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Integrated modeling of vadose-zone flow and transport 
processes

M.T. van Genuchten  and Jirka Šim nek

Abstract

Enormous advances have been made during the past several decades in our 
understanding and ability to model flow and transport processes in the vadose zone 
between the soil surface and the groundwater table. A large number of conceptual models 
are now available to make detailed simulations of transient variably-saturated water flow, 
heat movement and solute transport in the subsurface. In this paper we highlight four 
examples illustrating such advances: (1) coupling physical and chemical processes, (2) 
simulating colloid and colloid-facilitated transport, (3) integrated modeling of surface 
and subsurface flow processes, and (4) modeling of preferential flow in the subsurface. 
The examples show that improved understanding of underlying processes, continued 
advances in numerical methods, and the introduction of increasingly powerful computers 
now permit us to make comprehensive simulations of the most important coupled, non-
linear physical, chemical and biological processes operative in the unsaturated zone.  

Introduction

Agricultural practices for supplying food to locally burgeoning populations were 
probably first implemented some 10,000 years ago in Eurasia, Africa and the Americas 
(Lawton and Wilke 1979). Hunting activities and gathering food were slowly 
complemented, or even replaced, by efforts to cultivate the Earth. This involved 
modifying the landscape to grow agricultural crops, raising domesticated animals and, 
increasingly between roughly 8,000 and 3,000 years ago, practicing irrigation. Many 
parts of the world still show impressive remnants of ancient irrigation systems, such as 
chains-of-wells systems in China, the Middle and Near East, and North Africa. These 
systems from around 2500 years ago and onward, supplied water for domestic 
consumption and irrigation through sophisticated subsurface irrigation tunnels, also 
known as qanatz, kanats or karez (e.g. Cressey 1958; Lawton and Wilke 1979). Some of 
these chains-of-wells systems are still in use today in the Middle East, China and 
elsewhere.

The ancient irrigation structures and related soil-management and irrigation 
practices, were at the time implemented without the advantage of modern computational 
tools, such as computers and sophisticated numerical methods, and hence without 
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detailed conceptual-numerical descriptions based on equations governing water flow and 
chemical transport into and through the unsaturated zone. Against the long human history 
of manipulating soils and water for improved agricultural practices, it is therefore 
amazing that Darcy’s law for saturated flow was first proposed only some 150 years ago 
(Darcy 1856), while the Richards equation for unsaturated flow was first formulated 
barely 70 years ago (Richards 1931). This shows that, compared to the time periods of 
human history and the implementation of agricultural practices and irrigation, truly 
astonishing advancements have been made during the past 30 years or so in process-
based descriptions of subsurface flow and transport processes, numerical analysis and 
computer hardware. We have come to a point in history where truly unique opportunities 
exist for developing models that integrate the most pertinent processes affecting water, 
heat and solute movement in the subsurface. Much of the research in subsurface flow and 
transport has historically progressed along mostly disciplinary lines (e.g., soil physics, 
hydrogeology, geochemistry, microbiology, plant physiology). As such, physical, 
chemical and microbiological processes were often studied and implemented in relative 
isolation. The same is true for studies of surface and subsurface flow processes, and for 
flow and transport in the vadose zone and in groundwater. The introduction of 
increasingly powerful computers, advanced numerical methods and improved 
understanding of subsurface flow and transport processes, now provide tremendous 
opportunities for integrating the various processes involved. 

In this paper we highlight several exciting approaches for coupling physical, 
chemical and other processes into integrated descriptions of the subsurface, while 
focusing especially on the vadose zone. We will address (1) relatively standard 
approaches for modeling flow and transport, (2) multicomponent geochemical transport, 
(3) colloid and colloid-facilitated transport, (4) integrated surface/subsurface modeling, 
and (5) process-based descriptions of preferential flow. We start with a relatively 
standard description of water, heat and solute movement. 

Standard descriptions for water, heat and solute movement 

Predictions of water, heat and solute movement in the vadose zone are traditionally 
made using the Richards equation for variably-saturated water flow and advection–
dispersion type equations for heat and solute movement. For a one-dimensional soil 
profile these equations are given by e.g., Šim nek, Šejna and Van Genuchten (1998) 
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respectively, where  is the volumetric water content (-), h is the soil water pressure head 
(L), t is time (T), z is distance from the soil surface downward (L), K is the hydraulic 
conductivity (LT-1) as a function of h or ,  is the apparent thermal conductivity of the 
soil (MLT-3K-1), Cp and Cw are volumetric heat capacities (ML-1T-2K-1) of the porous 
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medium and the liquid phase, respectively; T is temperature (K), s is the solute 
concentration associated with the solid phase of the soil (MM-1), c is the solute 
concentration of the liquid phase (ML-3),  is the soil bulk density (ML-3), D is the solute 
dispersion coefficient (L2T-1), q is the volumetric fluid flux density (LT-1) given by 
Darcy’s law, and S (T-1) and  (M 3L  T-1) are sinks or sources for water and solutes, 
respectively.

Equations (1) through (3) are relatively standard in that they have been popularly 
used for the past 50 years or so in various forms, simplifications or extensions. Examples 
of possible extensions are their use in two or three dimensions (Šim nek, Huang and Van 
Genuchten 1995; Zyvoloski et al. 1997; Pruess, Oldenburg and Moridis 1999), the 
inclusion of vapor-phase transport (Scanlon et al. 2003) and volatilization (e.g. Jury, 
Spencer and Farmer 1983), extensions to multiphase flow involving separate flow 
equations for each fluid involved, such as water, air and/or oil (e.g. Pinder and Abriola 
1986; Pruess and Battistelli 2002), multicomponent geochemical transport (Yeh and 
Tripathi 1990; Lichtner 2000), and incorporation of dual-porosity or dual-permeability 
formulations for preferential flow in macroporous soils or fractured rock (e.g. Gerke and 
Van Genuchten 1993; Šim nek et al. 2003; Bodvarsson, Ho and Robinson 2003). Several 
of these and related studies have resulted in detailed codes such as TOUGH2 (Pruess, 
Oldenburg and Moridis 1999), the HYDRUS codes (Šim nek, Šejna and Van Genuchten 
1998; 1999), FEHM (Zyvoloski et al. 1997), HYDROBIOGEOCHEM (Yeh et al. 1998), 
RZWQM (Ahuja et al. 1999) and SWAP (Van Dam et al. 1997), among many others. 

Much of the work presented in this paper is based on the HYDRUS codes (Šim nek,
Šejna and Van Genuchten 1998; 1999), but further modified to enable simulations of the 
four types of problems considered here (i.e., multicomponent geochemical transport, 
colloid and colloid-facilitated transport, integrated surface/subsurface modeling, and 
preferential/non-equilibrium flow and transport). For this reason we first give a brief 
summary of these codes. The HYDRUS-1D and HYDRUS-2D software packages are 
finite-element numerical models for simulating the one- or two-dimensional movement 
of water, heat and multiple solutes in variably saturated media. The programs 
numerically solve the Richards equation for variably-saturated water flow and advection–
dispersion equations for heat and solute transport. 

The solute transport equations in HYDRUS consider advective–dispersive transport 
in the liquid phase, and diffusive transport in the gaseous phase. The transport equations 
also include provisions for non-linear and/or non-equilibrium reactions between the solid 
and liquid phases, linear equilibrium reactions between the liquid and gaseous phases, 
zero-order production and two first-order degradation reactions: one which is 
independent of other solutes, and one which provides the coupling between solutes 
involved in sequential first-order decay reactions. Figure 1 shows a schematic of the 
sequential first-order decay chain reactions incorporated in the HYDRUS codes. Typical 
examples of sequential first-order decay chains are radionuclides (e.g. Lester, Jansen and 
Burkholder 1975; Rogers 1978; Van Genuchten 1985), nitrification/denitrification chains 
(e.g. Misra, Nielsen and Biggar 1974; Wagenet and Hutson 1987; Ahuja et al. 1999), 
organic-phosphate transport (Castro and Rolston 1977), pesticide decay chains (e.g. 
Bromilow and Leistra 1980; Wagenet and Hutson 1987), chlorinated-hydrocarbon decay 
chains (PCE to TCE to ethylene) (Schaerlaekens et al. 1999; Casey and Šim nek 2001), 
pharmaceuticals (Casey et al. 2003; 2004), explosives and energetics (Selim, Xue and 
Iskandar 1995; Sheremata et al. 1999) and other contaminants. 
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Figure 1. Schematic of system of solutes subject to zero-order production/decay and 
sequential first-order degradation chain reactions, where c (ML-3), s (MM-1), and g (ML-

3) represent concentrations in the liquid, solid and gaseous phases, respectively; the 
subscripts s, w, and g refer to solid, liquid and gaseous phases, respectively; straight 
arrows represent the different zero-order ( ) and first-order (µ, µ') rate reactions, and kg

and kd indicate equilibrium distribution coefficients between phases

Incorporation of the decay chain reactions of Figure 1 into Eq. (3) leads to the 
following set of transport equations (Šim nek, Šejna and Van Genuchten 1998): 
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where w, s , and g are first-order rate constants (T-1) for solutes in the liquid, solid and 
gas phases, respectively; w', s', and g' are similar first-order rate constants (T-1)
providing connections between individual chain species, w , s , and g are zero-order rate 
constants for the liquid (ML-3T-1), solid (T-1), and gas (ML-3T-1) phases, respectively; av

is the air content, S is the sink (T-1) term in the water flow equation (1), cr is the 
concentration of the sink term, Dw is the dispersion coefficient for the liquid phase (L2T-

1), and Dg is the diffusion coefficient for the gas phase (L2T-1). As before, the subscripts 
w, s, and g correspond with the liquid, solid and gas phases, respectively; the subscript k
represents the kth chain number, and ns is the number of solutes involved in the chain 
reaction. While seemingly complicated because of the many terms involved, the basic 
concepts of Eq. (4) are relatively straightforward. Also, application of models based on 
the above equations is greatly facilitated by using graphical interfaces (GUI), such as 
those implemented in the HYDRUS software packages (www.hydrus2d.com). 
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Multicomponent geochemical transport

Equation (3) provides a highly simplified approximation for solute transport in many 
applications in that the model considers the transport of only a single species. Equation 
(4) is already more realistic by assuming that the solutes are subject to relatively simple 
consecutive decay chain reactions. Still, in general, both models ignore the fact that the 
soil liquid phase always contains a mixture of many ions that may interact, create 
complex species, precipitate, dissolve and/or compete with each other for sorption sites 
on the solid phase. The fate and transport of many naturally occurring elements and 
contaminants in the subsurface is affected by a multitude of complex, interactive 
physical, chemical, mineralogical and biological processes. For example, changes in the 
chemical composition or pH of the soil solution may impact the retention of heavy metals 
on organic matter or iron oxides. Dissolution and precipitation of minerals generally 
buffer the transport of a solution with a different pH through the soil profile. Simulation 
of these and related processes requires the use of a coupled multicomponent reactive 
transport code that integrates the physical processes of water flow and advective–
dispersive solute transport with a range of possible biogeochemical processes. Below we 
give first a brief overview of multicomponent transport-modeling approaches, and then 
illustrate their use with two related examples, one for steady-state flow and one for 
variably-saturated conditions. 

Overview of past and current research 
Many important environmental problems require analysis of the coupled transport 

and reaction of multiple chemical species (Šim nek and Valocchi 2002). Examples are 
acid mine drainage (Walter et al. 1994; Lichtner 1996), radionuclide transport 
(Viswanathan et al. 1998), the fate and transport of metal-organic mixed waste (Rittmann 
and VanBriesen 1996; VanBriesen 1998), analysis of redox zones in organic-
contaminated aquifers (Abrams, Loague and Kent 1998; Essaid et al. 1995), and reactive 
permeable barriers for aquifer remediation (Fryar and Schwartz 1994). Multicomponent 
geochemical transport may need to be considered also in applications dealing with 
salinity management and evaluation of irrigation or drainage practices in arid and 
semiarid areas, including studies of the suitability of water for irrigation, drainage water 
reuse and the reclamation of sodic soils (e.g. Tanji 1990; Rhoades 1997; Šim nek and 
Suarez 1997). 

Multicomponent geochemical transport studies were initially limited mostly to the 
saturated zone where changes in the fluid velocity, temperature and pH are generally 
much more gradual and hence less important than in the unsaturated zone. Consequently, 
most multicomponent transport models assume one- or two-dimensional steady-state 
saturated water flow with fixed values for the flow velocity, water content (or porosity), 
temperature and/or pH (Valocchi, Street and Roberts 1981; Rubin 1983). Early examples 
for more general conditions involving major ion chemistry and cation exchange in 
unsaturated soils, generally using mixing cell approaches, are given by Dutt, Shaffer and 
Moore (1972), Robbins, Wagenet and Jurinak (1980), and Wagenet and Hutson (1987). 
Only recently have more generalized multicomponent transport models been developed 
which also consider variably-saturated flow. These include DYNAMIX (Liu and 
Narasimhan 1989), HYDROBIOGEOCHEM (Yeh and Tripathi 1990; Yeh et al. 1998), 
UNSATCHEM-2D (Šim nek and Suarez 1994), FEHM (Zyvoloski et al. 1997), 
MULTIFLO (Lichtner and Seth 1996), and FLOTRAN (Lichtner 2000).

Geochemical transport models can be divided into several major groups, such as 
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models with specific chemistry, and more general, loosely coupled models often 
involving sequential iteration (Yeh and Tripathi 1990; Steefel and MacQuarrie 1996; Leij 
et al. 1999; Carrayrou, Mose and Behra 2004). Models with specific chemistry are 
generally limited in the number of species they can handle, while their application is 
usually restricted to problems having a prescribed chemical system. They are, however, 
much easier to use and computationally can be much more efficient than more general 
models. Typical examples of models with specific chemistry are those simulating the 
transport of major ions, such as UNSATCHEM (Šim nek and Suarez 1994; 1997), or 
various reclamation models. Models with more generalized chemistry generally invoke a 
variety of sequential iterative or non-iterative operator-splitting approaches in which 
transport and chemistry are solved in separate steps (Steefel and MacQuarrie 1996; Bell 
and Binning 2004; Carrayrou, Mose and Behra 2004). Models of this type include the 
DYNAMIX, HYDROGEOCHEM, MULTIFLO, and FLOTRAN models mentioned 
earlier, as well as the OS3D/GIMRT code of Steefel and Yabusaki (1996). Such models 
provide users with far more freedom in designing their particular chemical system, and 
hence permit a much broader array of applications.  

When the source terms and the decay and biodegradation reactions are neglected, 
multicomponent transport during one-dimensional transient variably-saturated flow may 
be described with the following set of equations (e.g. Šim nek and Suarez 1994): 

( )
1,2,...,j j j j j

s

c s p c qc
D j n

t t z z z   (5) 

where cj (ML-3), sj (MM-1) and pj (MM-1) are the total dissolved, sorbed/exchanged, and 
mineral (precipitated) concentrations, respectively, of aqueous component j, and ns is the 
number of aqueous components. The second term on the left-hand side of (5) is absent 
for components that do not undergo ion exchange and precipitation/dissolution reactions. 
The total concentration of a component j, defined as the sum of the dissolved, sorbed and 
mineral concentrations, is influenced only by transport processes which act on the 
solution concentration cj, but not by chemical reactions. However, the relative fraction of 
a component in each of the three phases (solution, sorbed, mineral) depends strongly on 
the specific chemical processes of the system being considered. Therefore, Eq. (5) must 
be augmented with equations describing the different equilibrium and non-equilibrium 
chemical reactions such as complexation, cation exchange, and precipitation/dissolution
(Šim nek and Valocchi 2002). 

The more general geochemical transport-modeling approach was implemented in our 
recent work (Jacques et al. 2003) on multicomponent transport in which we coupled the 
HYDRUS-1D water flow and solute transport model (Šim nek, Šejna and Van 
Genuchten 1998) with the PHREEQC geochemical speciation model (Parkhurst and 
Appelo 1999). PHREEQC considers a variety of chemical reactions such as aqueous 
speciation; gas, aqueous and mineral equilibrium; oxidation–reduction reactions; and 
solid-solution, surface-complexation, ion-exchange and kinetic reactions. The HYDRUS-
1D and PHREEQC models were coupled using a non-iterative operator-splitting 
approach (SNIA), which first solves the water flow and solute transport part of the 
problem, and then the geochemical part. The combined HYDRUS1D-PHREEQC model 
(Jacques et al. 2003) permits simultaneous simulations of variably-saturated transient 
water flow, multicomponent solute transport, and speciation and other geochemical 
processes, including a broad range of mixed equilibrium and kinetic reactions. 
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The following two examples, taken from Jacques et al. (2003), illustrate the potential 
power and versatility of the loosely coupled multicomponent geochemical modeling 
approach used in HYDRUS1D-PHREEQC. The first example simulates heavy-metal 
transport in a multi-layered soil profile assuming steady-state water flow and pH-
dependent cation exchange capacities. The second example extends the analysis to 
variably-saturated flow by simulating the long-term fate and transport of heavy metals 
under transient field conditions. 

Example for steady-state flow 
This example considers the transport of several major cations (Na, K, Ca, Mg) and 

three heavy metals (Cd, Zn, Pb) in a 50-cm deep multi-layered soil profile having 
different soil hydraulic properties and pH-dependent cation exchange capacities (CECs). 
Assuming that the CEC is associated solely with organic matter, the cation exchange 
capacity will increase significantly with increasing pH due to the acid-base properties of 
its functional groups. This behavior is represented by a multi-site cation exchange 
complex consisting of six sites, each having a different selectivity coefficient for the 
exchange of protons (Appelo, Verweij and Schafer 1998). The top 28 cm of the soil was 
assumed to be contaminated with the three heavy metals (initial pH 8.5), while an acid 
metal-free solution (pH 3) infiltrated into the soil. Flow was assumed to be steady-state at 
a relatively low constant flux density of 0.05 cm day-1, which caused the soil profile to be 
unsaturated (water content values varied between 0.37 and 0.15). The dispersivity and 
diffusion coefficients were taken to be 5 cm and 0.80 cm2 day-1, respectively. Measured 
soil hydraulic and other properties of the five soil layers are given elsewhere (Seuntjens 
et al. 2002). 

Results obtained with the combined HYDRUS1D-PHREEQC model will be 
compared in this example against results obtained with a different geochemical computer 
program CRUNCH. The CRUNCH model is based on the GIMRT/OS3D package of 
Steefel and Yabusaki (1996) and Steefel (2000). The geochemical reactions and transport 
in CRUNCH are coupled in one of two ways: (1) a global implicit approach (GIMRT) 
based on simultaneous solutions of the transport and reaction equations, or (2) an 
operator time-splitting approach (OS3D) for transport and reactions that is quite similar 
to the SNIA sequential non-iterative approach used in the combined HYDRUS1D-
PHREEQC model. GIMRT generally leads to smaller numerical errors than SNIA. A 
comparison of HYDRUS1D-PHREEQC and CRUNCH-GIMRT allows one to assess 
numerical discretization errors of the SNIA coupling as a function of the maximum 
finite-element Courant number, Cr, which is defined as Cr= q t/ x, where t and x are 
temporal and spatial discretizations of the invoked numerical solution, respectively. 

Figure 2 (see Color pages elsewhere in this book) shows selected results for 
simulations with CRUNCH-GIMRT, CRUNCH-OS3D (Cr = 0.5) and HYDRUS1D-
PHREEQC (Cr = 0.5 and 0.1). Infiltration of the low-pH solution causes an increase in 
the number of protonated sites on the cation exchange complex (Figure 2c and d), leading 
to leaching of the heavy metals. Cd concentrations in the leachate from the 50-cm deep 
profile reach a peak after about 0.3 year (b), with most Cd leached from the profile after 1 
year.

Results obtained with CRUNCH-SNIA and HYDRUS1D-PHREEQC using Cr = 0.5 
showed very good agreement, especially for the outflow curves. The SNIA approach with 
Cr = 0.5 produced slightly more numerical dispersion as compared to simulations using 
the global implicit approach (CRUNCH-GIMRT), such as in the pH outflow curve, and 
the different profiles after 0.7 year. Reducing the Courant number to 0.1 in HYDRUS1D-

colorpages.pdf
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PHREEQC produced excellent agreement with CRUNCH-GIMRT. 

Extension to transient variably-saturated flow 
The coupled model HYDRUS1D-PHREEQC allows one to simulate reactive 

transport during variably-saturated unsteady flow. Using the same soil profile data from 
the first example (but now assuming a fixed CEC), the transport of Na, K, Ca, Mg, Cd, 
Zn and Pb was simulated for a period of 8.2 year using meteorological data for the 
Kempen region in the northern part of Belgium from 1972 to 1981. Cumulative potential 
and actual net fluxes (precipitation minus potential or actual evaporation) across the soil 
surface are shown in Figure 3. The actual cumulative downward flux is higher than the 
potential flux since the sandy soil could not deliver enough water to maintain the 
potential evaporation rate during dry periods, thus leading to lower actual evaporation 
rates. In addition to the atmospheric boundary conditions, steady-state flow simulations 
were carried out with a constant surface flux density of 0.107 cm day-1.
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Figure 3. Atmospheric boundary conditions used for the heavy-metal transport problem. 
Shown are the cumulative potential (black line with dots) and actual (black line) net 
surface water fluxes for the transient flow simulation, and the cumulative surface flux 
(gray line) for the steady-state simulation 

 Figure 4 shows distributions of the total concentrations CT of Na, Ca and Cd in the 
top 50 cm of the layered soil profile at four times. For the steady-state simulation, Ca and 
Cd concentrations decreased in the top 20 cm. Cd is almost completely leached from this 
layer due to aqueous complexation with Cl initially present in the soil solution. The use 
of atmospheric boundary conditions caused less leaching of elements from the top layer, 
in part due to upward flow and transport during dry periods. For example, the total 
concentration of Na increased significantly after a long dry period at approximately 4.7 
years. Because they are more strongly held on the cation exchange complex, Ca and Cd 
show somewhat less pronounced accumulation. The effect of using atmospheric 
boundary conditions was relatively large; total concentrations were up to one order of 
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magnitude higher than those obtained assuming steady-state flow. This result is important 
when, for example, simulating plant uptake of heavy metals or modeling the degradation 
of organic contaminants. This example shows that the coupling of HYDRUS-1D and 
PHREEQC leads to a potentially very powerful tool for simulating a broad range of 
interacting physical, chemical and biological processes affecting solute transport in soils.  
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Figure 4. Distributions of the total concentration, cT (mol/l), of Na, Ca and Cd in the top 
50 cm of a physically and chemically layered soil profile at four times during steady-state 
(gray lines) and atmospheric (precipitation/evaporation, black lines) flow conditions 

Colloid and colloid-facilitated transport 

Colloids and a variety of micro-organisms (including bacteria and viruses) are 
subject to the same subsurface fate and transport processes as chemical compounds, 
while additionally being subject to their own unique complexities. For example, many 
colloids and microbes are negatively charged so that they are electrostatically repelled by 
negatively-charged solid surfaces, which may lead to an anion exclusion process causing 
slightly enhanced transport relative to fluid flow. Size exclusion may similarly enhance 
the advective transport of colloids by limiting their presence and mobility to the larger 
pores (e.g. Bradford et al. 2003). At the same time, colloids and biologically reactive 
solutes and bacteria may be subject to adsorption–desorption at solid surfaces, and 
accumulation at air–water interfaces, although the exact physical-chemical processes of 
sorption at air–water interfaces are still being debated (Thompson and Yates 1999; Wan 
and Tokunaga 2002; Crist et al. 2004). In addition, the transport of colloids and micro-
organisms is affected by filtration and straining in the porous matrix, which is a function 
of the size of the colloid or micro-organism, the water-filled pore size distribution, and 
the pore water velocity (Elimelech and O' Melia 1990; Bradford et al. 2003; McCarthy 
and McKay 2004). As such, colloid and microbial biomass accumulation may also reduce 
the porosity of soils and alter the unsaturated soil hydraulic properties.

Additionally, inorganic, organic and microbiologically active colloids with diameters 
between 0.01 and 10 micrometer may enhance the transport of otherwise immobile 
chemicals or microbes by colloid-facilitated transport (Kretzschmar et al. 1999; Totsche 
and Kögel-Knabner 2004). Much evidence now exists that many contaminants are 
transported not only in a dissolved state by water, but also sorbed to moving colloids. 
Numerous examples exist in the literature illustrating this colloid-facilitated transport, 
including for radionuclides (Von Gunten, Waber and Krähenbühl 1988; Noell et al. 
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1998), pesticides (Vinten, Yaron and Nye 1983; Kan and Tomson 1990; Lindqvist and 
Enfield 1992), heavy metals (Grolimund et al. 1996), viruses, pharmaceuticals (Tolls 
2001; Thiele-Bruhn 2003), hormones (Hanselman, Graetz and Wilkie 2003) and other 
contaminants (Magee, Lion and Lemley 1991; Mansfeldt et al. 2004). Many of these 
contaminants are normally strongly sorbed to soil and hence should not be very mobile in 
the subsurface. However, since they can also be sorbed to colloids which often move at 
rates similar as non-sorbing tracers, the potential of enhanced transport of colloid-
adsorbed contaminants can be very significant. 

In view of the many processes involved, numerical simulation of colloid and colloid-
facilitated transport is still a major and largely unresolved challenge (De Jonge, 
Kjaergaard and Moldrup 2004; DeNovio, Saiers and Ryan 2004). Models not only need 
to describe transport, attachment, detachment, straining and/or blocking or size exclusion 
of colloids, but also must consider transport, reactions, and kinetic and instantaneous 
sorption of contaminants to both the soil and the colloids (Bradford et al. 2003; Totsche 
and Kögel-Knabner 2004). In this section we describe mathematical models for both 
colloid transport and colloid-facilitated contaminant transport. The models have recently 
been incorporated in the HYDRUS software packages. 

Colloid transport 
Colloid fate and transport models are commonly based on some form of the 

advection–dispersion equation, but modified to account for colloid filtration (Harvey and 
Garabedian 1991; Hornberger, Mills and Herman 1992; Corapcioglu and Choi 1996). In 
the absence of colloid inactivation and degradation, the colloid transport equation is then 
given by 

aww c c c c c c
w c

C S C q CA = D
t t t x x x   (6) 

where Cc is the colloid concentration in the aqueous phase (nL-3), c is the colloid 
concentration adsorbed to the air–water interface (nL-2), Sc is the solid-phase colloid 
concentration (nM-1), w is the volumetric water content accessible to colloids (L3L-3)
(due to ion or size exclusion, w may be smaller than the total volumetric water content 

), Aaw is the air–water interfacial area per unit volume (L2L-3), Dc is the dispersion 
coefficient for colloids (L2T-1), and qc is the volumetric water flux density for colloids 
(LT-1). The colloid mass-transfer term between the aqueous and solid phases, Esw, is 
traditionally given as: 

c
sw w ac dcs c c

S
= = C - Sk kE

t    (7) 

in which kac and kdc are first-order colloid attachment and detachment coefficients (T-1),
respectively, and s is a dimensionless colloid retention function (-). The attachment 
coefficient is generally calculated using filtration theory (Logan et al. 1995), a quasi-
empirical formulation in terms of the median grain diameter of the porous medium (often 
termed the collector), the pore-water velocity, and collector and collision (or sticking) 
efficiencies accounting for colloid removal due to diffusion, interception and 
gravitational sedimentation (Rajagopalan and Tien 1976; Logan et al. 1995). The first-
order detachment coefficient in Eq. (7) accounts for colloid mobilization, presumably as 
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affected by changes in pore-water chemistry (ionic strength, ionic composition, and pH) 
and physical perturbations in flow, including changes in the flow rate and the water 
content. The attachment and detachment coefficients in (7) have been found to depend 
strongly upon water content, with attachment significantly increasing as the water 
content decreases.

To simulate reductions in the attachment coefficient due to filling of favorable 
sorption sites, s is sometimes assumed to decrease with increasing colloid mass 
retention. Random sequential adsorption (Johnson and Elimelech 1995) and Langmuirian 
dynamics (Adamczyk et al. 1994) equations have been proposed for s to describe this 
blocking phenomenon, with the latter equation given by:  

1 c
s max

c

S
S    (8) 

in which Sc
max is the maximum solid-phase colloid concentration (nM-1). Alternatively, 

blocking could possibly be described also using non-linear Freundlich sorption. 
Conversely, enhanced colloid retention during porous-medium ripening can theoretically 
be described using a functional form of s that increases with increasing mass of retained 
colloids. To our knowledge, no functional forms for s have been proposed to describe 
porous-medium ripening. We refer to several recent studies (Ginn et al. 2002; DeNovio, 
Saiers and Ryan 2004; Rockhold, Yarwood and Selker 2004) for more detailed 
discussions of the attachment and detachment coefficients in Eq. (7). 

Notice that Eq. (7) lumps the effects of a variety of physical and chemical processes 
into a single attachment-coefficient parameter. Bradford et al. (2002; 2003) hypothesized 
that the influence of straining and attachment mechanisms on colloid retention should be 
separated into two distinct components: attachment and detachment per se, and straining 
(being the entrapment of colloids in pore throats that are too small to allow passage). 
They modeled the influence of straining using an irreversible first-order expression. In 
that case, Esw becomes: 

( )

str att
c c cstr att

sw sw sw

str att
w w ac dcs c str s c c

S S S
= + = =E E E

t t t
C k C - Sk k    (9) 

where Esw
str and Esw

att are the rates of mass exchange for colloid straining and attachment/ 
detachment (nL-3T-1), respectively, kstr is the first-order straining coefficient (T-1), and 
Sc

str and Sc
att are the solid-phase concentrations of strained and attached colloids (nM-1),

respectively. The first term on the right-hand side of the above equation now accounts for 
straining and the second term for attachment–detachment.  

Application of the first-order attachment-–detachment model given by Eq. (7) 
typically leads to exponential colloid distributions versus depth. Bradford et al. (2003) 
showed that such exponential distributions are often inconsistent with experimental data. 
They obtained much better results using a depth-dependent straining coefficient in Eq. 
(9) of the form 

50

50

-
str
s

d z
=

d   (10) 
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where d50 is the median grain size of the porous media (L),  is a fitting parameter (-), 
and z is distance from the porous-medium inlet (L). Data from Bradford (2002; 2003) for 
different colloid diameters (dp) and porous media median grain sizes showed an optimal 
value of 0.43 for  while kstr could be described using a unique increasing function of the 
ratio of dp/d50. Subsequent studies with layered soils (Bradford et al. 2004) showed the 
importance of straining at and close to textural interfaces when flow occurs in the 
direction of coarse-textured to medium- and fine-textured media. Straining was found to 
be a significant mechanism for colloid retention for values of dp/d50 greater than 0.005. 
That study also showed the importance of liquid-phase velocity distributions, colloid 
retention at soil textural interfaces, and size exclusion.

Finally we note that a model similar to Eq. (7) may be used to describe the 
partitioning of colloids to the air–water interface: 

aw c
aw aww aca dcaa c c

A= = C -k kE A
t  (11) 

where Eaw is the colloid mass-transfer term between the bulk water and the air–water 
interface (nL-3T-1), a is a dimensionless colloid retention function for the air–water 
interface (-) similarly as used in (7), and kaca and kdca are the first-order colloid 
attachment and detachment coefficients to/from the air–water interface ( 1T ),
respectively.

Colloid-facilitated solute transport
Colloid-facilitated transport requires knowledge of colloid transport, dissolved-

contaminant transport, and colloid-facilitated contaminant transport. Transport and/or 
mass-balance equations must therefore be formulated for the total contaminant, for 
contaminant sorbed kinetically or instantaneously to the solid phase, and for contaminant 
sorbed to mobile colloids, to colloids attached to the soil solid phase, and to colloids 
accumulating at the air–water interface. As an illustration of the complexities involved, 
we review here the equations for colloid-facilitated transport that we recently 
incorporated in the HYDRUS software packages. 

Mass-balance equation for the total contaminant. The combined dissolved and colloid-
facilitated contaminant transport equation (in one dimension) is given by:

awe k w c mc c ic c ac T

c c c mcT
w mc c

S S C S S S SC JA - R
t t t t t t x

C q C SJ C qC
- D S D

x x x x x x x  (12) 

where is the volumetric water content (L3L-3) (note that we use the entire water content 
for the contaminant ), C is the dissolved-contaminant concentration in the aqueous phase 
(ML-3), Se and Sk are contaminant concentrations sorbed instantaneously and kinetically, 
respectively, to the solid phase (MM-1); Smc, Sic, and Sac are contaminant concentrations 
sorbed to mobile and immobile (attached to solid and air–water interface) colloids (Mn-

1), respectively; JT is the total flux of the dissolved contaminant (ML-3T-1), D is the 
dispersion coefficient for contaminants in solution (L2T-1), q is the volumetric water flux 
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density for the contaminant (LT-1), and R represents various chemical and biological 
reactions, such as degradation and production (ML-3T-1), discussed below. Note that the 
left-hand side sums the mass of contaminant associated with the different phases 
(contaminant in the liquid phase, contaminant sorbed instantaneously and kinetically to 
the solid phase, and contaminant sorbed to mobile and immobile (attached to solid phase 
or air–water interface) colloids), while the right-hand side considers various spatial mass 
fluxes (dispersion and advective transport of the dissolved contaminant, and dispersion 
and advective transport of contaminant sorbed to mobile colloids). 

Mass-balance equation for contaminant sorbed to the solid phase. Equation (13) invokes 
the concept of two-site sorption for modeling non-equilibrium adsorption–desorption 
reactions (e.g. Van Genuchten and Wagenet 1989). The two-site sorption concept 
assumes that total sorption, S, can be divided into two fractions: 

e kS S S   (13) 

with sorption Se (MM-1) on one fraction of the sites (type-1 sites) assumed to be 
instantaneous, and sorption Sk (MM-1) on the remaining sites (type-2 sites) being time-
dependent according to 

k
as ds k s

S
k C k S R

t  (14) 

where kas is the rate of the contaminant sorption to the solid phase (type 2) (T-1), kds is the 
rate of the contaminant desorption from the solid phase (type 2) (T-1), and Rs represents 
various chemical and biological reactions of the kinetically sorbed contaminant (ML-3T-

1).

Mass-balance equation for contaminant sorbed to mobile colloids. The mass-balance 
equation for contaminant sorbed to mobile colloids can be written as 

( )

w c mc c c c mc
w mc c

str att
amc m w dmc c mc w ac s str s c mc dc c ic mc

C S C q C S
S D

t x x x

k C k C S k k C S k S S R      (15) 

where kamc is the adsorption rate to mobile colloids (T-1), kdmc is the desorption rate from 
mobile colloids (T-1), and Rmc represents various chemical and biological reactions for 
contaminant sorbed to mobile colloids (ML-3T-1). The parameter m adjusts the sorption 
rate to the number of mobile colloids present, i.e., 

c
m ref

c

C
C  (16) 

where Cc
ref is the reference concentration of colloids for which the sorption rate kamc is 

valid (ML-3). In equation (15), the first two terms on the right-hand side represent 
dispersion and advective transport, respectively, of contaminant sorbed to mobile 
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colloids; the third and fourth terms account for sorption and desorption of contaminants 
to/from mobile colloids, respectively; the fifth and sixth terms account for the attachment 
(including straining) and detachment of mobile colloids containing sorbed contaminants, 
respectively; while the seventh term represents degradation or other reactions involving 
contaminant sorbed to mobile colloids. 

Mass-balance equation for contaminant sorbed to immobile colloids. The mass-balance 
equation for contaminant sorbed to immobile colloids can be written as follows 

( )str attc ic
aic i dic c ic w ac s str s c mc dc c ic ic

S S
k C k S S k k C S k S S R

t           (17) 

where kaic is the adsorption rate to immobile colloids (T-1), kdic is the desorption rate from 
immobile colloids (T-1), and Ric represents various reactions for contaminant sorbed to 
immobile colloids (ML-3T-1). The parameter i adjusts the sorption rate to the number of 
immobile colloids present: 

c
i ref

c

S
S  (18) 

where Sc
ref is the reference concentration of immobile colloids for which the sorption rate

kaic is valid (ML-3). In equation (17) the first two terms on the right-hand side represent 
adsorption and desorption of contaminant to/from immobile colloids, respectively; the 
third and fourth terms describe the attachment (including straining) and detachment of 
immobile colloids with sorbed contaminant, respectively; and the fifth term represents 
reactions of contaminant sorbed to immobile colloids.

Mass-balance equation for contaminant sorbed to colloids attached to the air–water
interface. The mass-balance equation for contaminant sorbed to colloids attached to 
the air–water interface may be written as 

aw c ac
aw aww aca dcaaac g dac c ac a c mc c ac ac

SA k C k S C S - S Rk kA A
t  (19) 

where kaac is the adsorption rate to colloids at the air–water interface (T-1), kdac is the 
desorption rate from colloids at the air–water interface (T-1), and Rac represents various 
reactions for contaminant sorbed to colloids at the air–water interface (ML-3T-1).
Similarly as in (17), the parameter g adjusts the sorption rate to the number of colloids 
at the air–water interface: 

c
g ref

c  (20) 

where c
ref is the reference concentration of immobile colloids for which sorption rate kaic

is valid (ML-3). In equation (19) the first two terms on the right-hand side represent the 
sorption and desorption, respectively, of contaminant to/from colloids at the air–water 
interface; the third and fourth terms account for the attachment and detachment, 
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respectively, of colloids with sorbed contaminant to/from the air–water interface; 
whereas the fifth term represents degradation and other reactions of contaminant sorbed 
to colloids accumulated at the air–water interface.

Reaction term. The reaction term R in (12) may be used to account for a variety of 
chemical and biological reactions and transformations, including degradation and 
production, not already explicitly incorporated in the main total contaminant mass-
transport equation. Consistent with current capabilities of the HYDRUS software 
packages (Šim nek, Šejna and Van Genuchten 1998; 1999) to simulate sequential first-
order decay chains, R may include provisions for two first-order degradation reactions: 
one which is independent of other solutes and one which provides the coupling between 
solutes involved in sequential first-order decay reactions. As discussed earlier in Section 
2, problems of solute transport involving sequential first-order decay reactions frequently 
occur in soil and groundwater systems. The reaction term R in (12) for colloid-facilitated 
transport scenarios is now given by: 

' ' '

'* * '* * * '* * * *

-( ) - ( ) ( ) - ( )(

) ( ) ( )
w s b e k c w c mc c icw s c

aw awc ac w s e k c w c mc c ic c ac

R C S S C S S S

S C  S S C S S S SA A      (21) 

where w, s , and c are first-order rate constants (T-1) for solutes in the liquid, solid and 
colloid phases (T-1), respectively; w', s', and c' are similar first-order rate constants (T-

1) providing connections between individual chain species, and terms with the superscript 
* belong to solutes preceding in the chain reaction. The reaction terms Rs, Rm, Rim, and Ra

for reactions in the kinetically sorbed phase, on mobile colloids and on colloids 
associated either with the solid phase or the air–water interface, respectively, are as 
follows: 
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R C S C S
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The above mathematical development shows that a complete description of colloid-
facilitated transport requires a total of nine coupled partial differential equations 
involving nine unknown variables (Cc, Sc

str, Sc
att, c, C, Sk, Smc, Sic, Sac).

Example application for colloid-facilitated transport 
Typical features of colloid and colloid-facilitated transport are demonstrated here for 

a hypothetical column experiment. The column was assumed to have a length, L, of 10 
cm, while the experiment lasted 600 minutes. Water flowed through the column at full 
saturation (the saturated water content was equal to 0.50) at a flux density, q, of 0.1 cm 
min-1. Both colloids and the contaminant were assumed to be applied at unit (relative) 
concentrations at the top of the column during a time period of 60 min. The soil bulk 
density, was set equal to 1.5 g cm-3, while the dispersivity, , for both the colloids and 
the contaminant was assumed to be 0.1 cm. The colloid attachment and detachment 
coefficients, ka and kd, were taken to be 0.01 and 0.005 min-1, respectively. Solute 
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sorption to soil was considered instantaneous with the distribution coefficient, Kd, equal 
to 2 L kg-1. Solute adsorption was assumed to be the same for both the mobile and 
immobile colloids, but with different rate coefficients of kamc= kaic=0.1 min-1 and kdmc=
kdic=0.02 min-1, respectively, and with Cc

ref= Sc
ref=1. For these conditions, one pore 

volume, T, is equal to 50 minutes [t = TL/v = TL s/q = 1 * (10 cm) * 0.5 / (0.1 cm/min) = 
50 min], while the retardation factor for the contaminant equals 7 (R = 1 + Kd/ s = 1 + 
1.5*2/0.5 = 7). 

Figure 5 shows colloid and total solute concentrations at depths of 5 and 10 cm. The 
main concentration fronts for both colloids and solute arrived, as expected, at 1 and 7 
pore volumes (i.e., after 50 and 350 minutes), respectively. However, a significant 
amount of solute arrived much earlier than at 7 pore volumes. This earlier arrival is due 
to the accelerated movement of solute sorbed to mobile colloids.  

Figure 6 presents colloid and solute fluxes at the bottom of the column. Notice that 
the solute flux (Figure 6b) has two concentration peaks. The first peak corresponds to 
contaminant arriving sorbed to colloids, which have a retardation factor, R, equal to 1 (no 
sorption or anion exclusion), while the second peak corresponds to solute arriving 
dissolved in water (R=7, t=350 min). Also notice that the initial contaminant fluxes 
(Figure 6b) are smaller relative than the colloid fluxes, which show a plateau of certain 
duration. This is because contaminant sorption onto the colloids was assumed to be a 
kinetic process which requires a certain time period for sorption to be complete. The 
contaminant flux for this reason keeps increasing until it suddenly drops at the end of the 
colloid pulse. Hence, the largest contaminant fluxes during the first peak occurred just 
before the end of the colloid pulse (Figure 6b). Colloids keep arriving at the bottom of 
the column after the main colloid pulse due to kinetic colloid detachment from the solid 
phase (Figure 6a). By comparison, considerable solute fluxes are present between the two 
solute peaks as a result of solute both sorbed to colloids and, increasingly, dissolved in 
water. The dissolved solute fluxes at the end of the column were initially also due to 
enhanced transport by the colloids in especially the upper part of the columns, and 
subsequent desorption into the liquid phase (Figure 6b). As expected, the bulk of the 
contaminant arrived at approximately 350 minutes, consistent with a solute retardation 
factor, R, of 7. 
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Figure 5. Colloid (a) and contaminant (b) concentrations at a depth of 5 and 10 cm 
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Figure 6. Calculated colloid (a) and contaminant (b) flux densities at the bottom of the 
10-cm-long soil column 

Coupled surface – subsurface flow 

Much progress has been made over the years also in modeling various components 
of overland flow and variably-saturated subsurface flow. Traditionally, however, surface 
and subsurface flow processes have been considered mostly separately, with some of the 
processes being severely simplified when coupled surface and subsurface flow was 
simulated. For example, existing surface irrigation models typically still use empirical 
infiltration functions such as the Philip, Kostiakov, modified Kostiakov, and Branch 
infiltration equations  (e.g. Woolhiser, Smith and Goodrich 1990; Strelkoff, Clemmens 
and Schmidt 1998), rather than rigorously simulating subsurface water flow and solute 
transport using the Richards equation for variably-saturated flow, and advection–
dispersion equations for solute transport. Several weakly coupled, mostly iterative or 
time-lagged approaches using the Richards equation have been pursued for larger-scale 
surface runoff or small watershed-scale applications. Early examples are given by Zhang 
and Cundy (1989) and Govindaraju and Kavvas (1991). Still, because of a lack of tight 
(numerically implicit) coupling between the surface and subsurface flow and transport 
processes, previous models have not proven reliable for untested management practices 
under surface-irrigated conditions, nor have they been applied to linked scenarios 
involving surface irrigation, chemical runoff, deep drainage, solute leaching and crop 
growth.

Recently, several more integrated approaches have been proposed. The first and 
probably still the most comprehensive integrated physically-based model was formulated 
by VanderKwaak (1999). This model included most or all known stream-flow generation 
mechanisms, variably-saturated subsurface flow, advective–dispersive solute transport in 
both surface and subsurface flow, and provisions for preferential flow within vadose-
zone fractures and macropores. The surface and subsurface components were linked 
using first-order flux relationships such that one set of discrete algebraic expressions 
resulted from the fully-coupled numerical approach. The model was applied to a small 
watershed in Canada (VanderKwaak 1999), as well as to a well-studied catchment in 
Oklahoma (VanderKwaak and Loague 2001). Panday and Huyakorn (2004) proposed a 
similar fully-coupled spatially-distributed model for conjunctive surface/subsurface flow 
involving three-dimensional variably-saturated subsurface flow, two-dimensional 
overland flow, and one-dimensional flow through such surface structures as rivers and 
canals, among other processes. Another recent example of fully coupled variably-
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saturated flow and surface runoff is given by Beaugendre et al. (in prep.).
The two-dimensional illustrative example application considered here pertains to 

hill-slope hydrology. Water flow and solute transport in and along hill slopes is a 
relatively complex nonlinear problem. Rainfall water will infiltrate into the soil profile at 
a rate equal to the rainfall rate until the soil infiltration capacity is reached. Surface 
runoff will be generated once the soil infiltration capacity is exceeded. This surface 
runoff will redistribute water along the land surface by moving it to lower parts of the hill 
slope where it can infiltrate if locally enough infiltration capacity is present. As more 
water infiltrates in the lower part of the hill slope, more water will be available there for 
vegetation. More vegetation will generally result in more roots which, in turn, may enrich 
soil with organic matter, thus improving soil structure and further increasing the 
hydraulic conductivity and the infiltration capacity (Mattson et al. 2004). We are not 
aware of existing vadose-zone flow/transport models that describe this dynamic 
interaction between overland flow, subsurface infiltration and plant growth.

Governing equations 
Hortonian overland flow is usually described using kinematic wave equations, which 

are simplifications of the Saint Venant equations and provide excellent approximations 
for most overland flow conditions (Woolhiser and Liggett 1967; Morris and Woolhiser 
1980; Woolhiser, Smith and Goodrich 1990): 

( , )h Q
q x t

t x         (23) 

where h is the unit storage of water (or mean depth for smooth surfaces) (L), Q is the 
discharge per unit width (L2T-1), t is time (T), x is the distance co-ordinate over the soil 
surface (L), and q(x,t) is the rate of local input, or lateral inflow (i.e., local precipitation 
minus local infiltration) (LT-1).

The discharge Q per unit width can be calculated as follows: 

mQ h          (24) 

where  (L2-mT-1) and m (-) are parameters related to slope, surface roughness and flow 
conditions (laminar or turbulent flow). The parameter  is usually evaluated using the
Manning hydraulic resistance law 

1/ 2

0 and 5 / 3mS
k m

n       (25) 

where Sm is the slope [-], k0 is an empirical constant (L1/3T-1) equal to 1.49 cm1/3 1s , and 
n is Manning’s roughness coefficient for overland flow (-). 

The rate of local input q(x,t) in (23) integrates various inputs and outputs such as 
precipitation, evaporation and infiltration. Models that rigorously evaluate these 
components, such as the HYDRUS codes, should be ideal tools for calculating q(x,t). By 
substituting (24) into (23) we obtain: 
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( , )
mh h

q x t
t x         (26) 

or

1 ( , )mh h
mh q x t

t x        (27) 

The above equations were solved using a numerically stable fully implicit four-point 
finite-difference method, similar to the one used in the KINEROS model (Woolhiser, 
Smith and Goodrich 1990). This numerical solution of the overland equation was 
subsequently coupled to the HYDRUS-2D computation module (Šim nek, Šejna and 
Van Genuchten 1999) using transient atmospheric boundary conditions.  

Example application 
We used the tightly coupled overland and subsurface flow approach as incorporated 

into HYDRUS-2D to simulate surface runoff from a rainfall event of limited duration 
over a 100-m heterogeneous hill slope. The example considers surface runoff generated 
by a 10-minute high-intensity rainstorm (0.00667 cm s-1 or 24 cm h-1) covering the entire 
hill slope. The hill slope is assumed to consist of two soil materials. The soil in the 
middle third of the hillside transect (between 33 and 66 m) is assumed to have a saturated 
hydraulic conductivity (Ks= 0.0289 cm s-1 or 25 m d-1) that is two orders of magnitude 
higher than that of the other parts of the hill slope (Ks= 0.000289 cm s-1 or 25 cm d-1).
Because of this, the middle section can accommodate the infiltration of water from both 
rainfall itself and from runoff coming from the upgradient part of the hill slope. The soil 
transect has a slope of 0.01, while the roughness coefficient n was assumed to be equal to 
0.01.

Figure 7 shows the depth of the water layer that develops on top of the soil surface 
(see Color pages elsewhere in this book). The figure also shows the steady-state water 
layer calculated using the analytical solution of Eq. (26) assuming no infiltration (i.e., 
q=q0 = 24 cm h-1):

3/5
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1/ 2

0

( )
m

nq x
h x

k S         (28) 

The figure shows both the buildup and recession of the water layer along the hill slope at 
various times. Actual and cumulative surface runoff fluxes from the bottom of the hill 
slope transect, the cumulative effective rain on the transect (rainfall minus infiltration), 
and the volume of water in the surface layer for a 10-minute rain storm are shown in 
Figure 8 (see Color pages elsewhere in this book). Notice that a nearly steady-state 
situation for overland flow had developed at the end of the rainfall event.

Finally, Figure 9 shows contours of the water content in the soil profile 6 min after 
initiation of the rainfall event (see Color pages elsewhere in this book). Figure 9, as well 
as Figure 7, clearly shows that runoff generated in the upper third of the hillside transect 
moves to and infiltrates in the upper part of the middle section containing more 
permeable soil, and that runoff is generated again in the lower one third of the hill slope. 
The example demonstrates the potential of tightly coupled surface/subsurface flow 
models. 
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Preferential flow 

A major challenge in dealing with the vadose zone, both in terms of modeling and 
experimentation, is its overwhelming heterogeneity. One manifestation of heterogeneity 
at intermediate spatial scales involves the preferential movement of water and chemicals 
through soil macropores or rock fractures. In structured or macroporous soils, water may 
move preferentially through large interaggregate pores, decayed root channels, and 
earthworm burrows, as well as through drying cracks in fine-textured soils, thereby 
bypassing much of the soil matrix. Preferential flow may also occur in the form of 
unstable flow (fingering) induced by soil textural layering, water repellency and/or air 
entrapment. In unsaturated fractured rock, water may similarly move preferentially 
through fractures and fissures, thus bypassing much of the rock matrix. Preferential flow 
may be caused also by funneling of water through high-conductivity layers, and/or by 
being redirected by sloping less-permeable layers. We refer to several recent reviews and 
other papers for detailed discussions of the various processes and conditions leading to 
preferential flow (Ritsema et al. 1993; De Rooij 2000; Evans, Nicholson and Rasmusson 
2001; National Research Council 2001; Bodvarsson, Ho and Robinson 2003; Šim nek et 
al. 2003; Wang et al. 2004). 

An impressive array of models have been developed over the years in attempts to 
parameterize preferential-flow processes. While not all-inclusive, Figure 10 provides a 
useful schematic of increasingly complex models that have been used to simulate 
preferential-flow processes. Figure 10a represents the traditional case of uniform 
(equilibrium) flow and transport, assuming applicability of an equivalent-continuum 
approach based on the Richards equation (Eq. 1) for variably-saturated flow and Eq. (3) 
for advective–dispersive solute transport. The simplest situation for apparent preferential 
flow arises when the Richards and advection–dispersion equations are still used in an 
equivalent matrix and fracture-continuum approach, but now with composite hydraulic 
conductivity (permeability) curves, K(h), of the type shown in Figure 10b. While still 
leading to uniform flow, models using such composite hydraulic properties do allow for 
faster flow and transport during conditions near saturation, and as such may provide more 
realistic simulations of field data (e.g. Peters and Klavetter 1988; Mohanty et al. 1997; 
1998; Zurmühl and Durner 1996; De Vos et al. 1999).  

The two parts of the conductivity curves in Figures 10b and 11a may be associated 
with soil structure (near saturation) and soil texture (at lower negative pressure heads). 
This conceptualization of K(h) is consistent with analyses by Schaap and Leij (2000) of 
the UNSODA soil hydraulic data base (Leij et al. 1996), which show that the ratio of the 
measured (Ks) and extrapolated (Kms) values of the hydraulic conductivity is about one 
order of magnitude (Kms would be the value of Ks when no macropores or fractures were 
present). We note that the use of composite hydraulic functions that lump the effects of 
matrix and fracture flow into one equation, in conjunction with the Richards equation, 
will still lead to uniform flow, and as such cannot reproduce non-uniform moisture 
distributions typical of preferential flow. Still deconvolution of bimodal conductivity 
functions like those shown in Figure 11a may provide important information for dual-
permeability models that consider separate flow domains for the fractures and matrix. 
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Figure 10. Alternative conceptual models for flow through variably-saturated 
structured media (after Altman et al. 1996) 

Non-uniform flow can be generated numerically only using dual-porosity or dual-
permeability models for structured media, or using alternative formulations specifically 
derived for unstable flow (De Rooij 2000; Eliassi and Glass 2002; Dautov et al. 2002). Dual-
porosity and dual-permeability models typically assume that the medium consists of two 
interacting pore regions, one associated with the macropore or fracture network, and one 
with the micropores inside soil aggregates or rock matrix blocks. Different formulations arise 
depending upon how water and solute movement in the micropore region is modeled, and 
how water and solutes between the micropore and macropore regions are allowed to interact.
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Figure 11. Plots of (a) the field-averaged hydraulic-conductivity function (geometric 
means and standard errors, left) and (b) the field-averaged soil water retention function 
(arithmetic means and standard errors) for the surface horizon at the Las Nutrias 
experimental site (after Mohanty et al. 1997) 

Dual-porosity type models are obtained when the liquid phase is partitioned into mobile 
(fracture) and immobile (matrix) liquid pore regions, with water and/or solutes allowed to 
exchange between the two liquid regions (Figure 10c). Such models can be made quite 
general by permitting transient variably-saturated flow in the fracture, and 
simultaneously allowing water to exchange between the fracture and matrix domains 
(Šim nek et al. 2003). The latter dual-porosity situation would lead to both advective and 
diffusive exchange of solutes between the fracture and matrix regions, but still without 
vertical flow in the matrix region. Popular early conceptualizations of the dual-porosity 
approach, when applied to solute transport only, are two-region or mobile–immobile 
water models (e.g. Van Genuchten and Wierenga 1976), in which solute exchange is 
described using first-order mass-transfer equations. 

More complex dual-permeability models (Figure 10d) arise when water flow occurs 
in both the fracture and matrix domains. Examples of dual-permeability models are given 
by Gerke and van Genuchten (1993; 1996), Pruess (1991), Jarvis (1998), Liu, Doughty 
and Bodvarsson (1998) and  Liu, Zhang and Bodvarsson (2003), among many others. 
These models all use different formulations for the exchange of water between the 
fracture and matrix regions. A summary of various exchange (mass transfer) terms for 
dual-porosity and dual-permeability models is given by Šim nek et al. (2003). We note 
that in some dual-permeability models (e.g. Hutson and Wagenet 1995; Wilson, Jardine 
and Gwo 1992) more than two domains are considered, all having their unique hydraulic 
properties.

The modeling approach can be further refined by considering transient variably-
saturated flow and/or transport in discrete well-defined macropores or fractures, either 
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without (Figure 10e) or with (Figure 10f) interactions between the fracture and matrix 
domains. The approach typically assumes that the flow and transport equations of the 
macropore or fracture network of prescribed geometry can be solved simultaneously and 
in a fully-coupled fashion with the corresponding equations for the porous matrix. 
Discrete-fracture models of this type (Figure 10f) are given by Shikaze, Sudicky and 
Mendoza (1994) for two-dimensional gas-phase flow and transport through a network of 
vadose-zone fractures embedded in a variably-saturated matrix, and by Therrien and 
Sudicky (1996) and VanderKwaak (1999) for more general three-dimensional conditions 
in which the Richards equation is applied both along a network of interconnected fracture 
planes and in the adjoining porous matrix. Discrete fracture network models are likely 
unfeasible for most or practical applications problems because of limited data availability 
and computational difficulties (Liu, Zhang and Bodvarsson 2003). 

Except for the discrete fracture models, all of the models schematically shown in 
Figure 10 were recently incorporated in the HYDRUS-1D and HYDRUS-2D software 
packages (Šim nek et al. 2003), including the use of composite soil water retention and 
hydraulic conductivity functions based on the formulation of Durner (1994). 
Additionally, we incorporated into the HYDRUS codes a dual-permeability approach 
using the kinematic wave equation for flow in the macropores (Jarvis 1998), as well as a 
relatively simple empirical but still very effective single-porosity non-equilibrium model 
proposed by Ross and Smettem (2000) to account for time-dependent water-content 
equilibration at a given pressure head [a related more process-based approach involving 
dynamic pressure-head equilibration is given by Hassanizadeh, Celia and Dahle (2002)]. 
Because of the large number of features now included in the updated HYDRUS models, 
we believe that the resulting codes provide great flexibility in addressing a large number 
of practical field-scale vadose-zone flow and transport problems involving both uniform 
and preferential flow (Šim nek et al. 2003; Zhang, Šim nek and Bowman 2004). 

Concluding remarks 

The topics reviewed in this paper reflect the tremendous advances that have been 
made during the past several decades in our ability to describe water and solute transport 
processes in the subsurface mathematically. Within the context of our own work, we 
reviewed relatively standard approaches for modeling flow and transport, and 
additionally ongoing research on (1) multicomponent geochemical transport, (2) colloid 
and colloid-facilitated transport, (3) integrated surface/subsurface modeling, and (4) 
process-based descriptions of preferential flow.

Continued progress in the above four areas of research requires significant advances 
in both numerical modeling and the underlying science. Of the four topics, we believe 
that the main challenges with multicomponent transport modeling and integrated 
surface/subsurface flow/transport modeling are first and foremost numerical in terms of 
coupling processes that have for too long been addressed in separate efforts. Still, 
formidable challenges remain here. For example, numerical algorithms and databases for 
multicomponent transport models must be extended to higher temperatures and ionic 
strengths, complex contaminant mixtures (including especially mixed organic and 
inorganic wastes), multiphase flow, redox disequilibria for low-temperature systems, and 
coupled physico-chemical systems to account for possible changes in the soil water 
retention and hydraulic-conductivity functions. Integrated surface/subsurface numerical 
models require further research on such issues as spatial and temporal scaling of 
hydrological, chemical and biological processes and properties, linking constitutive (soil-
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hydraulic) relationships to the measurements scale, preferential flow, and issues of 
parameter and model uncertainty. Many of these and related specific challenges in 
vadose-zone research are discussed as part of a recent Department of Energy National 
Roadmap for Vadose Zone Science and Technology (Stephens et al. 2002; U.S. 
Department of Energy 2001). 

By comparison, we believe that the basic scientific issues related to colloid and 
colloid-facilitated transport are still largely unresolved, and that our understanding here 
lags far behind current numerical capabilities. Much work is needed to better understand 
the processes of filtration, straining, size exclusion, and mobilization of colloids and 
micro-organisms; accumulation at air–water interfaces, interactions between micro-
organisms and contaminants (including biodegradation), the effects of both physical 
factors (water content, flow velocity, textural interfaces) and chemical processes (ionic 
strength, solution composition, pH) on colloid retention and mobilization, and modeling 
colloid-facilitated transport during conditions of transient flow. Addressing preferential 
flow phenomena, and the related more general problems of subsurface heterogeneity, 
poses equally important challenges, as well as enormous opportunities, since those 
problems are at the center of many of the unresolved issues in other areas of vadose-zone 
flow and transport research.
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