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A large number of models for simulating water flow and solute transport in the unsaturated zone are now
increasingly being used for a wide range of applications in both research and management. Modeling approaches
range from relatively simple analytical and semianalytical solutions, to complex numerical codes. While
analytical and semianalytical solutions are still popular for some applications, the ever-increasing power of
personal computers and the development of more accurate and numerically stable solution techniques have
motivated much wider use of numerical codes in recent decades. The wide use of numerical models is also
significantly enhanced by their availability in both the public and commercial domains, and by the development
of sophisticated graphics-based interfaces that can tremendously simplify their use.

In this paper I focus mainly on numerical models, give a brief history of their development, and discuss some
of the more often used numerical techniques including relatively efficient matrix solvers that now are available
for multidimensional models. Names and web addresses of some of the more popularly used numerical codes
simulating vadose zone processes are also provided. Finally, some typical problems in which the numerical
codes have been applied are identified.

INTRODUCTION

Many models of varying degree of complexity and dimen-
sionality have been developed during the past several
decades to quantify the basic physical and chemical pro-
cesses affecting water flow and pollutant transport in the
unsaturated zone. Computer models based on analytical and
numerical solutions of the flow and solute transport equa-
tions are now increasingly being used for a wide range of
applications in research and management of natural subsur-
face systems. Modeling approaches range from relatively
simple analytical and semianalytical models to more com-
plex numerical codes that permit consideration of a large
number of simultaneous nonlinear processes. Whereas ana-
lytical and semianalytical solutions are still more popular
for most relatively simple applications, the ever-increasing
power of personal computers and the development of more
accurate and numerically stable solution techniques have
given rise to the much wider use of numerical models in
recent decades. The wide use of numerical models has also
been significantly enhanced by their availability in both

public and commercial domains, and by the development
of sophisticated graphics-based interfaces that tremendously
simplify their use.

Analytical, semianalytical, and numerical models are
usually based on the following three governing equations
for water flow, solute transport, and heat movement,
respectively:
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Suitable simplifications (mostly for analytical approaches)
or extensions thereof (e.g. for two- and three-dimensional
systems) are also employed. In equation (1), often referred
to as the Richards equation, z is the vertical coordinate
positive upwards, t is time, h is the pressure head, θ is
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the water content, S is a sink term representing root water
uptake or some other sources or sinks, and K(h) is the
unsaturated hydraulic conductivity function, often given as
the product of the relative hydraulic conductivity, Kr, and
the saturated hydraulic conductivity, Ks. In equation (2),
known as the convection-dispersion equation (CDE), c is
the solution concentration, R is the retardation factor that
accounts for adsorption, D is the dispersion coefficient
accounting for both molecular diffusion and hydrodynamic
dispersion, q is the volumetric fluid flux density, and φ is
a sink/source term that accounts for various zero- and first-
order or other reactions. In equation (3), T is temperature, λ

is the apparent thermal conductivity, and C and Cw are the
volumetric heat capacities of the soil and the liquid phase,
respectively. Solutions of the Richards equation (1) require
knowledge of the unsaturated soil hydraulic functions, that
is, the soil water retention curve, θ(h), describing the
relationship between the water content θ and the pressure
head h, and the unsaturated hydraulic conductivity function,
K(h), defining the hydraulic conductivity K as a function
of h or θ . While under certain conditions (i.e. for linear
sorption, a concentration-independent sink term φ, and a
steady flow field) equations (2) and (3) are linear equations,
equation (1) is generally highly nonlinear because of the
nonlinearity of the soil hydraulic properties. Consequently,
many analytical solutions have been derived in the past
for equations (2) and (3) and these analytical solutions are
now widely used for analyzing solute and heat transport
under steady-state conditions. Although a large number
of analytical solutions of (1) exist, they can generally
be applied only to drastically simplified problems. The
majority of applications for water flow in the vadose zone
requires a numerical solution of the Richards equation.

ANALYTICAL MODELS

Analytical methods represent a classical mathematical
approach to solve differential equations, leading to an exact
solution for a particular problem. Analytical solutions are
usually obtained by applying various transformations (e.g.
Laplace or Fourier transformations) to the governing equa-
tions, invoking a separation of variables, or the Green’s
function approach (e.g. Leij et al., 2000). Analytical mod-
els usually result in an explicit equation that, for example,
states that concentration (or the pressure head, water con-
tent, or temperature) is equal to a certain value at particular
time and location. One can therefore evaluate a particular
variable directly without time-stepping, typical of numer-
ical methods. Many analytical solutions lead to relatively
complicated formulations that include infinite series and/or
integrals that need to be evaluated numerically, which sug-
gests some ambiguity in the often-claimed advantage of
exactness of analytical methods over numerical techniques.
On the other hand, using analytical solutions one can often

more easily evaluate interrelationships among parameters,
and get better insight into how various processes control
the basic flow and transport processes (e.g. using dimen-
sionless variables and parameters). Analytical solutions are
often also used to check the correctness and accuracy of
numerical models, although numerical models can equally
well be used to check the correctness of the complex ana-
lytical solutions.

Analytical solutions can usually be derived only for
simplified transport systems involving linearized govern-
ing equations, homogeneous soils, simplified geometries
of the transport domain, and constant or highly simplified
initial and boundary conditions. Unfortunately, analytical
solutions for more complex situations, such as for tran-
sient water flow or nonequilibrium solute transport with
nonlinear reactions, are generally not available and/or can-
not be derived, in which case numerical models must
be employed.

Solute Transport

Numerous analytical solutions of equations (2) and (3), or
their two- and three-dimensional equivalents, have been
developed in the last 40 years and are now widely used
for predictive purposes and/or analyzing laboratory and/or
field observed concentration distributions. The majority of
these solutions pertains to equations (2) and (3) assuming
constant water content, θ , and flux, q, values (i.e. for steady-
state water flow conditions). Since equation (2) and (3)
have the same form, analytical solutions derived for solute
transport can often also be used immediately for many heat
transport problems, and vice versa.

Some of the more popular one- and multidimensional
analytical transport models have been CXTFIT (Parker
and van Genuchten, 1984), AT123D (Yeh, 1981), and
3DADE (Leij and Bradford, 1994). A large number of
analytical models for one-, two-, and three-dimensional
solute transport problems were recently incorporated into
the comprehensive software package STANMOD (STu-
dio of ANalytical MODels) (Šimůnek et al., 1999b)
(http://www.ussl.ars.usda.gov/models/stanmod/
stanmod.HTM). This Windows-based computer software
package includes not only programs for evaluating analyt-
ical solutions for equilibrium convective-dispersive solute
transport (i.e. the CFITM of van Genuchten (1980) for one-
dimensional transport and 3DADE for three-dimensional
problems), but also additional programs that solve more
complex problems. For example, it also incorporates the
CFITIM (van Genuchten, 1981) and N3DADE (Leij and
Toride, 1997) programs for nonequilibrium convective-
dispersive transport (i.e. the two-region mobile-immobile
model for physical nonequilibrium and the two-site sorp-
tion model for chemical nonequilibrium) for one- and
multidimensional formulations, respectively. STANMOD
also includes CXTFIT2 (Toride et al., 1995), an updated



MODELS OF WATER FLOW AND SOLUTE TRANSPORT IN THE UNSATURATED ZONE 1173

version of CXTFIT to solve both direct and inverse prob-
lems for three different one-dimensional transport models:
(i) the conventional CDE (1); (ii) the chemical and physi-
cal nonequilibrium CDEs; and (iii) a stochastic stream tube
model based upon the local scale equilibrium or nonequi-
librium CDE. All three models consider linear adsorption,
as well as the zero- and first-order decay/source terms.
In addition, STANMOD includes the CHAIN code of van
Genuchten (1985) for analyzing the convective-dispersive
transport of up to four solutes involved in sequential
first-order decay reactions. Examples are the migration of
radionuclides, in which the chain members form first-order
decay reactions, and the simultaneous movement of various
interacting nitrogen or organic chemicals. The latest version
of STANMOD also includes the screening model of Jury
et al. (1983) for describing transport and volatilization of
soil-applied volatile organic chemicals.

Water Flow

The highly nonlinear Richards equation can be solved
analytically only for a very limited number of cases involv-
ing homogeneous soils, simplified initial and boundary
conditions, and relatively simple constitutive relationships
describing the unsaturated soil hydraulic properties. The
Richards equation for this purpose needs to be first lin-
earized. This can be accomplished using several mathemat-
ical transformations, with the most common transformation
being the Kirchhoff integral transformation:

� =
∫ h

−∞
K(h) dh (4)

Linearization of the Richards equation often also involves
using an exponential law relating hydraulic conductivity
and the pressure head (Gardner, 1958):

K(h) = Ks exp(αh) (5)

where α is an empirical coefficient.
Development of analytical and semianalytical solutions

of the unsaturated flow equations has been geared mostly
towards infiltration problems (Wooding, 1968; Philip, 1969,
1992). While some analytical solutions are widely used, for
example, for evaluating tension disc experiments (Wooding,
1968), designing irrigation systems (Philip, 1992), or study-
ing flow around buried objects (Warrick and Knight, 2002),
many others appear to be only of academic interest.

NUMERICAL METHODS

Numerical methods are superior to analytical methods in
terms of being able to solve practical problems. They allow
users to design complicated geometries that reflect complex

natural geologic and hydrologic conditions, control param-
eters in space and time, prescribe realistic initial and
boundary conditions, and to implement nonlinear consti-
tutive relationships. Numerical methods usually subdivide
the time and spatial coordinates into smaller pieces, such as
finite differences, finite elements, and/or finite volumes, and
reformulate the continuous form of governing partial differ-
ential equations in terms of a system of algebraic equations.
In order to obtain solutions at certain times, numerical
methods generally require intermediate simulations (time-
stepping) between the initial condition and the points in
time for which the solution is needed. The following two
sections review the history of development of various
numerical techniques used in vadose zone flow and trans-
port models. The review is based in part on an earlier review
by van Genuchten and Šimůnek (1996). After reviewing
various numerical techniques I will also discuss the need for
efficient matrix solvers for 2D and 3D models, and provide
a list of some of the most often used flow/transport models.

Numerical Solution of Richards Equation

A variety of numerical methods may be used to solve
the variably saturated flow equation. The popularity of
numerical methods stems from the fact that the Richards
equation can be solved analytically only for a very limited
number of cases. Even so, the highly nonlinear nature of
the Richards equation also hampered the development of
computationally efficient numerical methods that are stable
under all conditions, particularly for infiltration in very dry
soils. Stable numerical solutions still require relatively fine
discretizations of both the time and space domains, often
resulting in excessive CPU and simulation times, especially
for two- and three-dimensional problems and/or problems
involving highly transient boundary conditions.

Early applications of numerical methods for solving
variably saturated flow problems generally used classi-
cal finite differences. Integrated finite difference, finite
volumes, and especially, finite element methods (Neu-
man, 1973; Huyakorn et al., 1986; Šimůnek et al., 1999a)
became increasingly popular in the seventies and there-
after. While finite difference methods today are used in a
majority of one-dimensional models, finite volume methods
and/or finite element methods coupled with mass lump-
ing of the mass balance term are usually used in two-
and three-dimensional models. Finite element methods used
with unstructured triangular and tetrahedral elements allow
for a more precise description of complex transport domains
compared to finite differences.

The Richards equation can be formulated in three differ-
ent ways. A mixed formulation arises when both the water
content and the pressure head variables appear simultane-
ously in the governing equation, such as in equation (1).
The h-based formulation is obtained when the time deriva-
tive of the water content (∂θ/∂t) on the left side of



1174 SOILS

(1) is rewritten using the soil water capacity C as follows:
C∂h/∂t , where C is defined as the slope of the retention
curve, that is, dθ /dh. The θ -based formulation is obtained
when the product of the hydraulic conductivity K(h) and
the pressure head gradient (∂h/∂z) on the right side of (1) is
replaced with the product of the water diffusivity Dw(θ )
and the water content gradient, ∂θ/∂z. The θ -formulation
allows for very efficient numerical solutions, even for infil-
tration into initially dry soils. The use of this formulation is,
however, straightforward only for homogeneous and unsat-
urated soils. This is because, the driving force for water
movement is not the water content gradient, but the pressure
head gradient; water in heterogeneous soils hence does not
necessarily flow from locations with a higher water content
to locations with a lower water content. Special provisions
must be taken for such heterogeneous systems (Hills et al.,
1989), a likely reason why θ -formulations are rarely used
in numerical models.

Celia et al. (1990) suggested that numerical solutions
based on the standard h-based formulation of the Richards
equation often yield poor results, characterized by rela-
tively large mass balance errors and incorrect predictions
of the pressure head distributions in the soil profile. They
solved the mixed formulation of the Richards equation
using a modified Picard iteration scheme that possesses
mass-conserving properties for both finite element and
finite difference spatial approximations. Milly (1985) ear-
lier presented two mass-conservative schemes for com-
puting nodal values of the water capacity in the h-based
formulation to force global mass balance. Several highly
efficient numerical schemes based on different types of
pressure head transformations were presented recently by
Hills et al. (1989), Ross (1990), and Kirkland et al. (1992).
Hills et al. (1989) showed that the θ -based form of the
Richards equation can yield fast and accurate solutions
for infiltration into very dry heterogeneous soil profiles.
However, the θ -based numerical scheme cannot be used
for soils having saturated regions. Kirkland et al. (1992)
expanded the work of Hills by combining the θ -based and
h-based models to yield a transformation method appli-
cable also to variably saturated systems. Their approach
involved a new dependent variable, being a linear func-
tion of the pressure head and the water content in the
saturated and unsaturated zones, respectively. Additional
transformations of the Richards equation, with the com-
mon goal of decreasing its nonlinearity and increasing
the efficiency of the numerical solution, were reviewed
by Williams et al. (2000). Many of these transformations
were, however, used mostly by the authors themselves and
have not reached wide acceptance. Most popularly used
vadose zone flow models presently utilize the mixed for-
mulation of Celia et al. (1990); these models include SWAP
(van Dam et al., 1997) and HYDRUS (Šimůnek et al.,
1998, 1999a).

Time and space discretization of the Richards equation
generally leads to a nonlinear system of algebraic equations.
These equations are most often linearized and solved using
the Newton–Raphson or Picard iteration methods. Picard
iteration is widely used in unsaturated zone models because
of its ease of implementation, and because this method
preserves symmetry of the final system of equations. The
Newton–Raphson iteration procedure is more complex and
results in nonsymmetric matrices, but often achieves a
faster rate of convergence and can be more robust than
Picard iteration for certain types of problems (Paniconi and
Putti, 1994).

Numerical Solution of the Transport Equation

A large number of methods are also available to numer-
ically solve the convection-dispersion solute transport
equation. These methods may be broadly classified into
three groups: (i) Eulerian, (ii) Lagrangian, and (iii) mixed
Lagrangian–Eulerian methods. In the Eulerian approach,
the transport equation is discretized by means of a usual
finite difference or finite element method using a fixed
grid system. For the Lagrangian approach, the mesh moves
along with the flow or remains fixed in a deforming
coordinate system. A two-step procedure is followed for
a mixed Lagrangian-Eulerian approach. First, convective
transport is considered using a Lagrangian approach in
which Lagrangian concentrations are estimated from parti-
cle trajectories. Subsequently, all other processes including
sinks and sources are modeled with an Eulerian approach
using any finite element or finite differences method, lead-
ing to the final concentrations.

Standard finite difference and Galerkin-type finite ele-
ment methods belong to the first group of Eulerian methods.
Finite differences and finite elements methods provided the
early tools for solving solute transport problems and still
are the most popular methods being used. Numerical exper-
iments have shown that both methods give good results for
transport in which dispersion is a relatively dominant pro-
cess (e.g. as indicated by the grid Peclet number, v�x/D,
where v is pore-water velocity and �x the grid size). How-
ever, both methods can lead to significant numerical oscil-
lations and/or artificial dispersion for convection-dominated
transport problems. Still, a relatively simple method may be
used to prevent or limit numerical oscillations. By select-
ing an appropriate combination of relatively small space
and time steps, it is possible to virtually eliminate all oscil-
lations. Perrochet and Berod (1993) developed criteria for
minimizing or eliminating numerical oscillations based on
a “performance index”. They concluded that all oscillations
should be eliminated when the performance index, defined
as the product of the local Peclet and Courant (v�t/�x)
numbers, is less than 2. When small oscillations in the solu-
tion can be tolerated, the performance index can be easily
increased to about 5 or 10 (Perrochet and Berod, 1993).
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One alternative is the use of upwind finite difference
methods. This method virtually eliminates numerical oscil-
lations, even for purely convective transport. The disad-
vantage of this method is that it may create significant
and often unacceptable numerical dispersion. Similarly,
upstream weighting has been proposed for finite elements.
The method consists of using different weighting functions
for terms having spatial derivatives than for other terms in
the transport equation. This approach places greater weight
on the upstream nodes within a particular element.

While Lagrangian methods (or method of characteristics)
virtually eliminate problems with numerical oscillations,
they may introduce other problems, notably artificial dis-
persion and nonconservative solutions. Lagrangian methods
are also relatively difficult to implement in two and three
dimensions. Instabilities resulting from inappropriate spatial
discretizations may occur during longer simulations because
of deformation of the stream function. Furthermore, nonre-
alistic distortions of the results may occur when modeling
the transport of solutes that are subjected to different sorp-
tion/exchange or precipitation reactions.

The Eulerian and Lagrangian approaches can also be
combined to the mixed Eulerian–Lagrangian method.
Because of the different mathematical nature of the dif-
fusive (parabolic) and convective (hyperbolic) terms in
the convection-dispersion equation, the transport equa-
tion is best decomposed into a mixed problem consist-
ing of a purely convective problem, followed by a pure
diffusion-only problem. Methods based on this approach are
called operator-splitting or splitting-up methods. Convec-
tive transport is then solved with the Lagrangian approach,
while all other terms of the transport equation are solved
using Eulerian methods.

Still other solutions exist, such as the use of a so-called
“random walk” process or a combination of analytical and
numerical techniques. In a random walk approach, solute
transport is modeled using a large number of particles.
Displacement of each particle during each time step is
given by a certain distance, this being the sum of two
velocity contributions – a deterministic and stochastic con-
tribution. Studies with this type of method indicate that
it may be necessary to use many thousands of particles
in order to obtain relatively precise results. An example
of a combination of analytical and numerical techniques
is given by Sudicky (1989) who modeled solute transport
using Laplace transforms with respect to time, and Galerkin
finite elements for the spatial domain. The use of Laplace
transforms avoids the need for intermediate simulations
(time-stepping) between the initial condition and the points
in time for which solutions are needed, while also less strin-
gent requirements are needed for the spatial discretization.
This combination of analytical and numerical techniques,
unfortunately, has however, one important limitation. Since

Laplace transforms eliminate time as an independent vari-
able in the governing transport equation, all coefficients
such as water content, flow velocity, and retardation factors,
must be independent of time. This means that combination
methods can only solve solute transport problems during
steady-state water flow, and hence are inappropriate for
transient variably saturated flow situations typical of most
field problems.

Many of the above methods for numerically solving
transport equation were developed primarily for saturated
conditions, for which coarse spatial discretizations and
large flow velocities often produce large Peclet numbers,
which may lead to significant numerical oscillations. Flow
velocities in the vadose zone are usually much smaller.
Also, the nonlinearity of the Richards equation generally
requires numerical solutions on much finer spatial grids than
in groundwater studies. Consequently, the Peclet numbers
are significantly smaller for vadose zone applications than
in groundwater flow studies, thereby allowing the adoption
of more oscillation-prone methods. The majority of vadose
zone models therefore can use relatively standard finite
element or finite difference methods, which, if combined
with upwind or upstream weighting or proper self-adjusting
or other time step scheme, should eliminate most or all
numerical oscillations.

Matrix Solvers

Discretization and subsequent linearization (as needed) of
the governing partial differential equations for water flow
and solute transport leads to a system of linear equations

[A]{x} = {b} (6)

in which {x} is an unknown solution vector, {b} is the
known right-hand-side vector of the matrix equation, and
[A] is a sparse banded matrix, which is symmetric for
water flow if the modified Picard procedure is used,
but asymmetric for water flow if the Newton–Raphson
method is used. Matrix [A] is generally asymmetric for
solute transport, unless convection is not considered in the
formulation. Matrix [A] is tridiagonal for one-dimensional
applications and thus can be solved very quickly and
efficiently using simple Gaussian elimination. For higher-
dimensional application, matrix [A] is a sparse matrix
with a number of lines equal to the number of nodes in
the spatial discretization scheme. The number of nodes
is on the order of tens of thousands for a typical two-
dimensional application, and on the order of millions for
a three-dimensional application. Since this matrix needs to
be inverted many times during a typical numerical run (at
each time step for solute transport, and additionally also at
each iteration for unsaturated water flow), the need for very
efficient solvers cannot be underestimated.
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Traditionally, the matrix equations have been solved
using direct methods, such as Gaussian elimination or LU
decomposition. These methods usually take advantage of
the banded nature of the coefficient matrices and, in the
case of water flow, of the symmetric properties of the
matrix. Direct solution methods have several disadvantages
as compared to iterative methods. For example, they require
a fixed number of operations (depending upon the size of
the matrix), which increases approximately by the square of
the number of nodes. Iterative methods, on the other hand,
require a variable number of repeated steps, with the num-
ber increasing at a much smaller rate (about 1.5) with the
size of a problem (Mendoza et al., 1991). A similar reduc-
tion also holds for the memory requirement since iterative
methods do not require one to store nonzero matrix ele-
ments. Memory requirements, therefore, increase at a much
smaller rate with the size of the problem when iterative
solvers are used. This memory requirement is associated
with the need to minimize the size of the band (i.e. the
largest distance between two neighboring nodal numbers)
of matrix [A] for direct methods. While minimization of
the matrix band is trivial for finite difference methods, it
can be rather complex when unstructured triangular finite
element meshes are used. Round-off errors also represent
less of a problem for iterative methods as compared with
direct methods. This is because round-off errors in itera-
tive methods are self-correcting. Finally, for time-dependent
problems, a reasonable approximation of the solution (i.e.
the solution at the previous time step) exists for iterative
methods, but not for direct methods. In general, direct meth-
ods are more appropriate for relatively small problems and
for finite difference codes, while iterative methods are more
suitable for larger problems and codes using unstructured
finite element grids.

While many iterative methods have been used in the
past for handling large sparse matrix equations, a vari-
ety of increasingly powerful preconditioned accelerated
iterative methods, such as the preconditioned conjugate
gradient method (PCG), are now becoming available also.
Since the system of linear equations resulting from dis-
cretization of the solute transport equation is nonsym-
metrical, it is necessary to either formulate the transport
problem in such a way that it leads to a symmetric
matrix, or to use an extension of PCG for nonsymmetri-
cal matrices, such as ORTHOMIN (generalized conjugate
residual method) (Mendoza et al., 1991), GMRES (gen-
eralized minimal residual method), biconjugate gradients,
TFQMR (transpose-free quasi-minimal residual algorithm),
CGSTAB (conjugate gradient stabilized method), and con-
jugate gradient squared procedures. Both the preconditioned
conjugate gradient and ORTHOMIN methods consist of two
essential parts: initial preconditioning, and iterative solution
with either conjugate gradient, CGSTAB, or ORTHOMIN

acceleration (Mendoza et al., 1991). Incomplete lower-
upper (ILU) factorization can be used as preconditioning of
matrix [A], which is then factorized into lower and upper
triangular matrices by partial Gaussian elimination. The
preconditioned matrix is subsequently inverted repeatedly
using updated estimates to provide a new approximation of
the solution.

Available Model for Unsaturated Zone

Most of the early models developed for studying processes
in the near-surface environment focused mainly on vari-
ably saturated water flow. They were used primarily in
agricultural research for the purpose of optimizing mois-
ture conditions to increase crop production. This focus
has increasingly shifted to environmental research, with
the primary concern now being the subsurface fate and
transport of various agricultural and other contaminants,
such as pesticides, nutrients, pathogens, pharmaceuticals,
viruses, bacteria, colloids, toxic trace elements, and/or fumi-
gants, and also the evaluation of water recharge through
the vadose zone. While the earlier models solved the
governing equations (1) through (3) for relatively simpli-
fied system-independent boundary conditions (i.e. specified
pressure heads or fluxes, and free drainage), models devel-
oped recently can cope with much more complex system-
dependent boundary conditions evaluating surface flow and
energy balances and accounting for the simultaneous move-
ment of water, vapor, and heat. Examples are DAISY
(Hansen et al., 1990), TOUGH2 (Pruess, 1991), SHAW
(Flerchinger et al., 1996), SWAP (van Dam et al., 1997),
HYDRUS-1D (Šimůnek et al., 1998), UNSATH (Fayer,
2000), and COUP (Jansson and Karlberg, 2001). Several
models now account also for the extremely nonlinear pro-
cesses associated with the freezing and thawing cycle (e.g.
DAISY, SHAW, and COUP).

Models have recently also become increasingly sophis-
ticated in terms of the type and complexity of solute
transport processes that can be simulated. Transport models
are no longer being limited to solutes undergoing rela-
tively simple chemical reactions such as linear sorption
and first-order decay, but now consider also a variety of
nonlinear sorption and exchange processes, physical and
chemical nonequilibrium transport, volatilization, gas diffu-
sion, colloid attachment/detachment, decay chain reactions,
and many other processes (e.g. the HYDRUS-1D and -
2D codes of Šimůnek et al., 1998, 1999a). For example,
the general formulation of the transport equations in the
HYDRUS codes allows one to simulate not only nonad-
sorbing or linearly sorbing chemicals but also a variety of
other contaminants, such as viruses (Schijven and Šimůnek,
2002), colloids (Bradford et al., 2002), cadmium (Seuntjens
et al., 2001), and hormones (Casey et al., 2003), or chemi-
cals involved in the sequential biodegradation of chlorinated
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aliphatic hydrocarbons (Schaerlaekens et al., 1999; Casey
and Šimůnek, 2001).

Options to simulate carbon and nitrogen cycles are also
becoming a standard feature of many environmental mod-
els, such as DAISY, LEACHN (Hutson and Wagenet,
1992), RZWQM (Ahuja and Hebson, 1992), and COUP.
These models typically distribute organic matter, carbon,
and organic and mineral nitrogen over multiple computa-
tional pools, while allowing organic matter to be decom-
posed by multiple microbial biomass populations. They can
account for most of the major reaction pathways, such as
mineralization-immobilization of crop residues, manure and
other organic wastes, mineralization of the soil humus frac-
tions, interpool transfer of carbon and nitrogen, nitrification
(ammonium to nitrate-N), denitrification (leading to the pro-
duction of N2 and N2O), volatilization loss of ammonia
(NH3), production and consumption of methane (CH4) and
carbon dioxide (CO2), changes in the carbon nitrogen ratio
of organic matter, and microbial biomass growth and death
(Ahuja and Hebson, 1992).

Efforts are also on to couple physical flow and trans-
port models with geochemical models to simulate even
more complex reactions, such as surface complexation,
precipitation/dissolution, cation exchange, and/or biologi-
cal reactions (e.g. Ahuja and Hebson, 1992; Šimůnek and
Suarez, 1994; Šimůnek and Valocchi, 2002; Jacques et al.,
2002). Models considering these chemical reactions, includ-
ing the ability to simulate the transport of multiple chemical
species and carbon dioxide, are required for studying water
management practices and irrigation techniques under arid
and semiarid conditions, evaluation of water suitability for
irrigation, and reclamation of sodic soils (Šimůnek and
Suarez, 1997).

Another active area of research involves attempts to
extend existing models that simulate uniform flow to
situations where nonequilibrium and/or preferential flow
occurs. Examples of this are the MACRO (Jarvis, 1994)
and HYDRUS-1D (Šimůnek et al., 2003) models. Possi-
ble approaches for simulating preferential flow differ in
terms of their underlying assumptions and complexity.
They range from relatively simplistic models to more com-
plex, physically based, dual-porosity, dual-permeability,
and multiregion-type models. A relatively simple dual-
porosity flow model results when the Richards equation
is combined with composite (double-hump type) equations
for the hydraulic properties to account for both soil textural
(matrix) and soil structural (fractures, macropores, peds)
effects on flow. A more complex dual-porosity, mobile-
immobile water flow model results when the Richards or
kinematic wave equations are used for flow in the fractures,
and immobile water is assumed to exist in the matrix. Even
more complex are various dual-permeability models such
as the formulations of Gerke and van Genuchten (1993)
and Pruess (1991), or the kinematic wave approach as used

in the MACRO model of Jarvis (1994). These formula-
tions all assume that water is mobile in both the matrix
and fracture domains, while invoking terms that account
for the exchange of water and solutes between the matrix
and the fractures.

A large number of models are now available for simulat-
ing processes in the vadose zone. Some of these models are
in the public domain, such as MACRO, SWAP, UNSATH
(Fayer, 2000), VS2DI (Healy, 1990), and HYDRUS-1D
(Šimůnek et al., 1998), while others are in the commer-
cial domain, such as HYDRUS-2D (Šimůnek et al., 1999a).
These models vary widely in terms of their complexity,
sophistication, and ease of use. Although some models
are still being run under the DOS operating system, with
associated difficulties of preparing input files and inter-
preting tabulated outputs, many others, especially those
in the commercial domain, are supported by sophisticated
graphics-based interfaces that tremendously simplify their
use (Šimůnek et al., 1998, 1999a).

Table 1 gives a summary of some of the more widely
used numerical models for simulating variably saturated
water flow and solute transport in soils. This table also
provides Internet addresses and references where additional
information about each model can be found. With the
exception of HYDRUS-2D, TOUGH2, and VS2DTI, all
models given in Table 1 are one-dimensional models,
perhaps reflecting the fact that the majority of applications
for unsaturated zone models is still only one dimensional.

CONCLUSIONS

Much of the research in the field of soil science has focused
in recent decades upon understanding the fundamentals
of variably saturated water flow and pollutant fate and
transport processes. As society continues its rapid tech-
nological development, the types of pollution problems
and chemicals posing significant environmental threats,
have become increasingly complex. Problems such as the
transport of pesticides, colloids, bacteria, viruses, phar-
maceuticals, reproductive hormones, nutrients, and toxic
trace elements, carbon sequestration, and bioremediation of
organic contaminants, all require a thorough understanding
and coupling of multiple hydrogeological, geochemical, and
microbiological processes. It is the continually increasing
speed and power of modern computers that will enable such
models to become convenient tools for analysis of complex
geochemical systems. Although more and more complex
models are being constantly developed, currently available
models are still relatively specialized and no single model is
presently available that can describe the multiple problems
and chemicals mentioned above. Development of numerical
models capable of describing unstable and/or preferential
flow, as well as models coupled with sophisticated geo-
chemical models capable of describing both instantaneous
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Table 1 Some of the widely used numerical models for simulating variably saturated water flow and solute transport in
soils

Model name Internet address, reference, interesting/special features

COUP http://www.lwr.kth.se/Vara%20 Datorprogram/CoupModel/ (Jansson and Karlberg, 2001)
Carbon/nitrogen cycle, thawing/freezing cycle, coupled water, vapor, and heat transport, crop
growth

DAISY http://www.dina.dk/∼daisy/ (Hansen et al., 1990) Carbon/nitrogen cycle, crop growth,
management practices, pesticide processes

HYDRUS-1D http://www.hydrus2d.com (Šimůnek et al., 1998) Multiple soil hydraulic functions, neural
network-based pedotransfer functions, nonlinear nonequilibrium solute transport, mobile-immobile
and two-site sorption concepts, chain reactions, volatilization, inverse option, intuitive sophisticated
graphical interface

HYDRUS-2D http://www.hydrus2d.com (Šimůnek et al., 1999a) Two-dimensional, multiple soil hydraulic
functions, neural network-based pedotransfer functions, nonlinear nonequilibrium solute transport,
mobile-immobile and two-site sorption concepts, chain reactions, inverse option, unstructured
triangular finite element meshes, intuitive sophisticated graphical interface

MACRO http://www.mv.slu.se/BGF/Macrohtm/macro.htm (Jarvis, 1994) Preferential flow using
kinematic wave equation, snow accumulation, pesticide transport

RZWQM http://gpsr.ars.usda.gov/products/rzwqm.htm (Ahuja and Hebson, 1992) Complex modular
program, crop growth, chemical equilibrium module, management practices, pesticide processes

SHAW http://www.nwrc.ars.usda.gov/models/shaw (Flerchinger et al., 1996) Thawing/freezing cycle,
coupled water, vapor, and heat transport, multispecies plant canopy

SWAP http://www.swap.alterra.nl/ (van Dam et al., 1997) A three-level drainage system at regional
scale, crop growth

SWIM http://www.clw.csiro.au/products/swim (Verburg et al., 1996) Bypass flow, flexible description
of hydraulic properties, hyperbolic sine transformation of the pressure head

TOUGH2 http://www-esd.lbl.gov/TOUGH2/ (Pruess, 1991) Multidimensional multiphase fluid and heat
flow, dual permeability

UNSATH http://hydrology.pnl.gov/resources/unsath/unsath−download.asp (Fayer, 2000) Coupled
water, vapor, and heat transport, no solute transport

VS2DTI http://water.usgs.gov/software/vs2di.html (Healy, 1990) Two-dimensional, finite differences

and kinetic chemical and biological reactions will undoubt-
edly remain a focus of research in the near future.

The accuracy of the obtained predictions depend to
a large extent upon the accuracy of available model
input parameters and upon proper conceptualization of soil
heterogeneity and other system complexities, such as the
possible presence of nonequilibrium flow and transport,
including preferential flow. Processes are often described
and their parameters measured on a much smaller scale than
those for which the model predictions are being sought.
Consequently, many model parameters often need to be
calibrated so that they reflect the bulk behavior of the
heterogeneous system, in which case they can be used
for larger scale predictions. New measuring techniques that
provide model parameters on the scale at which predictions
are made are badly needed for successful applications of
unsaturated flow and transport models in a predictive mode
at the larger scale.

One may expect that unsaturated zone flow and transport
models will be used increasingly for integrating funda-
mental knowledge about the vadose zone to yield tools
for developing cost-effective, yet technically sound strate-
gies for resource management and pollution remediation
and prevention. Unsaturated zone transport models are
indispensable tools for analyzing complex environmental

pollution problems, and for developing practical manage-
ment strategies. Models can help guide field observations by
identifying which parameters and processes control system
behavior. Following Steefel and Van Cappellen (1998) and
Šimůnek and Valocchi (2002), several specific key ways in
which unsaturated flow and transport models can be used
are identified below:

1. Physical, chemical, and biological processes are often
studied in isolation either in the laboratory or in
the field under controlled conditions. Mathematical
models can be used to investigate the impacts of
multiple coupled biogeochemical reactions and other
interactions in the presence of complex flow fields
and spatial heterogeneity. These models also enable
extrapolation to environmentally relevant temporal and
spatial scales.

2. Numerical transport models provide a useful tool for
interpreting experimental results. Models can help
understand qualitative and quantitative trends and
relationships present in the data. Properly applied mod-
eling to interpret results of field experiments can lead to
more effective quantitative understanding of underlying
biogeochemical processes.

3. One of the most powerful applications of numerical
flow and transport models is conducting sensitivity



MODELS OF WATER FLOW AND SOLUTE TRANSPORT IN THE UNSATURATED ZONE 1179

analyses. Such analyses permit a systematic evaluation
of the impact of model parameters (physical, chemi-
cal, and/or biological), initial conditions, and boundary
conditions upon the model output. The results of a
sensitivity analysis provide insight into the relative
importance of individual processes and reactions within
a complex biogeochemical system. Results can help
one identify the most important parameters and pro-
cesses, and thereby provide guidance in allocation of
resources for laboratory and field investigations.

4. Numerical flow and transport models are tools for inte-
grating all of our knowledge obtained from simulations,
sensitivity analyses, and laboratory and field exper-
imentation. This integration will often lead to more
coherent and rigorous conceptual models for the under-
lying coupled flow, transport, and reactions processes.
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Casey F.X.M. and Šimůnek J. (2001) Inverse analyses of the
transport of chlorinated hydrocarbons subject to sequential
transformation reactions. Journal of Environmental Quality,
30(4), 1354–1360.

Celia M.A., Bououtas E.T. and Zarba R.L. (1990) A general
mass-conservative numerical solution for the unsaturated flow
equation. Water Resources Research, 26, 1483–1496.

Fayer M.J. (2000) UNSAT-H Version 3.0: Unsaturated Soil Water
and Heat Flow Model . Theory, User Manual, and Examples.
Pacific Northwest National Laboratory 13249.

Flerchinger G.N., Hanson C.L. and Wight J.R. (1996) Modeling
evapotranspiration and surface energy budgets across a
watershed. Water Resources Research, 32, 2539–2548.

Gardner W.R. (1958) Some steady-state solutions of the
unsaturated moisture flow equation with application to
evaporation from a water table. Soil Science, 85, 228–232.

Gerke H.H. and van Genuchten M.T.h (1993) A dual-porosity
model for simulating the preferential movement of water and
solutes in structured porous media. Water Resources Research,
29, 305–319.

Hansen S., Jensen H.E., Nielsen N.E. and Svendsen, H. (1990)
DAISY: Soil Plant Atmosphere System Model , NPO Report
No. A 10, The National Agency for Environmental Protection,
Copenhagen, pp. 272.

Healy R.W. (1990) Simulation of Solute Transport in Variably Sat-
urated Porous Media with Supplemental Information on Mod-
ifications to the U.S. Geological Survey’s Computer Program
VS2DI , Water-Resources Investigation Report 90–4025, U.S.
Geological Survey, p. 125.

Hills R.G., Hudson D.B., Porro I. and Wierenga P.J. (1989)
Modeling one-dimensional infiltration into very dry soils, 1.
Model development and evaluation. Water Resources Research,
25(6), 1259–1269.

Hutson J.L. and Wagenet R.J. (1992) LEACHM:Leaching
Estimation and Chemistry Model, Research Series no. 92-3,
Cornell University: Ithaca.

Huyakorn P.S., Springer E.P., Guvanasen V. and Wadsworth T.D.
(1986) A three-dimensional finite-element model for simulating
water flow in variably saturated porous media. Water Resources
Research, 22, 1790–1808.
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