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22.1 Introduction

Human society during the past several centuries has created a large number of chemical substances that
often find their way into the environment, either intentionally applied during agricultural practices,
unintentionally released from leaking industrial and municipal waste disposal sites, or stemming from
research or weapons production related activities. As many of these chemicals represent a significant
health risk when they enter the food chain, contamination of both surface and subsurface water supplies
has become a major issue. Modern agriculture uses an unprecedented number of chemicals, both in
plant and animal production. A broad range of fertilizers, pesticides and fumigants are now routinely
applied to agricultural lands, thus making agriculture one of the most important sources for non-point
source pollution. The same is true for salts and toxic trace elements, which are often an unintended
consequence of irrigation in arid and semiarid regions. While many agricultural chemicals are generally
beneficial in surface soils, their leaching into the deeper vadose zone and groundwater may pose serious
problems. Thus, management processes are being sought to keep fertilizers and pesticides in the root
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zone and prevent their transport into underlying or down-gradient water resources. Agriculture also
increasingly uses a variety of pharmaceuticals and hormones in animal production many of which, along
with pathogenic microorganisms, are being released to the environment through animal waste. Animal
waste and wash water effluent, in turn, is frequently applied to agricultural lands. Potential concerns about
the presence of pharmaceuticals and hormones in the environment include: (1) abnormal physiological
processes and reproductive impairment; (2) increased incidences of cancer; (3) development of antibiotic
resistant bacteria; and (4) increased toxicity of chemical mixtures. While the emphasis above is mostly on
non-point source pollution by agricultural chemicals, similar problems arise with point-source pollution
from industrial and municipal waste disposal sites, leaking underground storage tanks, chemicals spills,
nuclear waste repositories, and mine tailings, among other sources.

Mathematical models should be critical components of any effort to optimally understand and quantify
site-specific subsurface water flow and solute transport processes. For example, models can be helpful tools
for designing, testing and implementing soil, water, and crop management practices that minimize soil
and water pollution. Models are equally needed for designing or remediating industrial waste disposal sites
and landfills, or for long-term stewardship of nuclear waste repositories. A large number of specialized
numerical models now exist to simulate the different processes at various levels of approximation and for
different applications.

Increasing attention is being paid recently to the unsaturated or vadose zone where much of the
subsurface contamination originates, passes through, or can be eliminated before it contaminates surface
and subsurface water resources. Sources of contamination often can be more easily remediated in the
vadose zone, before contaminants reach the underlying groundwater. Other chapters in this Handbook
deal with water flow (Chapters xx) and solute transport (Chapters xx) in fully saturated (groundwater)
systems and with water flow in the unsaturated zone (Chapter 5). The focus of this chapter thus will be
on mathematical descriptions of transport processes in predominantly variably saturated media.

Soils are generally defined as the biologically active layer at the surface of the earth’s crust that is made
up of a heterogeneous mixture of solid, liquid, and gaseous material, as well as containing a diverse
community of living organisms (Jury and Horton, 2004). The vadose (unsaturated) zone is defined as
the layer between the land surface and the permanent (seasonal) groundwater table. While pores between
solid grains are fully filled with water in the saturated zone (groundwater), pores in the unsaturated zone
are only partially filled with water, with the remaining part of the pore space occupied by the gaseous
phase. The vadose zone is usually only partially saturated, although saturated regions may exist, such as
when perched water is present above a low-permeable fine-textured (clay) layer or a saturated zone behind
the infiltration front during or after a high-intensity rainfall event.

As the transport of contaminants is closely linked with the water flux in soils and rocks making up the
vadose zone, any quantitative analysis of contaminant transport must first evaluate water fluxes into and
through the vadose zone. Water typically enters the vadose zone in the form of precipitation or irrigation
(Figure 22.1), or by means of industrial and municipal spills. Some of the rainfall or irrigation water
may be intercepted on the leaves of vegetation. If the rainfall or irrigation intensity is larger than the
infiltration capacity of the soil, water will be removed by surface runoff, or will accumulate at the soil
surface until it evaporates back to the atmosphere or infiltrates into the soil. Part of this water is returned
to the atmosphere by evaporation. Some of the water that infiltrates into the soil profile may be taken
up by plant roots and eventually returned to the atmosphere by plant transpiration. The processes of
evaporation and transpiration are often combined into the single process of evapotranspiration. Only
water that is not returned to the atmosphere by evapotranspiration may percolate to the deeper vadose
zone and eventually reach the groundwater table. If the water table is close enough to the soil surface, the
process of capillary rise may move water from the groundwater table through the capillary fringe toward
the root zone and the soil surface.

Because of the close linkage between water flow and solute transport, we will first briefly focus on the
physics and mathematical description of water flow in the vadose zone (Section 22.2). An overview is given
of the governing equations for water flow in both uniform (Section 22.2.2) and structured (Section 22.2.3)
media. This section is followed by a discussion of the governing solute transport equations (Section 22.3),
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FIGURE 22.1 Schematic of water fluxes and various hydrologic components in the vadose zone.

again for both uniform (Section 22.3.2) and structured (fractured) (Section 22.3.3) media. We also
briefly discuss alternative formulations for colloid (Section 22.3.3.2.2) and colloid-facilitated transport
(Section 22.3.3.3), multicomponent geochemical transport (Section 22.3.5), and stochastic approaches
for solute transport (Section 22.3.4). This is followed by a discussion of analytical (Section 22.4) and
numerical (Section 22.5) approaches for solving the governing flow and transport equations, and an
overview of computer models currently available for simulating vadose zone flow and transport processes
(Sections 22.4.2 and 22.5.2).

22.2 Variably Saturated Water Flow

In this section, we briefly present the equations governing variably saturated water flow in the subsur-
face. More details about this topic, including the description of the soil hydraulic properties and their
constitutive relationship, are given in Chapter xx. Traditionally, descriptions of variably saturated flow
in soils are based on the Richards (1931) equation, which combines the Darcy–Buckingham equation
for the fluid flux with a mass balance equation. The Richards equation typically predicts a uniform flow
process in the vadose zone, although possibly modified macroscopically by spatially variable soil hydraulic
properties (e.g., as dictated by the presence of different soil horizons, but possibly also varying laterally).
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Unfortunately, the vadose zone can be extremely heterogeneous at a range of scales, from the microscopic
(e.g., pore scale) to the macroscopic (e.g., field or larger scale). Some of these heterogeneities can lead
to a preferential flow process that macroscopically is very difficult to capture with the standard Richards
equation. One obvious example of preferential flow is the rapid movement of water and dissolved solutes
through macropores (e.g., between soil aggregates, or created by earthworms or decayed root channels)
or rock fractures, with much of the water bypassing (short-circuiting) the soil or rock matrix. However,
many other causes of preferential flow exist, such as flow instabilities caused by soil textural changes or
water repellency (Hendrickx and Flury, 2001; Šimůnek et al. 2003; Ritsema and Dekker 2005), and lateral
funneling of water due to inclined or other textural boundaries (e.g., Kung 1990). Alternative ways of
modeling preferential flow are discussed in a later section. Here we first focus on the traditional approach
for uniform flow as described with the Richards equation.

22.2.1 Mass Balance Equation

Water flow in variably saturated rigid porous media (soils) is usually formulated in terms of a mass balance
equation of the form:

∂θ

∂t
= −∂qi

∂xi
− S (22.1)

where θ is the volumetric water content [L3L−3], t is time [T], xi is the spatial coordinate [L], qi is the
volumetric flux density [LT−1], and S is a general sink/source term [L3L−3T−1], for example, to account
for root water uptake (transpiration). Equation 22.1 is often referred to as the mass conservation equation
or the continuity equation. The mass balance equation in general states that the change in the water
content (storage) in a given volume is due to spatial changes in the water flux (i.e., fluxes in and out of
some unit volume of soil ) and possible sinks or sources within that volume. The mass balance equation
must be combined with one or several equations describing the volumetric flux density (q) to produce the
governing equation for variably saturated flow. The formulations of the governing equations for different
types of flow (uniform and preferential flow) are all based on this continuity equation.

22.2.2 Uniform Flow

Uniform flow in soils is described using the Darcy–Buckingham equation:

qi = −K (h)

(
K A

ij
∂h

∂xj
+ K A

iz

)
(22.2)

where K is the unsaturated hydraulic conductivity [LT−1], and K A
ij are components of a dimensionless

anisotropy tensor KA (which reduces to the unit matrix when the medium is isotropic). The Darcy–
Buckingham equation is formally similar to Darcy’s equation, except that the proportionality constant
(i.e., the unsaturated hydraulic conductivity) in the Darcy–Buckingham equation is a nonlinear function
of the pressure head (or water content), while K (h) in Darcy’s equation is a constant equal to the saturated
hydraulic conductivity, Ks (e.g., see discussion by Narasimhan [2005]).

Combining the mass balance Equation 22.1 with the Darcy–Buckingham Equation22.2 leads to the
general Richards equation (Richards, 1931)

∂θ(h)

∂t
= ∂

∂xi

[
K (h)

(
K A

ij
∂h

∂xj
+ K A

iz

)]
− S(h) (22.3)

This partial differential equation is the equation governing variably saturated flow in the vadose zone.
Because of its strongly nonlinear makeup, only a relatively few simplified analytical solutions can be
derived. Most practical applications of Equation 22.3 require a numerical solution, which can be obtained
using a variety of numerical methods such as finite differences or finite elements (Section 22.5a).
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Equation 22.3 is generally referred to as the mixed form of the Richards equation as it contains two
dependent variables, that is, the water content and the pressure head. Various other formulations of the
Richards equation are possible.

22.2.3 Preferential Flow

Increasing evidence exists that variably saturated flow in many field soils is not consistent with the
uniform flow pattern typically predicted with the Richards equations (Flury et al., 1994; Hendrickx and
Flury, 2001). This is due to the presence of macropores, fractures, or other structural voids or biological
channels through which water and solutes may move preferentially, while bypassing a large part of the
matrix pore-space. Preferential flow and transport processes are probably the most frustrating in terms
of hampering accurate predictions of contaminant transport in soils and fractured rocks. Contrary to
uniform flow, preferential flow results in irregular wetting of the soil profile as a direct consequence of
water moving faster in certain parts of the soil profile than in others. Hendrickx and Flury (2001) defined
preferential flow as constituting all phenomena where water and solutes move along certain pathways,
while bypassing a fraction of the porous matrix. Water and solutes for these reasons can propagate quickly
to far greater depths, and much faster, than would be predicted with the Richards equation describing
uniform flow.

The most important causes of preferential flow are the presence of macropores and other structural
features, development of flow instabilities (i.e., fingering) caused by profile heterogeneities or water
repellency (Hendrickx et al., 1993), and funneling of flow due to the presence of sloping soil layers that
redirect downward water flow. While the latter two processes (i.e., flow instability and funneling) are
usually caused by textural differences and other factors at scales significantly larger than the pore scale,
macropore flow and transport are usually generated at the pore or slightly larger scales, including scales
where soil structure first manifests itself (i.e., the pedon scale) (Šimůnek et al., 2003).

Uniform flow in granular soils and preferential flow in structured media (both macroporous soils and
fractured rocks) can be described using a variety of single-porosity, dual-porosity, dual-permeability,
multi-porosity, and multi-permeability models (Richards, 1931; Pruess and Wang, 1987; Gerke and van
Genuchten, 1993a; Gwo et al., 1995; Jarvis, 1998; Šimůnek et al., 2003, 2005). While single-porosity
models assume that a single pore system exists that is fully accessible to both water and solute, dual-
porosity and dual-permeability models both assume that the porous medium consists of two interacting
pore regions, one associated with the inter-aggregate, macropore, or fracture system, and one comprising
the micropores (or intra-aggregate pores) inside soil aggregates or the rock matrix. Whereas dual-porosity
models assume that water in the matrix is stagnant, dual-permeability models allow also for water flow
within the soil or rock matrix.

Figure 22.2 illustrates a hierarchy of conceptual formulations that can be used to model variably
saturated water flow and solute transport in soils. The simplest formulation (Figure 22.2a) is a single-
porosity (equivalent porous medium) model applicable to uniform flow in soils. The other models
apply in some form or another to preferential flow or transport. Of these, the dual-porosity model
of Figure 22.2c assumes the presence of two pore regions, with water in one region being immobile
and in the other region mobile. This model allows the exchange of both water and solute between the
two regions (Šimůnek et al., 2003). Conceptually, this formulation views the soil as consisting of a soil
matrix containing grains/aggregates with a certain internal microporosity (intra-aggregate porosity) and
a macropore or fracture domain containing the larger pores (inter-aggregate porosity). While water and
solutes are allowed to move through the larger pores and fractures, they can also flow in and out of
aggregates. By comparison, the intra-aggregate pores represent immobile pockets that can exchange,
retain, and store water and solutes, but do not contribute to advective (or convective) flow. Models that
assume mobile–immobile flow regions (Figure 22.2b) are conceptually somewhere in between the single-
and dual-porosity models. While these models assume that water will move similarly as in the uniform
flow models, the liquid phase for purposes of modeling solute transport is divided in terms of mobile and
immobile fractions, with solutes allowed to move by advection and dispersion only in the mobile fraction
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FIGURE 22.2 Conceptual models of water flow and solute transport (θ is the water content, θmo and θim in (b) and
(c) are water contents in the mobile and immobile flow regions, respectively, and θm and θf in (d) are water contents
in the matrix and macropore (fracture) regions, respectively).

and between the two pore regions. This model has long been applied to solute transport studies (e.g., van
Genuchten and Wierenga, 1976).

Finally, dual-permeability models (Figure 22.2d) are those in which water can move in both the inter-
and intra-aggregate pore regions (and matrix and fracture domains). These models in various forms are
now also becoming increasingly popular (Pruess and Wang, 1987; Gerke and van Genuchten, 1993a; Jarvis,
1994; Pruess, 2004). Available dual-permeability models differ mainly in how they implement water flow
in and between the two pore regions (Šimůnek et al., 2003). Approaches to calculating water flow in the
macropores or inter-aggregate pores range from those invoking Poiseuille’s equation (Ahuja and Hebson,
1992), the Green and Ampt or Philip infiltration models (Ahuja and Hebson, 1992), the kinematic wave
equation (Germann, 1985; Germann and Beven, 1985; Jarvis, 1994), and the Richards equation (Gerke
and van Genuchten, 1993a). Multi-porosity and multi-permeability models (not shown in Figure 22.2)
are based on the same concept as dual-porosity and dual-permeability models, but include additional
interacting pore regions (e.g., Gwo et al., 1995; Hutson and Wagenet, 1995). These models can be readily
simplified to the dual-porosity/permeability approaches. Recent reviews of preferential flow processes and
available mathematical models are provided by Hendrickx and Flury (2001) and Šimůnek et al. (2003),
respectively.

22.2.3.1 Dual-Porosity Models

Dual-porosity models assume that water flow is restricted to macropores (or inter-aggregate pores and
fractures), and that water in the matrix (intra-aggregate pores or the rock matrix) does not move at all.
This conceptualization leads to two-region type flow and transport models (van Genuchten and Wierenga,
1976) that partition the liquid phase into mobile (flowing, inter-aggregate), θmo, and immobile (stagnant,
intra-aggregate), θim, regions [L3L−3]:

θ = θmo + θim (22.4)

The dual-porosity formulation for water flow can be based on a mixed formulation of the Richards
Equation 22.3 to describe water flow in the macropores (the preferential flow pathways) and a mass
balance equation to describe moisture dynamics in the matrix as follows (Šimůnek et al., 2003):

∂θmo(hmo)

∂t
= ∂

∂xi

[
K (hmo)

(
K A

ij
∂hmo

∂xj
+ K A

iz

)]
− Smo(hmo)− �w

∂θim(him)

∂t
= −Sim(him)+ �w

(22.5)
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where Sim and Smo are sink terms for both regions [T−1], and �w is the transfer rate for water from the
inter- to the intra-aggregate pores [T−1].

Several of the above dual-porosity features were recently included in the HYDRUS software packages
(Šimůnek et al., 2003, 2005). Examples of their application to a range of laboratory and field data involving
transient flow and solute transport are given by Šimůnek et al. (2001), Zhang et al. (2004), Köhne et al.
(2004a, 2005), Kodešová et al. (2005), and Haws et al. (2005).

22.2.3.2 Dual-Permeability Models

Different types of dual-permeability approaches may be used to describe flow and transport in structured
media. While several models invoke similar governing equations for flow in the fracture and matrix
regions, others use different formulations for the two regions. A typical example of the first approach is
the work of Gerke and van Genuchten (1993a, 1996) who applied Richards equations to each of two pore
regions. The flow equations for the macropore (fracture) (subscript f) and matrix (subscript m) pore
systems in their approach are given by:

∂θf (hf )

∂t
= ∂

∂xi

[
Kf (hf )

(
K A

ij
∂hf

∂xj
+ K A

iz

)]
− Sf (hf )− �w

w
(22.6)

and
∂θm(hm)

∂t
= ∂

∂xi

[
Km(hm)

(
K A

ij
∂hm

∂xj
+ K A

iz

)]
− Sm(hm)+ �w

1− w
(22.7)

respectively, where w is the ratio of the volumes of the macropore (or fracture or inter-aggregrate)
domain and the total soil system [−]. This approach is relatively complicated in that the model requires
characterization of water retention and hydraulic conductivity functions (potentially of different form)
for both pore regions, as well as the hydraulic conductivity function of the fracture–matrix interface.
Note that the water contents θf and θm in Equation 22.6 and Equation 22.7 have different meanings than
in Equation 22.5 where they represented water contents of the total pore space (i.e., θ = θmo + θim),
while here they refer to water contents of the two separate (fracture or matrix) pore domains such that
θ = wθf + (1− w)θm.

22.2.3.3 Mass Transfer

The rate of exchange of water between the macropore and matrix regions,�w, is a critical term in both the
dual-porosity model (Equation 22.5) and the dual-permeability approach given by (Equation 22.6) and
(Equation 22.7). Gerke and van Genuchten (1993a) assumed that the rate of exchange is proportional to
the difference in pressure heads between the two pore regions:

�w = αw(hf − hm) (22.8)

in whichαw is a first-order mass transfer coefficient [T−1]. For porous media with well-defined geometries,
the first-order mass transfer coefficient, αw, can be defined as follows (Gerke and van Genuchten, 1993b):

αw = β

d2
Kaγw (22.9)

where d is an effective diffusion path length [L] (i.e., half the aggregate width or half the fracture spacing),
β is a shape factor that depends on the geometry [−], and γw (= 0.4) is a scaling factor [−] obtained
by matching the results of the first-order approach at the half-time level of the cumulative infiltration
curve to the numerical solution of the horizontal infiltration equation (Gerke and van Genuchten, 1993b).
Several other approaches based on water content of relative saturation differences have also been used
(Šimůnek et al., 2003).
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22.3 Solute Transport

Similarly, as shown in Equation 22.1 for water flow, mathematical formulations for solute transport are
usually based on a mass balance equation of the form:

∂CT

∂t
= −∂JTi

∂xi
− φ (22.10)

where CT is the total concentration of chemical in all forms [ML−3], JTi is the total chemical mass flux
density (mass flux per unit area per unit time) [ML−2T−1], and φ is the rate of change of mass per unit
volume by reactions or other sources (negative) or sinks (positive) such as plant uptake [ML−3T−1]. In
its most general interpretation, Equation 22.10 allows the chemical to reside in all three phases of the
soil (i.e., gaseous, liquid, and solid), permits a broad range of transport mechanisms (including advective
transport, diffusion, and hydrodynamic dispersion in both the liquid and gaseous phases), and facilitates
any type of chemical reaction that leads to losses or gains in the total concentration.

While the majority of chemicals are present only in the liquid and solid phases, and as such are
transported in the vadose zone mostly only in and by water, some chemicals such as many organic
contaminants, ammonium, and all fumigants, can have a significant portion of their mass in the gaseous
phase and are hence subject to transport in the gaseous phase as well. The total chemical concentration
can thus be defined as:

CT = ρbs + θc + ag (22.11)

where ρb is the bulk density [ML−3], θ is the volumetric water content [L3L−3], a is the volumetric air
content [L3L−3], and s[MM−1], c[ML−3], and g [ML−3] are concentrations in the solid, liquid, and
gaseous phases, respectively. The solid phase concentration represents solutes sorbed onto sorption sites
of the solid phase, but can include solutes sorbed onto colloids attached to the solid phase or strained by
the porous system, and solutes precipitated onto or into the solid phase.

The reaction term φ of Equation 22.10 may represent various chemical or biological reactions that lead
to a loss or gain of chemical in the soil system, such as radionuclide decay, biological degradation, and
dissolution. In analytical and numerical models these reactions are most commonly expressed using zero-
and first-order reaction rates as follows:

φ = ρbsµs + θcµw + agµg − ρbγs − θγw − aγg (22.12)

where µs,µw, and µg are first-order degradation constants in the solid, liquid, and gaseous phases [T−1],
respectively, and γs [T−1], γw [ML−3T−1], and γg [ML−3T−1] are zero-order production constants in the
solid, liquid, and gaseous phases, respectively.

22.3.1 Transport Processes

When a solute is present in both the liquid and gaseous phase, then various transport processes in both of
these phases may contribute to the total chemical mass flux:

JT = Jl + Jg (22.13)

where Jl and Jg represent solute fluxes in the liquid and gaseous phases [ML−2T−1], respectively. Note
that in Equation 22.13, and further below, we omitted the subscript i accounting for the direction of flow.
The three main processes that can be active in both the liquid and gaseous phase are molecular diffusion,
hydrodynamic dispersion, and advection (often also called convection). The solute fluxes in the two phases
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are then the sum of fluxes due to these different processes:

Jl = Jlc + Jld + Jlh

Jg = Jgc + Jgd + Jgh

(22.14)

where the additional subscripts c, d, and h denote convection (or advection), molecular diffusion, and
hydrodynamic dispersion, respectively.

22.3.1.1 Diffusion

Diffusion is a result of the random motion of chemical molecules. This process causes a solute to move
from a location with a higher concentration to a location with a lower concentration. Diffusive transport
can be described using Fick’s law:

Jld = −θξl(θ)D
w
l

∂c

∂z
= −θDs

l

∂c

∂z

Jgd = −aξg(θ)D
w
g
∂g

∂z
= −aDs

g
∂g

∂z

(22.15)

where Dw
l and Dw

g are binary diffusion coefficients of the solute in water and gas [L2T−1], respectively; Ds
l

and Ds
g are the effective diffusion coefficients in soil water and soil gas [L2T−1], respectively; and ξl and

ξg are tortuosity factors that account for the increased path lengths and decreased cross-sectional areas
of the diffusing solute in both phases (Jury and Horton, 2004). As solute diffusion in soil water (air) is
severely hampered by both air (water) and solid particles, the tortuosity factor increases strongly with
water content (air content). Many empirical models have been suggested in the literature to account for
the tortuosity (e.g., Moldrup et al., 1998). Among these, the most widely used model for the tortuosity
factor is probably the equation of Millington and Quirk (1961) given by:

ξl(θ) = θ7/3

θ2
s

(22.16)

where θs is the saturated water content (porosity) [L3L−3]. A similar equation may be used for the
tortuosity factor of the gaseous phase by replacing the water content with the air content.

22.3.1.2 Dispersion

Dispersive transport of solutes results from the uneven distribution of water flow velocities within and
between different soil pores (Figure 22.3). Dispersion can be derived from Newton’s law of viscosity which
states that velocities within a single capillary tube follow a parabolic distribution, with the largest velocity
in the middle of the pore and zero velocities at the walls (Figure 22.3a). Solutes in the middle of a pore,
for this reason, will travel faster than solutes that are farther from the center. As the distribution of solute
ions within a pore depends on their charge, as well as on the charge of pore walls, some solutes may move
significantly faster than others. In some situations (i.e., for negatively charged anions in fine-textured
soils, leading to anion exclusion), the solute may even travel faster than the average velocity of water (e.g.,
Nielsen et al., 1986). Using Poiseuille’s law, one can further show that velocities in a capillary tube depend
strongly on the radius of the tube, and that the average velocity increases with the radius to the second
power. As soils consist of pores of many different radii, solute fluxes in pores of different radii will be
significantly different, with some solutes again traveling faster than others (Figure 22.3b).

The above pore-scale dispersion processes lead to an overall (macroscopic) hydrodynamic dispersion
process that mathematically can be described using Fick’s law in the same way as molecular diffusion,
that is,

Jlh = −θDlh
∂c

∂z
= −θλv

∂c

∂z
= −λq

∂c

∂z
(22.17)
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FIGURE 22.3 Distribution of velocities in a single capillary (a) and distribution of velocities in a more complex pore
system (b).

where Dlh is the hydrodynamic dispersion coefficient [L2T−1], v is the average pore-water velocity [LT−1],
and λ is the dispersivity [L]. The dispersion coefficient in one-dimensional systems has been found to be
approximately proportional to the average pore-water velocity, with the proportionality constant generally
referred as the (longitudinal) dispersivity (Biggar and Nielsen, 1967). The discussion above holds for one-
dimensional transport; multi-dimensional applications require a more complicated dispersion tensor
involving longitudinal and transverse dispersivities (e.g., Bear, 1972).

Dispersivity is a transport property that is relatively difficult to measure experimentally. Estimates are
usually obtained by fitting measured breakthrough curves with analytical solutions of the advection–
dispersion equation (discussed further below). The dispersivity often changes with the distance over
which solute travels. Values of the longitudinal dispersivity typically range from about 1 cm for packed
laboratory columns, to about 5 or 10 cm for field soils. Longitudinal dispersivities can be significantly
larger (on the order of hundreds of meters) for regional groundwater transport problems (Gelhar et al.,
1985). If no other information is available, a good first approximation is to use a value of one-tenth of the
transport distance for the longitudinal dispersivity (e.g., Anderson, 1984), and a value of one-hundreds
of the transport distance for the transverse dispersivity.

22.3.1.3 Advection

Advective transport refers to solute being transported with the moving fluid, either in the liquid phase
(Jlc) or the gas phase (Jgc), that is,

Jlc = qc

Jgc = Jgg
(22.18)

where Jg is the gaseous flux density [LT−1]. Advective transport in the gaseous phase is often neglected as
its contribution in many applications is negligible compared to gaseous diffusion.

The total solute flux density in both the liquid and gaseous phases is obtained by incorporating
contributions from the various transport processes into Equation 22.14 to obtain

Jl = qc − θDs
l

∂c

∂z
− θDlh

∂c

∂z
= qc − θDe

∂c

∂z

Jg = −aDs
g
∂g

∂z

(22.19)

where De is the effective dispersion coefficient [L2T−1] that accounts for both diffusion and hydrodynamic
dispersion. Dispersion in most subsurface transport problems dominates molecular diffusion in the liquid
phase, except when the fluid velocity becomes relatively small or negligible. Notice that Equation 22.19
neglects advective and dispersive transport in the gaseous phase.
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22.3.2 Advection–Dispersion Equations

22.3.2.1 Transport Equations

The equation governing transport of dissolved solutes in the vadose zone is obtained by combining the
solute mass balance (Equation 22.10) with equations defining the total concentration of the chemical
(Equation 22.11) and the solute flux density (Equation 22.19) to give

∂(ρbs + θc + ag )

∂t
= ∂

∂xi

(
θDeij

∂c

∂xj

)
+ ∂

∂xi

(
aDs

gij
∂g

∂xj

)
− ∂

(
qic
)

∂xi
− φ (22.20)

Notice that this equation is again written for multidimensional transport, and that Deij and Ds
ij are thus

components of the effective dispersion tensor in the liquid phase and a diffusion tensor in the gaseous
phase [L2T−1], respectively.

Many different variants of Equation 22.20 can be found in the literature. For example, for
one-dimensional transport of nonvolatile solutes, the equation simplifies to

∂(ρbs + θc)

∂t
= ∂(θRc)

∂t
= ∂

∂z

(
θDe

∂c

∂z

)
− ∂(qc)

∂z
− φ (22.21)

where q is the vertical water flux density [LT−1] and R is the retardation factor [−]

R = 1+ ρb

θ

ds(c)

dc
(22.22)

For transport of inert, nonadsorbing solutes during steady-state water flow we obtain

∂c

∂t
= De

∂2c

∂z2
− v

∂c

∂z
(22.23)

The above equations are usually referred to as advection–dispersion equations (ADEs).

22.3.2.2 Linear and Nonlinear Sorption

The ADE given by Equation 22.20 contains three unknown concentrations (those for the liquid, solid,
and gaseous phases), while Equation 22.21 contains two unknowns. To be able to solve these equations,
additional information is needed that somehow relates these concentrations to each other. The most
common way is to assume instantaneous sorption and to use adsorption isotherms to relate the liquid and
adsorbed concentrations. The simplest form of the adsorption isotherm is the linear isotherm given by

s = Kdc (22.24)

where Kd is the distribution coefficient [L3M−1]. One may verify that substitution of this equation into
Equation 22.22 leads to a constant value for the retardation factor (i.e., R = 1+ ρbKd/θ).

While the use of a linear isotherm greatly simplifies the mathematical description of solute transport,
sorption and exchange are generally nonlinear and most often depend also on the presence of competing
species in the soil solution. The solute retardation factor for nonlinear adsorption is not constant, as is
the case for linear adsorption, but changes as a function of concentration. Many models have been used
in the past to describe nonlinear sorption. The most commonly used nonlinear sorption models are those
by Freundlich (1909) and Langmuir (1918) given by:

s = Kf cβ (22.25)

s = Kdc

1+ ηc
(22.26)



JACQ: “4316_c022” — 2006/5/26 — 19:26 — page 12 — #12

22-12 The Handbook of Groundwater Engineering

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dissolved concentration [M/L3]

0 0.5 1 1.5 0 0.5 1 1.5

S
or

be
d 

co
nc

en
tr

at
io

n 
[M

/M
]

0.5

0.75

1

1.5

2

2.5

3

5

Increasing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dissolved concentration [M/L3]

S
or

be
d 

co
nc

en
tr

at
io

n 
[M

/M
]

0
0.5
0.75
1
1.5
2
2.5
3
5

Increasing

(a) (b)

FIGURE 22.4 Plots of the Freundlich adsorption isotherm given by (22.25), with Kd = 1 and β given in the
caption (a), and the Langmuir adsorption isotherm given by (22.26), with Kd = 1 and η given in the caption (b).

TABLE 22.1 Equilibrium Adsorption Equations (adapted from van Genuchten and Šimůnek (1996))

Equation Model Reference

s = k1c + k2 Linear Lapidus and Amundson (1952)
Lindstrom et al. (1967)

s = k1ck3

1+ k2ck3
Freundlich–Langmuir Sips (1950), Šimůnek et al. (1994, 2005)

s = k1c

1+ k2c
+ k3c

1+ k4c
Double Langmuir Shapiro and Fried (1959)

s = k1cck2/k3 Extended Freundlich Sibbesen (1981)

s = k1c

1+ k2c + k3
√

c
Gunary Gunary (1970)

s = k1ck2 − k3 Fitter–Sutton Fitter and Sutton (1975)

s = k1{1− [1+ k2ck3 ]k4 } Barry Barry (1992)

s = RT

k1
ln(k2c) Temkin Bache and Williams (1971)

s = k1c exp(−2k2s) Lindstrom et al. (1971)
van Genuchten et al. (1974)

s

sT
= c[c + k1(cT − c) exp{k2(cT − 2c)}]−1 Modified Kielland Lai and Jurinak (1971)

k1, k2, k3, k4: empirical constants; R: universal gas constant; T : absolute temperature; cT: maximum solute
concentration; sT : maximum adsorbed concentration.

Source: Adapted from van Genuchten, M.Th. and Šimunek, J. In P.E. Rijtema and V. Eliáš (Eds.), Regional
Approaches to Water Pollution in the Environment, NATO ASI Series: 2. Environment. Kluwer, Dordrecht, The
Netherlands, pp. 139–172, 1996.

respectively, where Kf [M−β L−3β] and β [−] are coefficients in the Freundlich isotherm, and η [L3M−1]
is a coefficient in the Langmuir isotherm. Examples of linear, Freundlich and Langmuir adsorption
isotherms are given in Figure 22.4. Table 22.1 lists a range of linear and other sorption models frequently
used in solute transport studies.
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22.3.2.3 Volatilization

Volatilization is increasingly recognized as an important process affecting the fate of many organic chem-
icals, including pesticides, fumigants, and explosives in field soils (Jury et al., 1983, 1984; Glotfelty and
Schomburg, 1989). While many organic pollutants dissipate by means of chemical and microbiological
degradation, volatilization may be equally important for volatile substances, such as certain pesticides.
The volatility of pesticides is influenced by many factors, including the physicochemical properties of the
chemical itself as well-such environmental variables as temperature and solar energy. Even though only a
small fraction of a pesticide may exist in the gas phase, air-phase diffusion rates can sometimes be com-
parable to liquid-phase diffusion as gas-phase diffusion is about four orders of magnitude greater than
liquid phase diffusion. The importance of gaseous diffusion relative to other transport processes depends
also on the climate. For example, while transport of MTBE (gasoline oxygenate) is generally dominated
by liquid advection in humid areas, gaseous diffusion may be equally or more important in arid climates;
this even though only about 2% of MTBE may be in the gas phase.

The general transport equation given by Equation 22.20 can be simplified considerably when assuming
linear equilibrium sorption and volatilization such that the adsorbed (s) and gaseous (g ) concentrations
are linearly related to the solution concentration (c) through the distribution coefficients, Kd in (22.24)
and KH, that is,

g = KHc (22.27)

respectively, where KH is the dimensionless Henry’s constant [−]. Equation 22.20 for one-dimensional
transport then has the form:

∂(ρbKd + θ + aKH)c

∂t
= ∂

∂z

(
θDe

∂c

∂z

)
+ ∂

∂z

(
aDs

gKH
∂c

∂z

)
− ∂

(
qc
)

∂x
− φ (22.28)

or
∂θRc

∂t
= ∂

∂z

(
θDE

∂c

∂z

)
− ∂

(
qc
)

∂x
− φ (22.29)

where the retardation factor R [−] and the effective dispersion coefficient DE [L2T−1] are defined as
follows:

R = 1+ ρbKd + aKH

θ

DE = De +
aDs

gKH

θ

(22.30)

Jury et al. (1983, 1984) provided for many organic chemicals their distribution coefficients Kd, Henry’s
constants KH, and calculated percent mass present in each phase.

22.3.3 Nonequilibrium Transport

As equilibrium solute transport models often fail to describe experimental data, a large number of
diffusion-controlled physical nonequilibrium and chemical-kinetic models have been proposed and used
to describe the transport of both non-adsorbing and adsorbing chemicals. Attempts to model nonequilib-
rium transport usually involve relatively simple first-order rate equations. Nonequilibrium models have
used the assumptions of two-region (dual-porosity) type transport involving solute exchange between
mobile and immobile liquid transport regions, and one-, two- or multi-site sorption formulations (e.g.,
Nielsen et al., 1986; Brusseau, 1999). Models simulating the transport of particle-type pollutants, such
as colloids, viruses, and bacteria, often also use first-order rate equations to describe such processes as
attachment, detachment, and straining. Nonequilibrium models generally have resulted in better descrip-
tions of observed laboratory and field transport data, in part by providing additional degrees of freedom
for fitting observed concentration distributions.
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22.3.3.1 Physical Nonequilibrium

22.3.3.1.1 Dual-Porosity and Mobile–Immobile Water Models
The two-region transport model (Figures 22.2b and Figure 22.2c) assumes that the liquid phase can be
partitioned into distinct mobile (flowing) and immobile (stagnant) liquid pore regions, and that solute
exchange between the two liquid regions can be modeled as a first-order exchange process. Using the same
notation as before, the two-region solute transport model is given by (van Genuchten and Wagenet, 1989;
Toride et al., 1993):

∂θmocmo

∂t
+ ∂f ρsmo

∂t
= ∂

∂z

(
θmoDmo

∂cmo

∂z

)
− ∂qcmo

∂z
− φmo − �s

∂θimcim

∂t
+ ∂(1− f )ρsim

∂t
= −φim + �s

(22.31)

for the mobile (macropores, subscript mo) and immobile (matrix, subscript im) domains, respectively,
where f is the dimensionless fraction of sorption sites in contact with the mobile water [−], φmo and
φim are reactions in the mobile and immobile domains [ML3T−1], respectively, and �s is the solute
transfer rate between the two regions [ML3T−1]. Notice that the same equations Equation 22.31 can be
used to describe solute transport using both the mobile–immobile and dual-porosity models shown in
Figures 22.2b and Figure 22.2c, respectively.

22.3.3.1.2 Dual-Permeability Model
Analogous to Equations 22.6 and Equation 22.7 for water flow, the dual-permeability formulation for
solute transport can be based on advection–dispersion type equations for transport in both the fracture
and matrix regions as follows (Gerke and van Genuchten, 1993a):

∂θf cf

∂t
+ ∂ρsf

∂t
= ∂

∂z

(
θf Df

∂cf

∂z

)
− ∂qf cf

∂z
− φf − �s

w
(22.32)

∂θmcm

∂t
+ ∂ρsm

∂t
= ∂

∂z

(
θmDm

∂cm

∂z

)
− ∂qmcm

∂z
− φm − �s

1− w
(22.33)

where the subscript f and m refer to the macroporous (fracture) and matrix pore systems, respectively; φf

and φm represent sources or sinks in the macroporous and matrix domains [ML3T−1], respectively; and
w is the ratio of the volumes of the macropore-domain (inter-aggregate) and the total soil systems [−].
Equation 22.32 and Equation 22.33 assume complete advective–dispersive type transport descriptions for
both the fractures and the matrix. Several authors simplified transport in the macropore domain, for
example, by considering only piston displacement of solutes (Ahuja and Hebson, 1992; Jarvis, 1994).

22.3.3.1.3 Mass Transfer
The transfer rate, �s, in Equation 22.31 for solutes between the mobile and immobile domains in the
dual-porosity models can be given as the sum of diffusive and advective fluxes, and can be written as

�s = αs(cmo − cim)+ �wc∗ (22.34)

where c∗ is equal to cmo for �w > 0 and cim for �w < 0, and αs is the first-order solute mass transfer
coefficient [T−1]. Notice that the advection term of Equation 22.34 is equal to zero for the mobile–
immobile model (Figure 22.2b) as the immobile water content in this model is assumed to be constant.
However, �w may have a nonzero value in the dual-porosity model depicted in Figure 22.2c.

The transfer rate,�s, in Equation 22.32 and Equation 22.33 for solutes between the fracture and matrix
regions is also usually given as the sum of diffusive and advective fluxes as follows (e.g., Gerke and van
Genuchten, 1996):

�s = αs(1− wm)(cf − cm)+ �wc∗ (22.35)
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in which the mass transfer coefficient, αs [T−1], is of the form:

αs = β

d2
Da (22.36)

where Da is an effective diffusion coefficient [L2T−1] representing the diffusion properties of the fracture–
matrix interface.

Still more sophisticated models for physical nonequilibrium transport may be formulated. For example,
Pot et al. (2005) and Köhne et al. (2006) considered a dual-permeability model that divides the matrix
domain further into mobile and immobile subregions and used this model successfully to simulate bromide
transport in laboratory soil columns at different flow rates or for transient flow conditions, respectively.

22.3.3.2 Chemical Nonequilibrium

22.3.3.2.1 Kinetic Sorption Models
An alternative to expressing sorption as an instantaneous process using algebraic equations (e.g., Equa-
tion 22.24, Equation 22.25 or Equation 22.26) is to describe the kinetics of the reaction using ordinary
differential equations. The most popular and simplest formulation of a chemically controlled kinetic
reaction arises when first-order linear kinetics is assumed:

∂s

∂t
= αk(Kdc − s) (22.37)

where αk is a first-order kinetic rate coefficient [T−1]. Several other nonequilibrium adsorption expres-
sions were also used in the past (see Table 2 in van Genuchten and Šimůnek, 1996). Models based on this
and other kinetic expressions are often referred to as one-site sorption models.

As transport models assuming chemically controlled nonequilibrium (one-site sorption) generally did
not result in significant improvements in their predictive capabilities when used to analyze laboratory
column experiments, the one-site first-order kinetic model was further expanded into a two-site sorption
concept that divides the available sorption sites into two fractions (Selim et al., 1976; van Genuchten and
Wagenet, 1989). In this approach, sorption on one fraction (type-1 sites) is assumed to be instantaneous
while sorption on the remaining (type-2) sites is considered to be time-dependent. Assuming a linear
sorption process, the two-site transport model is given by (van Genuchten and Wagenet, 1989)

∂(f ρbKd + θ)c
∂t

= ∂

∂z

(
θDe

∂ c

∂z

)
− ∂

(
qc
)

∂z
− φe

∂sk

∂t
= αk[(1− f )Kdc − sk] − φk

(22.38)

where f is the fraction of exchange sites assumed to be at equilibrium [−], φe [ML3T−1] and φk

[MM−1T−1] are reactions in the equilibrium and nonequilibrium phases, respectively, and the sub-
script k refers to kinetic (type-2) sorption sites. Note that if f = 0, the two-site sorption model reduces
to the one-site fully kinetic sorption model (i.e., when only type-2 kinetic sites are present). On the other
hand, if f = 1, the two-site sorption model reduces to the equilibrium sorption model for which only
type-1 equilibrium sites are present.

22.3.3.2.2 Attachment/Detachment Models
Additionally, transport equations may include provisions for kinetic attachment/detachment of solutes
to the solid phase, thus permitting simulations of the transport of colloids, viruses, and bacteria. The
transport of these constituents is generally more complex than that of other solutes in that they are
affected by such additional processes as filtration, straining, sedimentation, adsorption and desorption,
growth, and inactivation. Virus, colloid, and bacteria transport and fate models commonly employ a



JACQ: “4316_c022” — 2006/5/26 — 19:26 — page 16 — #16

22-16 The Handbook of Groundwater Engineering

modified form of the ADE, in which the kinetic sorption equations are replaced with equations describing
kinetics of colloid attachment and detachment as follows:

ρ
∂s

∂t
= θkaψc − kdρs (22.39)

where c is the (colloid, virus, bacteria) concentration in the aqueous phase [Nc L−3], s is the solid phase
(colloid, virus, bacteria) concentration [Nc M−1], in which Nc is a number of (colloid) particles, ka is
the first-order deposition (attachment) coefficient [T−1], kd is the first-order entrainment (detachment)
coefficient [T−1], andψ is a dimensionless colloid retention function [−]. The attachment and detachment
coefficients in Equation 22.39 have been found to strongly depend upon water content, with attachment
significantly increasing as the water content decreases.

To simulate reductions in the attachment coefficient due to filling of favorable sorption sites,ψ is some-
times assumed to decrease with increasing colloid mass retention. A Langmuirian dynamics (Adamczyk
et al., 1994) equation has been proposed for ψ to describe this blocking phenomenon:

ψ = smax − s

smax
= 1− s

smax
(22.40)

in which smax is the maximum solid phase concentration [NcM−1].
A similar equation as Equation 22.39 was used by Bradford et al. (2003, 2004) to simulate the process of

pore straining. Bradford et al. (2003, 2004) hypothesized that the influence of straining and attachment
processes on colloid retention should be separated into two distinct components. They suggested the
following depth-dependent blocking coefficient for the straining process:

ψ =
(

dc + z − z0

dc

)−β
(22.41)

where dc is the diameter of the sand grains [L], z0 is the coordinate of the location where the straining
process starts [L] (the surface of the soil profile, or interface between soil layers), and β is an empirical
factor (Bradford et al., 2003) [−].

The attachment coefficient is often calculated using filtration theory (Logan et al., 1995), a quasi-
empirical formulation in terms of the median grain diameter of the porous medium (often termed the
collector), the pore-water velocity, and collector and collision (or sticking) efficiencies accounting for
colloid removal due to diffusion, interception, and gravitational sedimentation (Rajagopalan and Tien,
1976; Logan et al., 1995):

ka = 3(1− θ)
2dc

ηαv (22.42)

where dc is the diameter of the sand grains [L], α is the sticking efficiency (ratio of the rate of particles
that stick to a collector to the rate they strike the collector) [−], v is the pore-water velocity [LT−1], and η
is the single-collector efficiency [−].

In related studies, Schijven and Hassanizadeh (2000) and Schijven and Šimůnek (2002) used a two-
site sorption model based on two equations (22.39) to successfully describe virus transport at both the
laboratory and field scale. Their model assumed that the sorption sites on the solid phase can be divided
into two fractions with different properties and various attachment and detachment rate coefficients.

22.3.3.3 Colloid-Facilitated Solute Transport

There is an increasing evidence that many contaminants, including radionuclides (Von Gunten et al.,
1988; Noell et al., 1998), pesticides (Vinten et al., 1983; Kan and Tomson, 1990, Lindqvist and Enfield,
1992), heavy metals (Grolimund et al., 1996), viruses, pharmaceuticals (Tolls, 2001; Thiele-Bruhn, 2003),
hormones (Hanselman et al., 2003), and other contaminants (Magee et al., 1991; Mansfeldt et al., 2004)
are transported in the subsurface not only with moving water, but also sorbed to mobile colloids. As many
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colloids and microbes are negatively charged and thus electrostatically repelled by negatively charged solid
surfaces, which may lead to an anion exclusion process, their transport may be slightly enhanced relative
to fluid flow. Size exclusion may similarly enhance the advective transport of colloids by limiting their
presence and mobility to the larger pores (e.g., Bradford et al., 2003). The transport of contaminants sorbed
to mobile colloids can thus significantly accelerate their transport relative to more standard advection–
transport descriptions.

Colloid-facilitated transport is a relatively complicated process that requires knowledge of water flow,
colloid transport, dissolved contaminant transport, and colloid-contaminant interaction. Transport and
mass balance equations, hence, must be formulated not only for water flow and colloid transport, but
also for the total contaminant, for contaminant sorbed kinetically or instantaneously to the solid phase,
and for contaminant sorbed to mobile colloids, to colloids attached to the soil solid phase, and to colloids
accumulating at the air–water interface. Development of such a model is beyond the scope of this chapter.
We refer interested readers to several manuscripts dealing with this topic: Mills et al. (1991), Corapcioglu
and Jiang (1993), Corapcioglu and Kim (1995), Jiang and Corapcioglu (1993), Noell et al. (1998), Saiers
et al. (1996), Saiers and Hornberger (1996), van de Weerd et al. (1998), and van Genuchten and Šimůnek
(2004).

22.3.4 Stochastic Models

Much evidence suggests that solutions of classical solute transport models, no matter how refined to
include the most relevant chemical and microbiological processes and soil properties, often still fail to
accurately describe transport processes in most natural field soils. A major reason for this failure is the fact
that the subsurface environment is overwhelmingly heterogeneous. Heterogeneity occurs at a hierarchy of
spatial and time scales (Wheatcraft and Cushman, 1991), ranging from microscopic scales involving time-
dependent chemical sorption and precipitation/dissolution reactions, to intermediate scales involving the
preferential movement of water and chemicals through macropores or fractures, and to much larger scales
involving the spatial variability of soils across the landscape. Subsurface heterogeneity can be addressed
in terms of process-based descriptions which attempt to consider the effects of heterogeneity at one or
several scales. It can also be addressed using stochastic approaches that incorporate certain assumptions
about the transport process in the heterogeneous system (e.g., Sposito and Barry, 1987; Dagan, 1989).
In this section we briefly review several stochastic transport approaches, notably those using stream tube
models and the transfer function approach.

22.3.4.1 Stream Tube Models

The downward movement of chemicals from the soil surface to an underlying aquifer may be described
stochastically by viewing the field as a series of independent vertical columns, often referred to as “stream
tubes” (Figure 22.5), while solute mixing between the stream tubes is assumed to be negligible. Transport

V1

V2

V3
Vn–1

Vn

FIGURE 22.5 Schematic illustration of the stream tube model (Toride et al., 1995).
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in each tube may be described deterministically with the standard ADE, or modifications thereof to include
additional geochemical and microbiological processes. Transport at the field scale is then implemented by
considering the column parameters as realizations of a stochastic process, having a random distribution
(Toride et al., 1995). Early examples are by Dagan and Bresler (1979) and Bresler and Dagan (1979) who
assumed that the saturated hydraulic conductivity had a lognormal distribution.

The stream tube model was implemented into the CXTFIT 2.0 program (Toride et al., 1995) for a
variety of transport scenarios in which the pore-water velocity in combination with either the dispersion
coefficient, De, the distribution coefficient for linear adsorption, Kd, or the first-order rate coefficient for
nonequilibrium adsorption, αk, are stochastic variables (Toride et al., 1995).

22.3.4.2 Transfer Function Models

Jury (1982) developed an alternative formulation for solute transport at the field scale, called the trans-
fer function model. This model was developed based on two main assumptions about the soil system
(a) the solute transport is a linear process, and (b) the solute travel time probabilities do not change
over time. These two assumptions lead to the following transfer function equation that relates the solute
concentration at the outflow end of the system with the time-dependent solute input into the system:

cout(t ) =
t∫

0

cin(t − t ′)f (t ′) dt ′ (22.43)

The outflow at time t , cout(t ) [ML−3], consists of the superposition of solute added at all times less than
t , cin(t − t ′) [ML−3], weighted by its travel-time probability density function (pdf) f (t ) [T−1] (Jury and
Horton, 2004). One important advantage of the transfer function approach is that it does not require
knowledge of the various transport processes within the flow domain. Different model distribution
functions can be used for the travel-time probability density function f (t ) in Equation 22.43. Most
commonly used (Jury and Sposito, 1985) are the Fickian probability density function

f (t ) = L

2
√
πDt 3

exp

[
− (L − vt )2

4Dt

]
(22.44)

and the lognormal distribution

f (t ) = 1√
2πσ t

exp

[
(ln t − µ)2

2σ 2

]
(22.45)

where D[L2T−1], v[LT−1],µ , and σ are model parameters, and L is the distance from the inflow boundary
to the outflow boundary [L]. To accommodate conditions when the water flux through the soil system is
not constant, Jury (1982) expressed the travel-time pdf as a function of the cumulative net applied water I :

I =
t∫

0

q(t ′) dt ′ (22.46)

leading to the following transfer function equation:

cout (I ) =
I (t )∫
0

cin(I − I ′)f (I ′) dI ′ (22.47)
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22.3.5 Multicomponent Reactive Solute Transport

The various mathematical descriptions of solute transport presented thus far all considered solutes that
would move independently of other solutes in the subsurface. In reality, the transport of reactive contam-
inants is more often than not affected by many often interactive physico-chemical and biological processes.
Simulating these processes requires a more comprehensive approach that couples the physical processes of
water flow and advective–dispersive transport with a range of biogeochemical processes. The soil solution
is always a mixture of many ions that may be involved in mutually dependent chemical processes, such as
complexation reactions, cation exchange, precipitation–dissolution, sorption–desorption, volatilization,
redox reactions, and degradation, among other reactions (Šimůnek and Valocchi, 2002). The transport
and transformation of many chemical contaminants is further mediated by subsurface aerobic or anaer-
obic bacteria. Bacteria catalyze redox reactions in which organic compounds (e.g., hydrocarbons) act as
the electron donor and inorganic substances (oxygen, nitrate, sulfate, or metal oxides) as the electron
acceptor. By catalyzing such reactions, bacteria gain energy and organic carbon to produce new biomass.
These and related processes can be simulated using integrated reactive transport codes that couple the
physical processes of water flow and advective–dispersive solute transport with a range of biogeochemical
processes. This section reviews various modeling approaches for such multicomponent transport systems.

22.3.5.1 Components and Reversible Chemical Reactions

Multi-species chemical equilibrium systems are generally defined in terms of components. Components
may be defined as a set of linearly independent chemical entities such that every species in the system
can be uniquely represented as the product of a reaction involving only these components (Westall et al.,
1976). As a typical example, the chemical species CaCO0

3

Ca2+ + CO2−
3 ⇔ CaCO0

3 (22.48)

consists of the two components Ca2+ and CO2−
3 .

Reversible chemical reaction processes in equilibrium systems are most often represented using mass
action laws that relate thermodynamic equilibrium constants to activities (the thermodynamic effective
concentration) of the reactants and products (Mangold and Tsang, 1991; Appelo and Postma, 1993;
Bethke, 1996). For example, the reaction

bB + cC ⇔ dD + eE (22.49)

where b and c are the number of moles of substances B and C that react to yield d and e moles of products
D and E , is represented at equilibrium by the law of mass action

K = ad
D ae

E

ab
B ac

C

(22.50)

where K is a temperature-dependent thermodynamic equilibrium constant, and ai is the ion activity,
being defined as the product of the activity coefficient ( γi) and the ion molality (mi), that is, ai = γimi.
Single-ion activity coefficients may be calculated using either the Davies equation, an extended version of
the Debye–Hückel equation (Truesdell and Jones, 1974), or by means of Pitzer expressions (Pitzer, 1979).
Equation 22.50 can be used to describe all of the major chemical processes, such as aqueous complexation,
sorption, precipitation–dissolution, and acid–base and redox reactions, provided that the local chemical
equilibrium assumption is valid (Šimůnek and Valocchi, 2002).
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22.3.5.2 Complexation

Equations for aqueous complexation reactions can be obtained using the law of mass action as follows
(e.g., Yeh and Tripathi, 1990; Lichtner, 1996):

xi = K x
i

γ x
i

Na∏
k=1

(γ a
k ck)

ax
ik i = 1, 2, . . . , Mx (22.51)

where xi is the concentration of the ith complexed species, K x
i is the thermodynamic equilibrium constant

of the ith complexed species, γ x
i is the activity coefficient of the ith complexed species, Na is the number of

aqueous components, ck is the concentration of the kth aqueous component, γ a
k is the activity coefficient

of the kth aqueous component species, ax
ik is the stoichiometric coefficient of the kth aqueous component

in the ith complexed species, Mx is the number of complexed species, and subscripts and superscripts x
and a refer to complexed species and aqueous components, respectively.

22.3.5.3 Precipitation and Dissolution

Equations describing precipitation–dissolution reactions are also obtained using the law of mass action,
but contrary to the other processes are represented by inequalities rather than equalities, as follows
(Šimůnek and Valocchi, 2002):

K
p
i ≥ Q

p
i =

Na∏
k=1

(γ a
k ck)

a
p
ik i = 1, 2, . . . , Mp (22.52)

where Mp is the number of precipitated species, K
p
i is the thermodynamic equilibrium constant of the

ith precipitated species, that is, the solubility product equilibrium constant, Q
p
i is the ion activity product

of the ith precipitated species, and a
p
ik is the stoichiometric coefficient of the kth aqueous component

in the ith precipitated species. The inequality in Equation 22.52 indicates that a particular precipate is
formed only when the solution is supersaturated with respect to its aqueous components. If the solution
is undersaturated then the precipitated species (if it exists) will dissolve to reach equilibrium conditions.

22.3.5.4 Cation Exchange

Partitioning between the solid exchange phase and the solution phase can be described with the general
exchange equation (White and Zelazny, 1986):

zj · Azi+Xzi + zi · Bzj+ ⇔ zi · Bzj+Xzj + zj · Azi+ (22.53)

where A and B are chemical formulas for particular cation (e.g., Ca2+ or Na+), X refers to an “exchanger”
site on the soil, and zi is the valence of species. The mass action equation resulting from this exchange
reaction is

Kij =

 c

zj+
j

γ a
j c

zj+
j




zi

γ a

i c
z+i
i

c
z+i
i




zj

(22.54)

where Kij is the selectivity coefficient, and c i is the exchanger-phase concentration of the ith component
(expressed in moles per mass of solid).

22.3.5.5 Coupled System of Equations

Once the various chemical reactions are defined, the final system of governing equations usually consists
of several partial differential equations for solute transport (i.e., ADEs for each component) plus a set of
nonlinear algebraic and ordinary differential equations describing the equilibrium and kinetic reactions,
respectively. Each chemical and biological reaction must be represented by the corresponding algebraic
or ordinary differential equations depending upon the rate of the reaction. Since the reaction of one
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species depends upon the concentration of many other species, the final sets of equations typically are
tightly coupled. For complex geochemical systems, consisting of many components and multidimensional
transport, numerical solution of these coupled equations is challenging (Šimůnek and Valocchi, 2002). As
an alternative, more general models have recently been developed that also more loosely couple transport
and chemistry using a variety of sequential iterative or non-iterative operator-splitting approaches (e.g.,
Bell and Binning, 2004; Jacques and Simunek, 2005). Models based on these various approaches are
further discussed in Section 22.5b.

22.3.6 Multiphase Flow and Transport

While the transport of solutes in variably saturated media generally involves two phases (i.e., the liquid
and gaseous phases, with advection in the gaseous phase often being neglected), many contamination
problems also increasingly involve nonaqueous phase liquids (NAPLs) that are often only slightly miscible
with water. Nonaqueous phase liquids may consist of single organic compounds such as many industrial
solvents, or of a mixture of organic compounds such as gasoline and diesel fuel. Some of these compounds
can be denser than water (commonly referred to as DNAPLs) or lighter than water (LNAPLs). Their fate
and dynamics in the subsurface is affected by a multitude of compound-specific flow and multicomponent
transport processes, including interphase mass transfer and exchange (also with the solid phase).

Multiphase fluid flow models generally require flow equations for each fluid phase (water, air, NAPL).
Two-phase air–water systems hence could be modeled also using separate equations for air and water.
This shows that the standard Richards Equation 22.3 is a simplification of a more complete multiphase
(air–water) approach in that the air phase is assumed to have a negligible effect on variably saturated
flow, and that the air pressure varies only little in space and time. This assumption appears adequate for
most variably saturated flow problems. Similar assumptions, however, are generally not possible when
NAPLs are present. Hence mathematical descriptions of multiphase flow and transport in general require
flow equations for each of the three fluid phases, mass transport equations for all organic components
(including those associated with the solid phase), and appropriate equations to account for interphase
mass transfer processes. We refer readers to reviews by Abriola et al. (1999) and Rathfelder et al. (2000)
for discussions of the complexities involved in modeling such systems subject to multiphase flow, mul-
ticomponent transport, and interphase mass transfer. An excellent overview of a variety of experimental
approaches for measuring the physical and hydraulic properties of multi-fluid systems is given by Lenhard
et al. (2002).

22.3.7 Initial and Boundary Conditions

22.3.7.1 Initial Conditions

The governing equations for solute transport can be solved analytically or numerically provided that the
initial and boundary conditions are specified. Initial conditions need to be specified for each equilibrium
phase concentration, that is,

c(x , y , z , t ) = ci(x , y , z , 0) (22.55)

where ci is the initial concentration [ML−3], as well as for all nonequilibrium phases such as concentrations
in the immobile region, sorbed concentrations associated with kinetic sites, and initially attached or
strained colloid concentrations.

22.3.7.2 Boundary Conditions

Complex interactions between the transport domain and its environment often must be considered for
the water flow part of the problem being considered since these interactions determine the magnitude of
water fluxes across the domain boundaries. By comparison, the solute transport part of most analytical
and numerical models usually considers only three types of boundary conditions. When the concentration
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at the boundary is known, one can use a first-type (or Dirichlet type) boundary condition:

c(x , y , z , t ) = c0(x , y , z , t ) for (x , y , z) ∈ �d (22.56)

where c0 is a prescribed concentration [ML−3] at or along the �D Dirichlet boundary segments. This
boundary condition is often referred to as a concentration boundary condition. A third-type (Cauchy
type) boundary condition may be used to prescribe the concentration flux at the boundary as follows:

−θDij
∂c

∂xj
ni + qinic = qinic0 for (x , z) ∈ �C (22.57)

in which qini represents the outward fluid flux [LT−1], ni is the outward unit normal vector and c0

is the concentration of the incoming fluid [ML−3]. In some cases, for example, when a boundary is
impermeable (q0=0) or when water flow is directed out of the region, the Cauchy boundary condition
reduces to a second-type (Neumann type) boundary condition of the form:

θDij
∂c

∂xj
ni = 0 for (x , z) ∈ �N (22.58)

Most applications require a Cauchy boundary condition rather than Dirichlet (or concentration) boundary
condition. Since Cauchy boundary conditions define the solute flux across a boundary, the solute flux
entering the transport domain will be known exactly (as specified). This specified solute flux is then in
the transport domain divided into advective and dispersive components. On the other hand, Dirichlet
boundary condition controls only the concentration on the boundary, and not the solute flux which,
because of its advective and dispersive contributions, will be larger than for a Cauchy boundary condition.
The incorrect use of Dirichlet rather than Cauchy boundary conditions may lead to significant mass
balance errors at an earlier time, especially for relative short transport domains (van Genuchten and
Parker, 1984).

A different type of boundary condition is sometimes used for volatile solutes when they are present in
both the liquid and gas phases. This situation requires a third-type boundary condition, but modified to
include an additional volatilization term accounting for gaseous diffusion through a stagnant boundary
layer of thickness d [L] above the soil surface. The additional solute flux is often assumed to be proportional
to the difference in gas concentrations above and below this boundary layer (e.g., Jury et al., 1983). This
modified boundary condition has the form:

−θDij
∂c

∂xj
ni + qinic = qinic0 + Dg

d
(kgc − gatm) for (x , z) ∈ �C (22.59)

where Dg is the molecular diffusion coefficient in the gas phase [L2T−1] and gatm is the gas concentration
above the stagnant boundary layer [ML−3]. We note that Jury et al. (1983) assumed gatm in Equation 22.59
to be zero.

Still other types of boundary conditions can be used. One example is the use of the Bateman equations
(Bateman, 1910) to account for a finite rate of release of multiple solutes that are subject to a first-order
sequential decay (e.g., radionuclides, nitrogen species). These solutes are typically released from a waste
site into the environment as a consequence of decay reactions in the waste site (e.g., van Genuchten, 1985).

22.4 Analytical Models

A large number of computer models using both analytical and numerical solutions of the flow and solute
transport equations are now available for a wide range of applications in research and management of
natural subsurface systems (Šimůnek, 2005). Modeling approaches range from relatively simple analytical
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and semi-analytical models, to more complex numerical codes that permit consideration of a large
number of simultaneous nonlinear processes. While for certain conditions (e.g., for linear sorption, a
concentration independent sink term φ , and a steady flow field) the solute transport equations (e.g.,
Equation 22.20, Equation 22.21, Equation 22.23, Equation 22.31, and Equation 22.38) become linear, the
governing flow equations (e.g., Equation 22.3) are generally highly nonlinear because of the nonlinear
dependency of the soil hydraulic properties on the pressure head or water content. Consequently, many
analytical solutions have been derived in the past for solute transport equations, and are now widely used
for analyzing solute transport during steady-state flow. Although a large number of analytical solutions
also exist for the unsaturated flow equation, they generally can be applied only to relatively simple flow
problems. The majority of applications for water flow in the vadose zone require a numerical solution of
the Richards equation.

Analytical methods are representative of the classical mathematical approach for solving differential
equations to produce an exact solution for a particular problem. Analytical models usually lead to an
explicit equation for the concentration (or the pressure head, water content, or temperature) at a par-
ticular time and location. Hence, one can evaluate the concentration directly without the time stepping
that is typical of numerical methods. While exceptions exist (e.g., Liu et al., 2000; Cotta et al., 2005),
analytical solutions usually can be derived only for simplified transport systems involving linearized gov-
erning equations, homogeneous soils, simplified geometries of the transport domain, and constant or
highly simplified initial and boundary conditions. Unfortunately, analytical solutions for more complex
situations, such as for transient water flow or nonequilibrium solute transport with nonlinear reactions,
are generally not available and cannot be derived, in which case numerical models must be employed
(Šimůnek, 2005).

22.4.1 Analytical Approaches

Analytical solutions are usually obtained by applying various transformations (e.g., Laplace, Fourier or
other transforms) to the governing equations, invoking a separation of variables, and using the Green’s
function approach (e.g., Leij et al., 2000; Cotta et al., 2005).

22.4.1.1 Laplace Transformation

The Laplace transform, £, of the solute concentration with respect to time is defined as follows:

c̄(x , s) = L[c(x , t )] =
∞∫

0

c(x , t ) exp(−st ) dt (22.60)

where s is the transform variable [T−1]. Laplace transforms can greatly simplify the governing solute
transport equations by eliminating one independent variable, usually time. They also transform the
original transport equation from a partial to an ordinary differential equation. Using Laplace transforms,
one thus obtains a governing ADE in the Laplace domain that is much simpler to solve analytically than
the original equation. The analytical solution in the Laplace space is subsequently inverted to the real
space using either a table of Laplace transforms, by applying inversion theorems, or by using a numerical
inversion program.

22.4.1.2 Fourier Transformation

Two- and three-dimensional problems often require not only Laplace transforms with respect to time
(transformation from t tos) and one spatial coordinate (usually x being transformed to r), but often also
a double Fourier transform with respect to two other spatial coordinates (y and z), which is given by (Leij



JACQ: “4316_c022” — 2006/5/26 — 19:26 — page 24 — #24

22-24 The Handbook of Groundwater Engineering

and Toride, 1997):

FYZ [c̄(r , y , z , s)] = c̃(r , γ , κ , s) = 1

2π

∞∫
−∞

∞∫
−∞

c(r , y , z , s) exp(iγ y + iκz) dy dz (22.61)

where i2 = −1 and γ and κ are transformation variables pertaining to the y and z coordinates. Similarly
as for Laplace transforms, Fourier transforms lead to an equation that can be solved analytically more
easily. One also needs to transform this analytical solution from the Laplace and Fourier domains back
to the original time and space domains. Several analytical solutions, including the derivation process, for
different initial and boundary conditions, and different transport domain geometries are given by Leij
and Toride (1997) in the N3DADE manual.

22.4.1.3 Method of Moments

Statistical moments are often used to characterize the statistical distribution of the solute concentration
versus time and space. For example, moments can be used to evaluate the average residence time or the
width of the residence time distribution. These attributes can be quantified with the moments of the
distribution (Skaggs and Leij, 2002). The pth time moment, mp , is defined as:

mp =
∞∫

0

t pc(t ) dt (p = 0, 1, 2, . . .) (22.62)

where c(t ) is the breakthrough curve measured at a certain location. The zeroth moment is related to
the mass of solute contained in the breakthrough curve, while the first moment is related to the mean
residence time. Normalized and central moments are defined as:

Mp = mp

m0

Mp = 1

m0

∞∫
0

(1−M1)
pc(t ) dt

(22.63)

The second central moment relates to the degree of solute spreading. Similar expressions can be written
also for the spatial (depth) moments characterizing the spatial solute distribution. Moments for particular
problems or processes can then be obtained by substituting appropriate analytical solutions in the above
equations.

22.4.2 Existing Models

Numerous analytical solutions of the linear advection–dispersion solute transport equations (e.g., Equa-
tion 22.21, Equation 22.23, Equation 22.31, and Equation 22.38), or their two- and three-dimensional
equivalents, have been developed during the last 40 years and are now widely used for predictive purposes
and for analyzing laboratory and field observed concentration distributions. The majority of these solu-
tions pertain to solute transport equations assuming constant water content, θ , and flux, q, values (i.e.,
for steady-state water flow conditions in a homogeneous medium).

22.4.2.1 One-Dimensional Models

Some of the more popular one-dimensional analytical transport models have been CFITM (van
Genuchten, 1980b), CFITIM (van Genuchten, 1981), CXTFIT (Parker and van Genuchten, 1984), and
CXTFIT2 (Toride et al., 1995). While CFITM considers only one-dimensional equilibrium solute trans-
port in both finite and infinite solute columns, CFITIM additionally considers physical and chemical
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nonequilibrium transport (i.e., the two-region mobile–immobile model for physical nonequilibrium and
the two-site sorption model for chemical nonequilibrium). CXTFIT further expanded the capabilities of
CFITIM by considering more general initial and boundary conditions, as well as degradation processes.
CXTFIT2 (Toride et al., 1995), an updated version of CXTFIT, solves both direct and inverse problems for
three different one-dimensional transport models (1) the conventional advection–dispersion equation,
ADE; (2) the chemical and physical nonequilibrium ADEs; and (3) a stochastic stream tube model based
upon the local-scale equilibrium or nonequilibrium ADE. These three types of models all consider linear
adsorption, and include zero- and first-order decay/source terms. All of these models may be used also to
solve the inverse problem by fitting the analytical ADE solutions to experimental results.

22.4.2.2 Multi-Dimensional Models

Some of the more popular multi-dimensional analytical transport models have been AT123D (Yeh, 1981),
3DADE (Leij and Bradford, 1994), N3DADE (Leij and Toride, 1997), and MYGRT (Ungs et al., 1998). These
programs provide analytical solutions to transport problems in two- and three-dimensional domains.
3DADE also included parameter estimation capabilities.

A large number of analytical models for one-, two-, and three-dimensional solute transport problems
were recently incorporated into the public domain software package STANMOD (STudio of ANalytical
MODels) (Šimůnek et al., 1999a) (http://www.hydrus2d.com). Figure 22.6 shows a STANMOD dialog
window where users can make a selection of the analytical program to be used. This Windows-based
computer software package includes not only programs for equilibrium advective-dispersive transport
(i.e., the CFITM of van Genuchten 1980b) for one-dimensional transport and 3DADE (Leij and Bradford,
1994) for three-dimensional problems (Figure 22.7), but also programs for more complex problems.
For example, STANMOD also incorporates the CFITIM (van Genuchten, 1981) and N3DADE (Leij
and Toride, 1997) programs for nonequilibrium transport (i.e., the two-region mobile–immobile model
for physical nonequilibrium and the two-site sorption model for chemical nonequilibrium) in one and
multiple dimensions, respectively.

FIGURE 22.6 Selection of an analytical model in the STANMOD software package (Šimůnek et al., 1999a).
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FIGURE 22.7 Selection of the geometry of the transport domain for the 3DADE code (Leij and Bradford, 1994)
within the STANMOD software package (Šimůnek et al., 1999a).

Figure 22.7 shows a dialog window of STANMOD in which users can select the geometry of the
transport domain for use in the 3DADE program. STANMOD also includes CXTFIT2 (Toride et al.,
1995) as discussed earlier, and the CHAIN code of van Genuchten (1985) for analyzing the advective–
dispersive transport of up to four solutes involved in sequential first-order decay reactions. Examples of
the latter are the migration of radionuclides in which the chain members form first-order decay reactions,
and the simultaneous movement of various interacting nitrogen or organic chemicals. The latest version
of STANMOD also includes the screening model of Jury et al. (1983) for describing transport and
volatilization of soil-applied volatile organic chemicals.

An application of CFITIM within of the STANMOD program is demonstrated in Figure 22.8, which
shows measured and fitted breakthrough curves of a nonreactive (3H2O) solute for transport through
a saturated Glendale clay loam soil. In this example, a tritiated water pulse of 3.102 pore volumes was
applied to a 30 cm long column, with the breakthrough curve being determined from the effluent con-
centrations. An analytical solution for two-region (mobile–immobile) physical nonequilibrium transport
(van Genuchten, 1981) was used for the analysis. With the pore-water velocity known (v = 37.54 cm d−1)

and assuming that the retardation factor R for 3H2O was equal to one (no sorption or anion exclusion),
only three parameters were optimized against the breakthrough curve, that is, the dispersion coefficient
D (= 15.6 cm2 d−1), a dimensionless variable β (= 0.823) for partitioning the liquid phase in mobile and
immobile regions, and a dimensionless mass transfer coefficient ω (= 0.870).

An example application of the 3DADE program (Leij and Bradford, 1994) in the STANMOD package
is demonstrated in Figure 22.9, which shows calculated concentration contours for a transport problem
in which solute is applied at a concentration C0 = 1, assuming a third-type boundary condition, to a
rectangular area of the soil surface (or within groundwater) of 15× 15 cm2. Other transport parameters
were as follows: v = 10 cm d−1, Dx = 100 and Dy = Dz = 10 cm2 d−1, and R = 1. Figure 22.9 shows
concentration contours in the xy-plane at t = 1 days, and z = 0.
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FIGURE 22.8 Breakthrough curve for nonreactive tritium transport as analyzed with the two-region physical
nonequilibrium program CXTFIT2 (Toride et al., 1995) within STANMOD (Šimůnek et al., 1999a).
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FIGURE 22.9 Solute distribution in the xy-plane for continuous application at x = 0 and −7.5 < y < 7.5 cm after
1 days, with v = 10 cm d−1, Dx = 100 and Dy = Dz = 10 cm2 d−1 as calculated with 3DADE (Leij and Bradford,
1994) within STANMOD (Šimůnek et al., 1999a).

22.5 Numerical Models

22.5.1 Numerical Approaches

While analytical and semi-analytical solutions are still popularly used for many relatively simple applic-
ations, the ever-increasing power of personal computers, and the development of more accurate and
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stable numerical solution techniques, have led to the much wider use of numerical models in recent years.
Numerical methods are in general superior to analytical methods in terms of being able to solve much
more practical problems (Šimůnek, 2005). They allow users to design complicated geometries that reflect
complex natural geologic and hydrologic conditions, control parameters in space and time, prescribe
more realistic initial and boundary conditions, and permit the implementation of nonlinear constitutive
relationships. Numerical methods usually subdivide the time and spatial coordinates into smaller pieces,
such as finite differences, finite elements, and finite volumes, and reformulate the continuous form of
governing partial differential equations in terms of a system of algebraic equations. To obtain solutions
at certain times, numerical methods generally require intermediate simulations (time-stepping) between
the initial condition and the points in time for which the solution is needed.

Reviews of the history of development of various numerical techniques used in vadose zone flow and
transport models are given by van Genuchten and Šimůnek (1996) and Šimůnek (2005). Here we will
summarize only the main principles behind some of the more popular techniques.

22.5.1.1 Finite Differences

The method of finite differences is generally very intuitive and relatively easy to implement. Time and
space are both divided into small increments �t and �z (or �x and �z) (Figure 22.10). Temporal and
spatial derivatives in the governing equation are then replaced with finite differences (formally using Taylor
series expansions). For example, the standard advection–dispersion equation for steady-state water flow:

∂c

∂t
= − ∂J

∂z
= D

∂2c

∂z2
− v

∂c

∂z
(22.64)

can be approximated as follows using an explicit (forward-in-time) finite difference scheme:

c
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i − c
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i + c

j
i−1

(�z)2
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c
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i+1 − c

j
i−1

2�z
(22.65)

where subscripts refer to spatial discretization and superscript to temporal discretization (j and j+1 are
for the previous and actual time levels, respectively; see Figure 22.10), �t is the time step, and �z is the
spatial step (assumed to be constant). Notice that this equation contains only one unknown variable (i.e.,

the concentration c
j+1
i at the new time level), which hence can be evaluated directly (explicitly) by solving

the equation.
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FIGURE 22.10 Examples of the spatial and temporal finite difference discretization of a one-dimensional
problem (a), and the finite difference discretization of a two-dimensional domain (b).
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By comparison, a fully implicit (backward-in-time) finite difference scheme can be written as follows:

c
j+1
i − c

j
i

�t
= − J

j+1
i+1/2 − J

j+1
i−1/2

�z
= D

c
j+1
i+1 − 2c

j+1
i + c

j+1
i−1

(�z)2
− v

c
j+1
i+1 − c

j+1
i−1

2�z
(22.66)

and an implicit (weighted) finite difference scheme as:

c
j+1
i − c

j
i

�t
=D

ε(c
j+1
i+1 − 2c

j+1
i + c

j+1
i−1 )+ (1− ε)(c j
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j
i + c

j
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(�z)2

− v
ε(c

j+1
i+1 − c

j+1
i−1 )+ (1− ε)(c j

i+1 − c
j
i−1)

2�z
(22.67)

where ε is a temporal weighting coefficient. Different finite-difference schemes results depending upon
the value of ε, that is, an explicit scheme when ε = 0, a Crank–Nicholson time-centered scheme when
ε = 0.5, and a fully implicit scheme when ε = 1. Of these, the latter two cases lead to several unknown
concentrations in each equation at the new time level. Consequently, equations for all nodes of the
transport domain need to be assembled into an algebraic system of linear equations to produce a matrix
equation of the form

[P]j+1{c}j+1 = {F} (22.68)

in which [P] is a tridiagonal matrix [P] given by:

[P] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1 e1 0 0
b2 d2 e2 0 0
0 b3 d3 e3 0 0

...
...

...
0 0 bN−2 dN−2 eN−2 0
0 0 bN−1 dN−1 eN−1

0 0 bN dN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(22.69)

Equation 22.69 is subsequently solved using a matrix equation solver to yield the concentrations at the
new time level.

The problem becomes more complex for problems involving transient flow. In that case one must
first obtain estimates of the water contents and fluxes at the new time level using a numerical solution
of the Richards equation. These water contents and fluxes are subsequently used for assembling the
matrix equations for solute transport. While finite differences are relatively straightforward to implement
for many transport problems, one major disadvantage is that this method cannot be easily applied to
relatively complicated (irregular) transport domains in two and three dimensions.

22.5.1.2 Finite Elements

Finite element methods can be implemented in very much the same way as finite differences for one-, two-,
and three-dimensional problems. A major advantage of the finite elements is that they are much easier
used to discretize complex two- and three-dimensional transport domains (Figure 22.11). As an example,
Figure 22.11 shows triangular unstructured finite element grids for a regular rectangular and an irregular
domain as generated with the automated MeshGen2D mesh generator of HYDRUS-2D (Šimůnek et al.,
1999b). Note that even though the figure on the right (Figure 22.11) has an irregular soil surface, as well as
a tile drain within the transport domain, MeshGen2D could easily discretize/accommodate this transport
domain using an unstructured triangular finite element mesh.

The finite element method assumes that the dependent variable in the advection–dispersion equation
(e.g., the concentration function c(x , t ) in (22.64)) can be approximated by a finite series c ′(x , t ) of the
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FIGURE 22.11 Examples of the triangular finite element grids for regular (a) and irregular (b) two-dimensional
transport domains.
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FIGURE 22.12 Example of one-dimensional linear basis functions (a) and their use to approximate solution c(x , t )
of the advection–dispersion equation (b).

form (Figure 22.12b):

c ′(x , t ) =
N∑

m=1

φm(x)cm(t ) (22.70)

where φm are the selected linear basis functions that fulfill the condition φm(xn) = δnm , δnm is Kronecker
delta ( δnm = 1 for m = n, and δnm = 0 for m �= n), cm are the unknown time-dependent coefficients
which represent solutions of (22.64) at the finite element nodal points, and N is the total number of nodal
points. For example, for the one-dimensional finite element xi < x < xi+1, linear basis functions have
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the following form (Figure 22.12a):

φ1 = 1− x − xi

�x

φ2 = x − xi

�x




xi ≤ x ≤ xi+1 (22.71)

where �x (= xi+1 − xi) is the size of a finite element [L], that is, the distance between two neighboring
nodal points. The approximate solution c ′(x , t ) converges to the correct solution c(x , t ) as the number of
basis functions N increases.

Application of the Galerkin method, which postulates that the differential operator associated with the
transport equation is orthogonal to each of the N basis functions (e.g., Pinder and Gray, 1977), leads to
the following system of N time-dependent differential equations with N unknown values cn(t ):

L∫
0

(
−∂c

∂t
− D

∂2c

∂x2
− v

∂c

∂x

)
φn dx = 0 (22.72)

where φn are the selected linear weighting functions that can be the same as the basis functions φm.
Integrating by parts the terms containing the spatial derivatives to remove the second-order derivatives,
and substituting (22.70) for c(x , t ) leads to the following equation:

∑
e

Le∫
0

(
−∂cm

∂t
φm

)
φn dx −

∑
e

Le∫
0

(
Dcm

∂φm

∂x
− vcmφm

)
∂φn

∂x
dx − qsLφn(L)+ qs0φn(0) = 0

(22.73)

where qs0 and qsL are solute fluxes across the left and right boundaries, respectively; e is the element index,
Le is the size of an element e, and L is the size of the transport domain (length of the soil profile). The
integrals in Equation 22.73 can be evaluated either numerically or analytically, depending upon the type
of invoked basis and weighting functions ( φm and φn , respectively). The equation can be rewritten in
matrix form similarly as (Equation 22.68) and then solved using a matrix equation solver. For a detailed
derivation of the matrix equation we refer to standard finite element textbooks (e.g., Pinder and Gray, 1977;
Zienkiewicz, 1977; Huyakorn and Pinder, 1983) or manuals of some of the models (e.g., the HYDRUS
models by Šimůnek et al., 1998a,b).

22.5.1.3 Stability and Oscillations

Numerical solutions of the transport equation often exhibit oscillatory behavior and/or excessive numer-
ical dispersion near relatively sharp concentration fronts (Huyakorn and Pinder, 1983; Šimůnek et al.,
1998a). These problems can be especially serious for advection-dominated transport characterized by
small dispersivities. One way to partially circumvent numerical oscillations is to use upstream weighing
in which case the flux term of Equation 22.64 is not weighted using regular linear basis functions φn ,
but instead with nonlinear quadratic functions φu

n . Undesired oscillations can often be prevented also by
selecting an appropriate combination of the space and time discretizations. Two dimensionless numbers
may be used to characterize the discretizations in space and time. One of these is the grid Peclet num-
ber, Pee, which defines the predominant type of solute transport (notably the ratio of the advective and
dispersive transport terms) in relation to coarseness of the finite element grid:

Pee = v�x

D
(22.74)
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where�x is the characteristic length of a finite element [L]. The Peclet number increases when the advect-
ive part of the transport equation dominates the dispersive part (i.e., when a relatively steep concentration
front is present). To achieve acceptable numerical results, the spatial discretization must be kept relatively
fine to maintain a low Peclet number. Numerical oscillations can be virtually eliminated when the local
Peclet numbers do not exceed about 5. However, acceptably small oscillations may be obtained with
local Peclet numbers as high as 10 (Huyakorn and Pinder, 1983). Undesired oscillations for higher Peclet
numbers can be effectively eliminated by using upstream weighing.

A second dimensionless number, the Courant number, Cre, may be used to characterize the relative
extent of numerical oscillations in the numerical solution. The Courant number is associated with the
time discretization,�t [T], as follows:

Cre = v�t

�x
(22.75)

Given a certain spatial discretization, the time step must be selected such that the Courant number remains
less than or equal to 1.

Perrochet and Berod (1993) developed a criterion for minimizing or eliminating numerical oscillations
that is based on the product of the Peclet and Courant numbers:

Pe · Cr ≤ ωs (=2) (22.76)

where ωs is the performance index [−]. This criterion indicates that advection-dominated transport
problems having large Pe numbers can be safely simulated provided Cr is reduced according to (22.76)
(Perrochet and Berod, 1993). When small oscillations in the solution can be tolerated,ωs can be increased
to about 5 or 10.

22.5.2 Existing Models

22.5.2.1 Single-Species Solute Transport Models

A large number of numerical models are now available for evaluating variably saturated water flow and
solute transport processes in the subsurface. Some of these models are in the public domain, such as
MACRO (Jarvis, 1994), SWAP (van Dam et al., 1997), UNSATH (Fayer, 2000), VS2DI (Healy, 1990), and
HYDRUS-1D (Šimůnek et al., 1998a, 2005), while others are in the commercial domain, such as HYDRUS-
2D (Šimůnek et al., 1999b) and MODFLOW-SURFACT (HydroGeoLogic, 1996). These models vary
widely in terms of their complexity, sophistication, and ease of use. Although some models are still being
run under the DOS operating system, with associated difficulties of preparing input files and interpreting
tabulated outputs, many others, especially those in the commercial domain, are supported by sophisticated
graphics-based interfaces that greatly simplify their use (Šimůnek et al., 1998a; 1999b). Several studies
have recently reviewed and compared various numerical models for vadose zone applications (e.g., Wilson
et al., 1999; Scanlon et al., 2002; MDH Engineered Solutions Corp., 2003; Vanderborght et al., 2005). These
studies typically evaluated comparable precision, speed, and ease of use of the codes involved.

While many of the early numerical zone models were developed mostly for agricultural applications
(e.g., optimizing soil moisture conditions for crop production), this focus has increasingly shifted to
environmental research, with the primary concern now being the subsurface fate and transport of vari-
ous agricultural and other contaminants, such as radionuclides, hydrocarbons, fumigants, pesticides,
nutrients, pathogens, pharmaceuticals, viruses, bacteria, colloids, and/or toxic trace elements. The earlier
models solved the governing flow and transport equations for relatively simplified system-independent
boundary conditions (i.e., specified pressure heads or fluxes, and free drainage). Models developed recently
can cope with much more complex system-dependent boundary conditions evaluating surface flow and
energy balances and accounting for the simultaneous movement of water, vapor, and heat. Examples are
DAISY (Hansen et al., 1990), TOUGH2 (Pruess, 1991), SHAW (Flerchinger et al., 1996), SWAP (van Dam
et al., 1997), HYDRUS-1D (Šimůnek et al., 1998a, 2005), UNSATH (Fayer, 2000), and COUP (Jansson
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and Karlberg, 2001). Several models now also account for the extremely nonlinear processes associated
with the freezing and thawing cycle (e.g., DAISY, SHAW, and COUP).

Models have recently also become increasingly sophisticated in terms of the type and complexity
of solute transport processes that can be simulated. Transport models are no longer being limited to
solutes undergoing relatively simple chemical reactions such as linear sorption and first-order decay,
but now consider also a variety of nonlinear sorption and exchange processes, physical and chemical
nonequilibrium transport, volatilization, gas diffusion, colloid attachment/ detachment, decay chain
reactions, and many other processes (e.g., the HYDRUS-1D and -2D codes of Šimůnek et al., 1999b,
2005, or MODFLOW-SURFACT of HydroGeoLogic, Inc., 1996). For example, the general formulation of
the transport equations in the HYDRUS codes permit simulations of not only non-adsorbing or linearly
sorbing chemicals, but also of a variety of other contaminants, such a viruses (Schijven and Šimůnek,
2001), colloids (Bradford et al., 2002), cadmium (Seuntjens et al., 2001), and hormones (Casey et al.,
2003, 2004), or chemicals involved in the sequential biodegradation of chlorinated aliphatic hydrocarbons
(Schaerlaekens et al., 1999; Casey and Šimůnek, 2001).

Much effort has recently been directed also toward improving models for purposes of simulating
nonequilibrium and/or preferential flow. Examples of this are the TOUGH codes (Pruess, 1991, 2004),
MACRO (Jarvis, 1994), and HYDRUS-1D (Šimůnek et al., 2003, 2005). These models typically assume the
presence of dual-porosity and dual-permeability regions, with different fluxes possible in the two regions.
As discussed in detail in Section 22.2b, dual-porosity, mobile–immobile water flow models result when the
Richards or kinematic wave equations are used for flow in the fractures, and immobile water is assumed
to exist in the matrix, whereas dual-permeability models assume that water is mobile in both the matrix
and fracture domains, while invoking terms accounting for the exchange of water and solutes between
the two regions. Example applications of these dual-porosity and dual-permeability models are given by
Šimůnek et al. (2001), Haws et al. (2005), Köhne et al. (2004b, 2005), and Pot et al. (2005), among many
others.

As an example of available vadose zone flow and transport models, we discuss here in somewhat greater
detail the HYDRUS software packages of Šimůnek et al. (1999b, 2005) and the MODFLOW-SURFACT
model developed by HydroGeoLogic (1996).

22.5.2.1.1 The HYDRUS Software Packages
HYDRUS-1D (Šimůnek et al., 2005) and HYDRUS-2D (Šimůnek et al., 1999b) are software packages
(www.hydrus2d.com) that simulate the one- and two-dimensional movement of water, heat, and multiple
solutes in variably saturated media, respectively. Both programs use finite elements to numerically solve the
Richards equation for saturatedunsaturated water flow and Fickian-based advectiondispersion equations
for both heat and solute transport. The flow equation includes a sink term to account for water uptake
by plant roots as a function of both water and salinity stress. The flow equation may also consider
dual-porosity-type flow with a fraction of water content being mobile, and fraction immobile. The heat
transport equation considers conduction as well as advection with flowing water. The solute transport
equations assume advective-dispersive transport in the liquid phase, and diffusion in the gaseous phase.
The transport equations also include provisions for nonlinear and/or nonequilibrium reactions between
the solid and liquid phases, linear equilibrium reactions between the liquid and gaseous phases, zeroorder
production, and two firstorder degradation reactions: one which is independent of other solutes, and
one which provides the coupling between solutes involved in the sequential first-order decay reactions.
In addition, physical nonequilibrium solute transport can be accounted for by assuming a two-region,
dual-porosity type formulation which partitions the liquid phase into mobile and immobile regions.
Alternatively, the transport equations include provisions for kinetic attachment/detachment of solute to
the solid phase and thus can be used to simulate the transport of viruses, colloids, or bacteria (Schijven
and Šimůnek, 2002; Bradford et al., 2003).

Both programs may be used to analyze water and solute movement in unsaturated, partially saturated,
or fully saturated media. The flow region itself may consist of nonuniform (layered) soils. HYDRUS-2D
additionally can handle flow regions delineated by irregular boundaries. The flow region itself may be
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composed of nonuniform soils having an arbitrary degree of local anisotropy. Flow and transport can occur
in the vertical plane, the horizontal plane, or in a three-dimensional region exhibiting radial symmetry
about the vertical axis. The unsaturated soil hydraulic properties (the constitutive relationships) can be
described using van Genuchten (1980a), Brooks and Corey (1964), Kosugi (1996), and Durner (1994)
type analytical functions, or modified van Genuchten type functions that produce a better description of
the hydraulic properties near saturation. HYDRUS-1D incorporates hysteresis by assuming that drying
scanning curves are scaled from the main drying curve, and wetting scanning curves from the main wetting
curve. Root growth is simulated by means of a logistic growth function, while root water uptake can be
simulated as a function of both water and salinity stress.

The HYDRUS-1D software package additionally includes modules for simulating carbon dioxide and
major ion solute movement (Šimůnek et al., 1996). Diffusion in both the liquid and gas phases and advec-
tion in the liquid phase are considered as the main CO2 transport mechanisms (Šimůnek and Suarez,
1993). The major variables of the chemical system are Ca, Mg, Na, K, SO4, Cl, NO3, H4SiO4, alkalin-
ity, and CO2(Šimůnek and Suarez, 1994; Šimůnek et al., 1996). The model accounts for equilibrium
chemical reactions between these components such as complexation, cation exchange and precipitation-
dissolution. For the precipitation-dissolution of calcite and dissolution of dolomite, either equilibrium
or multicomponent kinetic expressions are used, involving both forward and back reactions. Other
dissolution-precipitation reactions considered include gypsum, hydromagnesite, nesquehonite, and sepi-
olite. Since the ionic strength of soil solutions can vary considerably with time and space and often reach
high values, both modified Debye–Hückel and Pitzer expressions were incorporated into the model as
options to calculate single ion activities.

In addition, both HYDRUS programs implement a Marquardt-Levenberg type parameter estimation
technique (Marquardt, 1963; Šimůnek and Hopmans, 2002) for inverse estimation of soil hydraulic
(Šimůnek et al., 1998b,c; Hopmans et al., 2002) and/or solute transport and reaction (Šimůnek et al.,
2002) parameters from measured transient or steady-state flow and/or transport data.

The HYDRUS packages use a Microsoft Windows based Graphics User Interface (GUI) to manage the
input data required to run the program, as well as for nodal discretization and editing, parameter allocation,
problem execution, and visualization of results. All spatially distributed parameters, such as those for
various soil horizons, the root water uptake distribution, and the initial conditions for water, heat and
solute movement, are specified in a graphical environment. HYDRUS-2D includes the MeshGen2D mesh
generator, specifically designed for variably-saturated subsurface flow transport problems, for defining
more general domain geometries, and for discretizing the transport domain into an unstructured finite
element mesh. The program offers graphs of the distributions of the pressure head, water content, water
and solute fluxes, root water uptake, temperature, and solute concentrations in the soil profile at pre-
selected times. Also included is a small catalog of unsaturated soil hydraulic properties (Carsel and Parish,
1988), as well as pedotransfer functions based on neural networks (Schaap et al., 2001). Many different
applications of both software packages were referenced throughout this book chapter.

22.5.2.1.2 MODFLOW-SURFACT
MODFLOW-SURFACT (HydroGeoLogic, 1996) is a fully integrated flow and transport code, based on
the MODFLOW groundwater modeling software package of the U.S. Geological Survey (McDonald and
Harbaugh, 1988). While MODFLOW (see detailed discussion in Chapter 20) deals only with fully saturated
groundwater flow, MODFLOW-SURFACT expands the applicability of the code to unsaturated domains.
MODFLOW-SURFACT includes new flow packages that enhance schemes for performing unconfined
simulations to rigorously model desaturation and resaturation of aquifers. It provides an option for
discretizing the domain using an axi-symmetric geometry for efficient simulation of pumping tests,
recovery tests, etc. In addition to normally allowed external stresses in MODFLOW (i.e., constant head,
constant flux, areal recharge, evapotranspiration, drains, and streams), MODFLOW-SURFACT provides a
rigorous well withdrawal package, unconfined recharge boundary conditions, and seepage face boundary
conditions. Additionally, MODFLOW-SURFACT also includes options for adaptive time-stepping and
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output control procedures, and a new solution package based on the preconditioned conjugate gradient
method.

MODFLOW-SURFACT includes new Analysis of Contaminant Transport (ACT) modules that allow
simulations of single-species and multi-component contaminant transport. The program can handle up to
5 chemical species, which may undergo linear or nonlinear retardation, first-order decay and biochemical
degradation, as well as generate transformation products. MODFLOW-SURFACT also permits mass
partitioning of a single or multicomponent contaminant with diffusive mass movement in the inactive
phase, and mass partitioning of a single or multicomponent contaminant from a depleting immobile
NAPL phase with advective and dispersive transport in the active phase and diffusive transport in the
inactive phase.

22.5.2.2 Geochemical Transport Models

Significant efforts have recently been recently carried out also in coupling physical flow and transport
models with geochemical models to simulate ever more complex reactions, such as surface complexation,
precipitation/dissolution, cation exchange, and biological reactions. Recent reviews of the development
of hydrogeochemical transport models involving reactive multiple components are given by Mangold and
Tsang (1991), Lichtner (1996) and Steefel and MacQuarrie (1996), Šimůnek and Valocchi (2002), and Bell
and Binning (2004). Most modeling efforts involving multicomponent transport have thus far focused on
the saturated zone, where changes in the water flow velocity, temperature and pH are often much more
gradual and hence less important than in the unsaturated zone. Consequently, most multicomponent
transport models assumed one- or two-dimensional steady-state saturated water flow with a fixed value of
the flow velocity, temperature and pH. Only recently have several multicomponent transport models been
published which also consider variably saturated flow; these include DYNAMIX (Liu and Narasimhan,
1989), HYDROGEOCHEM (Yeh and Tripathi, 1990), TOUGH-REACT (Pruess, 1991), UNSATCHEM
(Šimůnek and Suarez, 1994; Šimůnek et al., 1996, 1997), FEHM (Zyvoloski et al., 1997), MULTIFLO
(Lichtner and Seth, 1996), OS3D/GIMRT (Steefel and Yabusaki, 1996), HYDROBIOGEOCHEM (Yeh
et al., 1998), FLOTRAN (Lichtner, 2000), MIN3P (Mayer et al., 2002), HP1 (Jacques et al., 2002; Jacques
and Šimůnek, 2005), and HYDRUS-1D (Šimůnek et al., 2005).

Geochemical models can be divided into two major groups: those with specific chemistry and general
models (Šimůnek and Valocchi, 2002). Models with specific chemistry are limited in the number of species
they can handle, while their application is restricted to problems having a prescribed chemical system.
They are, however, much easier to use and computationally can be much more efficient than general
models. Typical examples of models with specified chemistry are those simulating the transport of major
ions, such as LEACHM (Wagenet and Hutson, 1987), UNSATCHEM (Šimůnek and Suarez, 1994; Šimůnek
et al., 1996), and HYDRUS-1D (Šimůnek et al., 2005). Models with generalized chemistry (DYNAMIX,
HYDROGEOCHEM, MULTIFLO, FLOTRAN, OS3D/GIMRT, and HP1, all referenced above) provide
users with much more freedom in designing a particular chemical system; possible applications of these
models are also much wider.

22.5.2.2.1 HP1
HYDRUS-1D was recently coupled with the PHREEQC geochemical code (Parkhurst and Appelo, 1999)
to create a new comprehensive simulation tool, HP1 (acronym for HYDRUS1D-PHREEQC) (Jacques
et al., 2003; Jacques and Šimůnek, 2005). The combined code contains modules simulating (1) transient
water flow in variably saturated media, (2) the transport of multiple components, (3) mixed equilib-
rium/kinetic biogeochemical reactions, and (4) heat transport. HP1 is a significant expansion of the
individual HYDRUS-1D and PHREEQC programs by preserving most of their original features and
capabilities. The code still uses the Richards equation for simulating variably saturated water flow and
advection–dispersion type equations for heat and solute transport. However, the program can now sim-
ulate also a broad range of low-temperature biogeochemical reactions in water, the vadose zone and in
ground water systems, including interactions with minerals, gases, exchangers, and sorption surfaces,
based on thermodynamic equilibrium, kinetics, or mixed equilibrium-kinetic reactions.
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FIGURE 22.13 Major ions (a) and heavy metals (Zn, Pb, and Cd) (b) concentrations in the effluent of an 8-cm soil
long column.

Jacques et al. (2003) and Jacques and Šimůnek (2005) demonstrated the versatility of the HP1 model
on several examples such as (a) the transport of heavy metals (Zn2+, Pb2+, and Cd2+) subject to mul-
tiple cation exchange reactions, (b) transport with mineral dissolution of amorphous SiO2 and gibbsite
(Al(OH)3), (c) heavy metal transport in a medium with a pH-dependent cation exchange complex,
(d) infiltration of a hyperalkaline solution in a clay sample (this example considers kinetic precipitation–
dissolution of kaolinite, illite, quartz, calcite, dolomite, gypsum, hydrotalcite, and sepiolite), (e) long-term
transient flow and transport of major cations (Na+, K+, Ca2+, and Mg2+) and heavy metals (Cd2+, Zn2+,
and Pb2+) in a soil profile, (f) cadmium leaching in acid sandy soils, (g) radionuclide transport (U and
its aqueous complexes), and (h) the fate and subsurface transport of explosives (TNT and its daughter
products 2ADNT, 4ADNT, and TAT) (Šimůnek et al., 2006).

22.5.2.2.2 Leaching of Heavy Metals from a Soil Column
As an example application of HP1, Figure 22.13 shows calculated effluent concentrations of heavy metals
(Zn2+, Pb2+, and Cd2+) leached from an 8-cm long soil column having an initial solution as defined in
Table 22.2, and with its ion-exchange complex in equilibrium with this solution. Heavy metals initially
present in the soil column are leached from the exchange complex by major ions (Ca2+, Mg2+, and Al3+).
Water was applied to the top of the column at a steady flow rate of 2 cm day−1 and having a chemical
composition as given in Table 22.2. Details are given by Jacques and Šimůnek (2005).

22.6 Concluding Remarks

This chapter demonstrates the abundance of models and modeling approaches that are currently available
for simulating variably saturated water flow and contaminant transport at various levels of approximation
and for different applications. Models range from relatively simple analytical approaches for analyzing
solute transport problems during one-dimensional steady-state flow, to sophisticated numerical models
for addressing multi-dimensional variably saturated flow and contaminant transport problems at the field
scale.

One may expect that unsaturated zone flow and transport models will be used increasingly as tools for
developing cost-effective, yet technically sound strategies for resource management and pollution remedi-
ation and prevention. Improved understanding of the key underlying processes, continued advances in
numerical methods, and the introduction of more and more powerful computers make such simula-
tions increasingly practical for many field-scale problems. For example, models can be helpful tools for
designing, testing and implementing soil, water and crop management practices that minimize soil and
water pollution. Models are equally needed for designing or remediating industrial waste disposal sites
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TABLE 22.2 Chemical Components (mmol/L) and Species Considered, and Elemental
Compositions of Initial and Boundary Solutions Used in the Column Simulation. X Refers
to Ion Exchanger

Solutions

Components Species Boundary Initial

Al Al3+, Al(OH)2+, Al(OH)+2 , Al(OH)0
3, Al(OH)−4 0.1 0.5

Br Br− 3.7 11.9
Cl Cl− (and Cd, Pb, and Zn-species, see below) 10 0
Ca Ca2+, Ca(OH)+ 5 0
K K+, KOH0 0 2
Na Na+, NaOH0 0 6
Mg Mg2+, Mg(OH)+ 1 0.75

Cd Cd2+, Cd(OH)+, Cd(OH)0
2, Cd(OH)−3 , Cd(OH)2−

4 , CdCl+,
CdCl2, CdCl−3 0 0.9

Pb Pb2+, Pb(OH)+, Pb(OH)0
2, Pb(OH)−3 , Pb(OH)2−

4 , PbCl+, PbCl02,

PbCl−3 , PbCl2−4 0 0.1

Zn Zn2+, Zn(OH)+, Zn(OH)0
2, Zn(OH)−3 , Zn(OH)2−

4 , ZnCl+, ZnCl02,

ZnCl−3 , ZnCl2−4 0 0.25
X AlX3, AlOHX2, CaX2, CdX2, KX, NaX, MgX2, PbX2, ZnX2 (mmol) NA 11

and landfills, for predicting contaminant transport from mining wastes, or for long-term stewardship of
nuclear waste repositories. The main challenge is to make the models as realistic as possible for the various
applications.

Continued progress in subsurface flow and transport modeling requires equal advances in both numer-
ical techniques as well as the underlying science. Addressing preferential flow phenomena, and the related
problems of subsurface heterogeneity, including the stochastic nature of boundary conditions (precip-
itation and/or evapotranspiration), will continute to pose formidable challenges. The same is true for
improving multicomponent geochemical transport modeling for the vadose zone. For example, numerical
algorithms and databases for multicomponent transport models must be extended to higher temperatures
and ionic strengths, complex contaminant mixtures (including especially mixed organic and inorganic
wastes), multiphase flow, redox disequilibria for low-temperature systems, and coupled physico-chemical
systems to account for possible changes in the soil water retention and hydraulic conductivity functions.
Better integration is also needed between variably satuarted subsurface and existing larger-scale surface
numerical models, which in turn requires further research on such issues as spatial and temporal scaling
of hydrological, chemical and biological processes and properties, linking constitutive (soil hydraulic)
relationships to measurements scales, preferential flow, and issues of parameter and model uncertainty.

Many science questions related to colloid and colloid-facilitated transport are also still largely unre-
solved. This is an area of research where our understanding lags far behind current numerical capabilities.
Much work is needed to better understand the processes of filtration, straining, size exclusion, colloid–
colloid interactions, mobilization of colloids and microorganisms; accumulation at air–water interfaces,
interactions between microorganisms and contaminants (including biodegradation), the effects of both
physical factors (water content, flow velocity, textural interfaces) and chemical processes (ionic strength,
solution composition, pH) on colloid retention and mobilization, and modeling colloid-facilitated
transport during conditions of transient flow.

Also, to the best of our knowledge, no models are currentely available that consider all the various
processes simultaneously and in their full complexity, including their mutual interactions. That is, no
models exist that consider transient preferential flow and transport in structured soils or fractured rocks,
while simultaneously considering complex biogeochemical reactions between contaminants, organic and
inorganic colloids and/or organic complexes, and solid and air phases of a soil, including widely vary-
ing rates of these various reactions. Further integration of the different types of numerical models is
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needed to address practical problems of contaminant transport (trace elements, radionuclides, organic
contaminants) in complex vadose zone environments.
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