
variable y is observed as a function of a control vari-

able x, and one has a corresponding model with par-
ameters grouped in a vector p. The optimal parameters
are then generally (also in RETC and RETCML)

found by minimizing a sum-of-squares (SSQ) objective
function:

SSQ�p� �
XN
i�1

�
1

syi
� yi, meas�x i � ÿ yi, model�xi;p��

�2
�1�

where the subscripts ``meas'' and ``model'' refer to

measured and model predicted values of y, and N is
the number of measurements. A ``model'' here means a
particular parametric expression for the data, e.g., the

van Genuchten retention expression

c�y;p� �

"�
yÿ yr
ys ÿ yr

��n=�1ÿn��
ÿ1
#1=n

a
�2�

Fig. 1. Some example retention data and corresponding best-

®t van Genuchten model.
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with parameters p=(yr, ys, n, a ) or any subset thereof
if some of these are known by other means. An

example of retention data and the corresponding best-
®t van Genuchten model is shown in Fig. 1. As this
paper focuses on the estimation problem, the reader is

referred to the literature for additional examples of
hydraulic functions and properties (van Genuchten,
1980a).

A key feature of the above SSQ estimator are the i
= 1, . . . , N weights sÿ1yi

: As the notation implies, the
weights must be set to re¯ect measurement error infor-

mation about the data:

1

syi
� 1

measurement error standard deviation

����
i

: �3�

It is intuitive that information about the quality of the

data should determine the quality of the parameter
estimates, and that this information hence should be
contained in the SSQ estimator. This intuitive principle

has a formal mathematical representation. With
weights set as given by Eq. (3), the weighted least
squares (WLS) estimator Eq. (1) is in fact a maximum-

likelihood (ML) estimator. The equivalence between
the WLS and the more general ML estimator strictly
holds only when all normalized residuals ri � � yi,
meas�x i � ÿ yi, model�x i; p��=syi are (i) independent and
(ii) normally distributed. Condition (ii) is not really
restrictive because the estimator is robust as long as
the error distributions are symmetric and free of a bias

and extreme outliers (Press et al., 1992, Chap. 15.6).
While condition (i) is more di�cult to meet in practice,
the case of residuals with unknown correlation is in

general di�cult to treat, even by more advanced the-
ories. Since this paper is not intended to discuss all
aspects of ML estimation, the interested reader is

referred to the literature (e.g., Bard, 1974; Beck and
Arnold, 1977). Most importantly for practical appli-
cations, the error introduced by ignoring some residual
correlation is much less severe than the error intro-

duced by not setting the weights properly.
Once the weights are set as in Eq. (3), two theorems

for evaluating estimation results can be exploited. The

®rst theorem allows an evaluation of whether or not a
selected parametric model is adequate. For adequate
models, the second theorem provides a basis for evalu-

ating uncertainty in the estimated parameters. The two
theorems and their implementation in RETCML will
be presented in the following. In addition, the di�er-

ences between RETC and RETCML will be pointed
out.

2.1. Model adequacy

An adequate model is one that explains the data to
such a degree that it is plausible that remaining discre-

pancies are due only to measurement error noise. In
other words for the best ®t, the absolute values of the

deviations di � � yi, meas�x i � ÿ yi, model�x i; p�� should
be about as large as the measurement error standard
deviations syi , yielding normalized residuals each with

j ri j11, thus r2i 11: Furthermore, the SSQ estimator
is a sum of N squared residuals r2i , so if these are all
independent, it can be expected that at best, SSQ 1 N.

In addition, it is known that a sum of squared random
variables that each follow a normal distribution has a
chi-square distribution.

The preceding intuitive argument may elucidate the
principle behind the formal statistical test for model
adequacy. This test is based on the minimum SSQ
value, SSQmin, attained for the optimal parameters

popt, which is distributed as (Press et al., 1992, Chap.
15.1):

SSQmin 0w2NÿP: �4�

The number of degrees-of-freedom is NÿP and not N,
because there is a loss of one degree-of-freedom for

each of the P parameters.
The expected value (the mean) of a w 2 function is its

number of degrees-of-freedom (Abramowitz and Ste-

gun, 1965 , Eq. 26.4.33):

E�w2NÿP� � Nÿ P: �5�

Hence, from Eq. (4), it can be expected that
SSQmin=NÿP. As any estimation problem is best
de®ned when the number of data signi®cantly exceeds

that of the number of parameters, a good rule of
thumb is that for an adequate model, SSQmin should
be about the same as the number of data Ð just as

was expected from the introductory intuitive argument.
If the model is inadequate, however (e.g., the situ-

Fig. 2. ``Fitting'' S-shaped van Genuchten retention curve to

synthetic data representing straight line. R 2 value is high even

for this inadequate model, whereas padeq correctly reveals mis-

®t.
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ation shown in Fig. 2), SSQmin will be signi®cantly lar-
ger than NÿP. This is so because the model-data devi-

ations di will (by absolute value) on average be larger
than the measurement errors syi ; hence, the squared re-
siduals will on average be larger than 1.

For any observed value of SSQmin, the probability
of model adequacy is:

padeq � 1ÿQ�SSQmin ,Nÿ P � �6�

where Q(�) is the w 2 cumulative density function.
The probability of model adequacy, padeq, in practi-

cal applications is relatively sensitive to outliers in the

data. Even a single outlier, giving one large squared re-
sidual r2outlier, can result in a high SSQmin. Hence, a rare
relatively low padeq is not necessarily reason for con-

cern.
More often, the reason for a low padeq is the assign-

ment of too high weights sÿ1yi
, as the SSQ grows with

the square of the weights. Too high weights sÿ1yi
result

if the user's speci®cation for the measurement errors
syi is too optimistic (too small). Conversely, if these
errors are speci®ed too pessimistically (too large),

SSQmin will be very small, resulting in an often unrea-
listic probability of model adequacy essentially equal
to 1.

Also the original RETC allows for speci®cation of
the weights for the data. On p. 35 in the manual (van
Genuchten et al., 1991), the recommendation of setting

the weights as inverses of observation errors is given,
but its importance is not particularly emphasized.
Accordingly, the probability of model adequacy is not

computed in RETC, but only the correlation coe�cient
R 2 between model predictions and data. However, the
R 2 value does not follow any distribution, so one can-
not evaluate quantitatively how good a particular value

is. In general, the R 2 values found with RETC are all
very close to 1, even for the clearly inadequate model.
The advantage of examining model adequacy rather

than a correlation coe�cient is illustrated for a ``non-
sense'' example (Fig. 2). The synthetic data used for
estimating the van Genuchten retention parameters

were set to describe a straight line, which is not a
retention curve one can observe in nature. Neverthe-
less, the R 2 value output by RETC is 0.98, close to the
perfect value of 1. In contrast, the probability of

model adequacy, padeq, as computed in RETCML,
unequivocally reveals the poor ®t. In general, ``good''
®ts are correctly indicated by both R 2 and padeq (for

the ®t in Fig. 1, R 2=0.99710 and padeq > 0.99999).
Apparently, the statistic R 2 thus has little power for
discriminating between good and poor ®ts. (Note that

measurement error standard deviations were taken to
be as large as the crosshairs on the data in Fig. 2 when
calculating padeq.)

2.2. Parameter con®dence regions

A con®dence region for parameter estimates is

de®ned via a maximum allowable change in the SSQ
from its minimum value. The relevant theorem has
been implemented in RETCML, but only incorrectly

so in the original RETC.
From theory (Press et al., 1992, Chap. 15.6), it is

known that the increment DSSQ(p)=SSQ(p)ÿSSQmin

follows a chi-square distribution with P degrees-of-
freedom:

DSSQ�p�0w2P: �7�

Thus, the appropriate value for DSSQconf for a desired
level of con®dence pconf is:

DSSQconf � Qÿ1� pconf , P � �8�

where Qÿ1( pconf, P ) is the inverse w 2 cumulative den-

sity function.
In practice it would be di�cult to compute the SSQ

for ``all'' parameter vectors p and determine for each

one whether DSSQ(p) is either larger or smaller than
the allowed DSSQconf value. (Although contouring the
SSQ is often a method for analyzing how well-de®ned
estimation problems are (e.g., Toorman et al., 1992).)

Fortunately, an approximate method exists based on
the Cramer±Rao theorem (Schweppe, 1973, Chap. 12).
This theorem gives a lower bound for the parameter co-

variance matrix SSSp as:

SSSprHÿ1 �9�

where H is the Hessian matrix. H can be computed
from the sensitivity of the model to its parameters, i.e.,

from the partial derivatives of the objective function
(Press et al., 1992, Chap. 15.5), as

Hkl �
XN
i�1

1

s2y, i

�
@yi�p�
@pk

@yi�p�
@pl

�
k, l � 1, . . . , P: �10�

With the parameter covariance matrix known, a geo-

metric description of the con®dence region is given
through:

�pÿ popt� 0SSSÿ1p �pÿ popt� � DSSQconf : �11�

Eq. (11) describes an ellipsoid in the parameter space,
and all parameter vectors p within the ellipsoid are
part of the con®dence region.

Eqs. (10) and (9) suggest that smaller weights imply
a larger (less desirable) con®dence region. This makes
sense because smaller weights express larger measure-

ment errors. Now recall that smaller weights also
imply a higher (more desirable) probability of model
adequacy. Hence, the magnitudes of the weights
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impact the two measures of the quality of the esti-
mation result in opposite directions. Inadequate

models can have attractively small parameter con®-
dence regions. The user should not be tempted to set
the weights too large to achieve a small con®dence

region, but at the expense of an unrealistically small
probability of model adequacy.
A multivariate con®dence region in P dimensions is

di�cult to visualize, but pseudo-univariate ``parameter
standard errors'' can be taken from the diagonal of the
parameter covariance matrix as:

sp, i �
����������
SSSp, ii

p
i � 1, . . . , P: �12�

A conservative way to ®nd the actual con®dence inter-
val for a parameter is to ®nd the projections of the

con®dence ellipsoid on the parameter axes. The half-
length of the symmetric con®dence interval for the i-th
parameter is (Press et al., 1992, Eq. 15.6.4):

cp, i �
����������������������������
Qÿ1� pconf , P �

p
sp, i: �13�

An example of a con®dence ellipse and the projected

con®dence intervals computed using Eq. (13) is shown
in Fig. 3. This schematic example is for two generic
parameters here called ``p1'' and ``p2''.

It is important to be aware of the approximate
nature of the Cramer±Rao theorem when choosing a
con®dence level for the parameters. Only for linear
models is the con®dence region an ellipsoid, with its

size proportional to the norm of the covariance matrix.
The uncertainty region for nonlinear models is often
odd-shaped, and larger than the Cramer±Rao ellipsoid.

The discrepancy grows the higher the con®dence level,
i.e., the larger the region. For example, while none of
the van Genuchten parameters can be negative, for a

su�ciently large desired con®dence level (a su�ciently
large multiplier

����������������������������
Qÿ1� pconf , P �

p
), the Cramer±Rao

ellipsoid will grow into the negative parts of parameter
space. Hence, it is not advisable to ``stretch'' the theo-
rem by computing con®dence limits at too high a level.

With this in mind, RETCML is coded to output 90%
rather than 95% (RETC) con®dence limits. Exact and
Cramer±Rao con®dence regions for the soil hydraulic

data are shown in Hollenbeck and Jensen (1998, Fig.
4) . The approximation can be judged admissible.
In RETC, univariate parameter con®dence half-

lengths are apparently computed incorrectly. The for-
mula used in the code is:

cp, i � tÿ1� pconf ,Nÿ P �
�����������������
SSQmin

Nÿ P

r
sp, i i � 1, . . . ,

P

�14�

where tÿ1( pconf, NÿP ) is the inverse cumulative den-

sity of the t distribution. With this formulation, the
weight factors almost cancel out, because as seen from
Eqs. (9), (10), and (12), the squared weights are con-
tained in the parameter standard error sp,i, while from

Eq. (1), their reciprocals are contained in
����������������
SSQmin

p
:

The net result is that di�erent multiples of weights
result in the same computed standard errors. Consider-

ing the de®nitions more closely, the weights enter as
multipliers for the deviations, which as a product are
squared in SSQmin, while in the Hessian, the weights

themselves are squared. Hence, the two sums de®ning
SSQmin and Hÿ1kl are not exactly reciprocals of each
other when not all weights are scaled by the same fac-

tor. The use of di�erent weights within a data set (i.e.,
not a di�erent multiple for all) will impact the esti-
mates to a limited extent. For example, in RETC one
can assign larger weights for ``wet'' retention obser-

vations and smaller ones for some of the ``dry'' data,
thus placing more emphasis on the ``wet'' data as com-
pared to the ``dry'' data. The overall magnitude of the

estimation error, however, will be determined only by
NÿP. Recalling the discussion of model adequacy, the
estimation errors as computed from RETC are always

about equal to that of an adequate model, irrespective
of measurement uncertainty [cf Eq. (5)].
RETC makes use of t statistics in two instances.

Comparing RETC's Eq. (14) with RETCML's Eq.

(13), it can be seen that the scale factor for the projec-
tions of the parameter con®dence interval di�ers.
RETC's tÿ1NÿP statistic is only correct for a univariate

estimation problem, but not for the generally encoun-
tered multivariate case. Furthermore, RETC's con®-
dence analysis output contains the t value for testing

the hypothesis H: pi=0. It is not obvious why one
should test whether a particular parameter is equal to
zero (some, such as van Genuchten's n, are restricted

Fig. 3. Schematic representation of two-dimensional con®-

dence ellipse with projections delineating con®dence intervals

for parameters ``p1'' and ``p2'' around optimal (estimated) par-

ameters.
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to be greater than zero or even one, depending upon
the selected soil-hydraulic parametric model). Hence,

the t values have not been carried over from RETC's
to RETCML's output.
As a closing remark for this Section, it should be

mentioned that maximum-likelihood theorems for eval-
uating estimation results are strictly valid only if the
number of data clearly exceeds the number of par-

ameters to be estimated. This restriction does not con-
strain RETCML relative to RETC, because as seen in
Eq. (14), also RETC makes reference to a maximum-

likelihood theorem (the Cramer±Rao theorem). A
``reasonably'' large number of data is required for sol-
ving any estimation problem in a meaningful way.

2.3. Assigning proper weights

Although Eq. (3) is a formally correct and complete

guideline on how to set weight factors in RETCML,
the user might encounter situations where more
detailed directions can be helpful. These are given in

this Section.

2.3.1. Errors in both x and y or in x only
According to Eq. (3), the SSQ estimator Eq. (1),

allows for speci®cations of errors in y only, when y is

a function of x. In practice, however, data may some-
times be available in the form x( y ), with errors known
for x. For example, in RETC and RETCML, the

retention curve is ®tted as y(c ), not c(y ). A related
situation often encountered in practice is that instru-
ment errors a�ect not only the measured variable y,
but also the independent variable x.

To still use RETC and RETCML in the case of
errors in both y and x, or only in x, we suggest the fol-
lowing approach. One can compute a lumped total

error in y as:

syi, total
�

������������������������������������
s2yi �

�
@y

@x

����
i

sx i

�2
s

: �15�

The ®rst term, syi , is the error in y itself, and the sec-

ond represents the change/error in y caused by a ran-
dom change/error in x. For the unusual case of error-
free y data, the second term under the square root
guarantees a non-zero lumped error (otherwise the

weight would be ``1/0=1''). The total error infor-
mation syi, total

then replaces syi in the objective function
Eq. (1).

Note that the scheme expressed in Eq. (15) is not
part of RETCML. The user has to compute the proper
weights separately and then make them part of the

input ®le for RETCML. For application of Eq. (15), it
is useful to assume a locally linearized functional
dependence of y on x, and to take ®nite-di�erences

between consecutive data as approximations of the de-
rivatives.

2.3.2. Log-transformed data

RETC's option to log-transform conductivity and
di�usivity data has been retained in RETCML. The in-
ternal transformation of the input weights performed
in RETC has, however, not been maintained. Rather,

the weights entering the SSQ are the input weights,
because the general philosophy with RETCML is that
the user should assess his/her data quality and have

full control over the estimation process. The only
reason for using the log-transform feature should be to
better ful®ll the normality assumption for the measure-

ment errors (i.e., one should only log-transform if the
log-transformed error is closer to being normally dis-
tributed than the raw error). A wide spread in the

magnitudes of data in itself is no reason to log-trans-
form. There is also nothing wrong with specifying
weights of widely di�erent magnitudes.

2.3.3. Error magnitude unknown
Often in practical applications, the measurement

error magnitude is unknown, and not even an edu-

cated guess can be made. RETCML can be used to
perform ordinary-least-squares (OLS) estimation for
this case, essentially emulating RETC. Parameter

uncertainty is computed under the assumption of hav-
ing an adequate model [by setting SSQmin=NÿP in-
ternally, cf Eq. (5)]. The output value of SSQmin is,

however, that for unit weights. This value can be use-
ful for comparing di�erent parametric models for the
same data in a relative sense (e.g., the lower SSQmin,

the more appropriate the model). The probability of
model adequacy loses its meaning once SSQmin has
been scaled according to the quality of the ®t.

2.3.4. Mixed estimator
RETC allows for estimation from retention and

unsaturated conductivity data simultaneously. In
essence, this is performed with a mixed sum-of-squares
estimator which uses a relative weight W1.

SSQ�p� �W1 SSQk�p� � SSQy�p� �16�
where SSQk (p) is a conductivity (or di�usivity) objec-
tive function and SSQy (p) analogously a retention

objective function, both de®ned as in Eq. (1).
In the preceding sections it was emphasized that

each datum should be given its own weight, re¯ecting

its reliability (the inverse of measurement error).
Hence, a factor W1 is formally not only super¯uous,
but can distort estimation results. Imagine the very

realistic case where each sub-SSQ in the estimator Eq.
(16) would lead to di�erent optimal parameter vectors
p. By manipulating W1, one can shift the ®nal estimate
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from one that is optimal for the conductivity data (W1

4 1) to one that is optimal for the retention data

(W1=0). The pragmatic suggestion in RETC's manual
(p. 36) to set W1 within limits of 0.1 and 1 makes the
problem of arbitrary results less extreme, but it still

exists. No theory is available for setting W1, and as
shown here, the factor is not even needed.
Notwithstanding the above discussion, RETCML's

input also includes the factor W1. The main reason for
retaining W1 was to achieve compatibility with the old
input ®le format. W1 is generally ignored in the com-

putation, with a single exception. When maximum-like-
lihood estimation is impossible anyway, i.e., when OLS
estimation has been invoked, W1 can be used accord-
ing to Eq. (16). In this fashion, the conductivity/di�u-

sivity data as a group can be weighed relative to
retention data as a group. Still, the user should be
aware of possibly distorted results, depending on how

each group determines the overall estimate. Therefore,
when using mixed estimators, it is recommended to
check the output ®le for how each group contributed

to the optimal SSQ (see ``weighted sum of squares of
observed versus ®tted values''). A W1$1 in WLS ana-
lyses or when estimating from retention data only

results in a warning note in the output. For a more in-
depth discussion of the mixed-estimator problem, see
Hollenbeck and Jensen (1998).

3. Using RETCML

3.1. Input

RETCML is compatible with RETC in terms of the
input ®le format (.in) and the control ®le format and
name (still retc.ctl). Hence the user can easily re-

analyze existing data. Likewise, the RETC manual
(van Genuchten et al., 1991) is still generally valid for
RETCML. However, two cases exist where the input is

interpreted di�erently.
One di�erence concerns the way in which the OLS

estimation is carried out (see Section 2.3.3 for con-

ditions where OLS is appropriate and how to interpret
its results). In RETC, an OLS analysis could be
invoked by setting all weights to 1. This feature cannot
be carried over to RETCML because unit weights

could also, just by chance, re¯ect the true measurement
error. Hence, if an OLS analysis is desired with
RETCML, at least one weight has to be set to 0. A

zero weight is interpreted as missing, and because it
does not make sense to conduct a WLS estimation if
even only a single weight is missing, one or more zero

weight(s) will invoke an OLS analysis. In this context,
the user ought to be careful to not accidentally intro-
duce zero weights that can result from application of

Eq. (15), i.e., when the gradient between a pair of data
points y(x ) is in®nite and sy=0. In this situation, the

user should remove one point of the pair (one line)
from the input ®le. A data point with zero weight
should not a�ect the estimation results anyway,

because the apparent in®nite measurement error at this
data point implies that it lacks any reliability.
The second di�erence in input interpretation

between RETC and RETCML concerns the weight W1

(position 16 in retc.ctl, weight of k/d data
with respect to water content data). As dis-

cussed in Section 2.3.4, this weight has no meaning
within the context of maximum-likelihood estimation
where each data point already has an appropriate
weight. Hence, unless OLS for two types of data is

conducted, RETCML overrides any input, sets W1=1,
the neutral value, and prints a warning message. Note
that W1 in RETCML has not exactly the same e�ect

as in RETC, where in addition it is manipulated in-
ternally relative to data magnitude. This latter internal
manipulation is not transparent to the user and has

therefore been abandoned.

3.2. Output

RETCML preserves RETC's output of data and

model predictions. The output for the estimation
results is, however, di�erent. The individual items are
given below in the sequence they appear. Items in par-

entheses are not always part of the output, but depend
on the particular estimation result.

1. Banner: Estimation results are announced with a

new banner printout. Unlike for RETC, the print-
out comes before the correlation matrix, which in
RETCML is interpreted as an estimation result,
too.

2. (Warning) if at least one weight is missing (i.e.,
speci®ed as zero) and an OLS rather than a WLS
estimation has been performed (under the assump-

tion of an adequate model; scaling the residuals as
discussed in Section 2.3.3).

3. (Warning) if there are few data (cut-o� set to NÿP
< 20), in which case the theorems used for inter-
preting estimation uncertainty do not strictly hold
(cf Section 2.2).

4. (Note) if a relative weight for retention versus con-

ductivity/di�usivity SSQ's W1$1 was used as input,
unless OLS is conducted for two data types. In all
other cases, this factor is no longer supported as dis-

cussed in Sections 2.3.4 and 3.1.
5. Correlation matrix: Same as in RETC. This matrix

can help the user to identify ill-de®ned estimation

problems (for which the o�-diagonal elements are
close to21).

6. Probability of model adequacy: The value padeq as
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de®ned in Eq. (6). This quantity takes the place of
RETC's R 2 value for reasons explained in Section

2.1. Note that if OLS is conducted, the residuals are
scaled to give an adequate model [cf Eq. (5)]; hence,
the now meaningless padeq is not output.

7. (Warning) if padeq is very small (cut-o� set to 10ÿ4).
Con®dence limits on parameters make little sense
for a very likely inadequate model, even though for

the sake of completeness, they still are presented.
The possible error leading to a very small padeq, i.e.,
too large (optimistically speci®ed) weights, is

pointed out.
8. (Warning) if padeq is unrealistically large [cut-o� set

to SSQmin/(NÿP ) < 0.01; cf Eq. (6) and Section
2.1]. Computation of con®dence limits in this case

becomes numerically unstable [the Hessian has a
very high condition number, so its inverse is ill-
de®ned, cf Eq. (9)]. Con®dence limits likely become

incorrectly small. The possible error leading to a
very large padeq, i.e., too small (pessimistically speci-
®ed) weights, is pointed out.

9. Parameter estimates and con®dence: Similar to
RETC's output, also including the pseudo-univari-
ate parameter standard errors ``std.err.'' as de®ned

in Eq. (12). Con®dence limits are, however,
obtained as the optimal parameter 2 the revised
(ellipsoid projection) half-lengths as de®ned in Eq.
(13). The chosen con®dence limit is 90% as opposed

to RETC's 95% for reasons discussed in Section
2.2. The t-values are no longer given as output for
reasons also discussed in that Section.

10. Observed and ®tted data: This part of the output is
nearly identical to that of RETC, with the excep-
tion of the normalized residuals ri (labeled

hvariable-nameiRES) replacing the deviations
di (labeled hvariablenameiDEV) when WLS
estimation has been performed. The normalized re-
siduals ri should be close to 21 on average (cf Sec-

tion 2.1). Larger (in absolute terms) values of the
residuals may indicate outliers in the data. For
OLS, normalized residuals are unde®ned for lack

of a measurement error weight; hence, the devi-
ations di are given as output, just as in RETC. A
note to that extent is printed out.

4. Practical information

The source code of RETCML is available under
http://www.iamg.org/CGEditor/index.htm. The instal-
lation ®le of the Windows version is available under

http://www.ussl.ars.usda.gov/models/models.html.
RETCML has been veri®ed by comparing esti-

mation results with those obtained with MATLAB

code written for the same purpose, but using

MATLAB's own optimization routine constr. Only

small numerical errors due to di�erent machine pre-

cisions were observed; hence, RETCML should be

mathematically correct. All features implemented in

RETCML (the output listed in Section 3.2) have also

been tested. Note that the original RETC can crash

with ¯oating point errors when the estimation problem

is very ill-de®ned (e.g., when one tries to estimate the

residual saturation but only supplies the near-saturated

part of the retention curve). This problem still exists in

RETCML, because the optimization algorithm has not

been changed. To report any other errors possibly still

in the code, please send an email to Jirka SÏ imunek,

simunek@ussl.ars.usda.gov.

4.1. Programming details

RETCML was developed based on the DOS ver-

sion of RETC. It has been compiled with Microsoft

Developer Studio, Fortran Power Station 4.0, on a

Windows NT 4.0 station. In the source code, the

modi®cations made are in small letters, whereas

RETC is written in ALL CAPS. All modi®cations

are also preceded by comment lines to make the

code easier to understand. Some changes in the

existing RETC code were necessary for compilation.

These are: the standard input unit has been set to

5 instead of RETC's 0, an argument to dmax1 has

been made a double rather than a single precision

number (line 132 now), and the terminal (screen)

input unit for a character is � instead of 5 (line 60

now).

The original optimization algorithm was not chan-

ged. It was considered to introduce analytical objective

function gradient evaluation, but comparison with par-

allel MATLAB code revealed only very small improve-

ments. The required programming e�ort to introduce

analytical gradients for all hydraulic parameter

schemes in RETC seemed unwarranted for the rather

small gain in accuracy.

Several new (with respect to RETC) functions/sub-

routines are included at the end of the RETCML

source code. These implement the incomplete gamma

function needed for computing the w 2 statistic, which

in turn is required for computing the probability of

model adequacy [see Eq. (6)]. The functions are called

gammq and gammln, the subroutines gser and gcf.
All these were taken from Press et al. (1992, Chap.

6.2). The function Qÿ1(�) [see Eq. (8)] is not coded,

but rather contained in the form of a lookup table for

1±6 degrees-of-freedom at 90% con®dence (lines 35±37

of the code).
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