

US Salinity Laboratory, USDA-ARS, Riverside, CA Jack Schijfen¹ and Liping Pang² ¹National Institute of Public Health and the Environment, Bilthoven, The Netherlands ²Institute of Environmental Science & Research Ltd., Christchurch, New Zealand Grazia Gargiulo and Yusong Wang

and

Rien van Genuchten¹, Miroslav Šejna², and Diederik Jacques³ ¹Department of Mechanical Engineering, Federal University of Rio de Janeiro, Brazil ²PC-Progress, Ltd., Prague, Czech Republic ³Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

OUTLINE

- Introduction Background on HYDRUS
- Historical Development (models of increasing complexity)
- Preferential Flow and Transport
- Spatial Heterogeneity
- Effects of Chemical Conditions HP1/2/3
- Colloid-Facilitated Solute Transport
- Miscellaneous Other Options

HYDRUS (2D/3D)

Software for Simulating Water Flow and Solute Transport in Two/Three-Dimensional Variably-Saturated Soils Using Numerical Solutions

History of HYDRUS-1D

Environmental Applications

- Ecological Apps
- **Carbon Storage and** Fluxes
- Heat Exchange and Fluxes
- **Nutrient Transport**
- **Soil Respiration** Microbiological
- Processes
- **Effects of Climate** Change
- **Riparian Systems**
- Stream-Aquifer Interactions

HYDRUS – Main Processes

Water Flow:

- Richards equation for variably-saturated water flow
- Various models of soil hydraulic properties, Hysteresis
- Sink term, accounting for water uptake by plant roots
- (uncompensated and compensated; reduced due to osmotic and pressure stress) Preferential flow
- Isothermal and thermal liquid and vapor flow

Solute Transport:

- Convective-dispersive transport in water, Diffusion in gas ٠
- Linear and nonlinear reactions between the solid and liquid phases
- Zero-order production, First-order degradation
- Physical and chemical nonequilibrium solute transport Sink term, accounting for nutrient uptake by plant roots (active and passive) ٠

Heat Transport:

Conduction and convection with flowing water (transport of latent heat) ٠

- **Inverse Parameter Optimization:**
- Marquardt-Levenberg method
- Optimize soil hydraulic and solute transport parameters

Governing Equations

Variably-Saturated Water Flow (Richards Equation)

$$\frac{\partial \boldsymbol{\theta}(\boldsymbol{h})}{\partial t} = \frac{\partial}{\partial z} \left[\boldsymbol{K}(\boldsymbol{h}) \left(\frac{\partial \boldsymbol{h}}{\partial z} - 1 \right) \right] - \boldsymbol{S}(\boldsymbol{h})$$

Solute Transport (Convection-Dispersion Equation)

$$\frac{\partial(\rho s)}{\partial t} + \frac{\partial(\theta c)}{\partial t} = \frac{\partial}{\partial z} \left(\theta D \frac{\partial c}{\partial z} - qc\right) - \phi$$

Heat Movement

$$\frac{\partial C_p(\theta)T}{\partial t} = \frac{\partial}{\partial z} \left[\lambda(\theta) \frac{\partial T}{\partial z} \right] - C_w \frac{\partial qT}{\partial z} - C_w ST$$

HYDRUS – Solute Transport

- Transport of Single Ions or Particles (colloids, viruses, bacteria)
- Transport of Multiple Ions (sequential first-order decay)
 - A Radionuclides: ²³⁸Pu -> ²³⁴U -> ²³⁰Th -> ²²⁶Ra $(NH_2)_2CO \rightarrow NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-$
 - Nitrogen:
 - aldicarb (oxime) -> sulfone (sulfone oxime) -> Pesticides: sulfoxide (sulfoxide oxime)
 - ◆ Chlorinated Hydrocarbons: PCE -> TCE -> c-DCE -> VC -> ethylene
 - Pharmaceuticals, Hormones: Estrogen (17bEstradiol -> Estrone -> Estriol), Testosterone
 - Explosives: TNT (-> 4HADNT -> 4ADNT -> TAT), RDX, HMX
- General BioGeoChemical Reactions (the HP1/2/3 module)
- **Colloid-Facilitated Solute Transport (the C-Ride module)**
- Processes in Wetlands (the CW2D and CWM1 modules)
- Transport/Reactions of Major Ions (the UNSATCHEM module)

- Introduction Background on HYDRUS
- Historical Development (models of increasing complexity)
- Preferential Flow and Transport
- Spatial Heterogeneity
- ◆ Effects of Chemical Conditions HP1/2/3
- Colloid-Facilitated Solute Transport
- Miscellaneous Other Options

One-Site Equilibrium Sorption Model

Breakthrough Curves with Tailing 20 Concentration [mmoVcm3] 15 10 5 0 14 16 18 20 0 2 4 6 8 10 12 Time [days]

Retention Functions

$$\rho \frac{\partial s^k}{\partial t} = k_a \psi \theta d$$

Time-dependent retention function [Adamczyk et al., 1994]

 $\psi = \left(1 - \frac{s}{s}\right)$

 Depth-dependent retention function [Bradford et al., 2003] 1 .

 $\gamma - \beta$

$$\Psi = \left(\frac{d_c + x}{d_c}\right)$$

Retention Functions

• Time- and depth-dependent retention function [Bradford et al., 2005]

V

$$= \left(1 - \frac{s}{s_{\max}}\right) \left(\frac{d_c + x}{d_c}\right)^{-\beta}$$

Random sequential adsorption model [Johnson and Elimelech, 1995] ٠ $\psi = 1 - 4a + 3.308a^2 + 1.4069a^3$ for $s < 0.8s_{max}$

$$\psi = \frac{(1-bs)^3}{2d_{50}{}^2b^3} \qquad \text{for} \quad s > 0.8s$$

 Ripening $\psi = \max(1, s^{s_{\max}})$

After ne

$$a = 0.546 \frac{s}{s_{\text{max}}} \qquad b = \frac{1}{s_{\text{max}}}$$

$$\rho \frac{\partial s^*}{\partial t} = k_a \psi(\theta c) + k_{int} (\rho s^k) (\theta c) - k_a (\rho s^k) = k_a \psi^* (\theta c) - k_a (\rho s^k)$$

 $\psi^* = \psi + \frac{k_{int}}{k_a} (\rho s^k)$ k_{int} - the particle interaction rate coefficient [T¹] [Wang et al., 2012]

Rhodococcus rhodochrous breakthrough curves (A) and retention profile (B) in 567 µm sand and a water saturation of 80%. Fitted curves were obtained using the Classical filtration theory (CFT) (red), Langmuirian blocking (blue), and straining (black) models.

Gargiulo et al. (JCH, 2007)

Transport of Multiple Species General structure of the system of solutes considered in HYDRUS

 $\frac{\partial \theta c_2}{\partial t} + \frac{\partial \rho s_2}{\partial t} = \frac{\partial}{\partial z} \left(\theta D_2 \frac{\partial c_2}{\partial z} \right) - \frac{\partial q c_2}{\partial z} + \mu_1 \left(\theta c_1 + \rho s_1 \right) - \mu_2 \left(\theta c_2 + \rho s_2 \right)$

- Introduction Background on HYDRUS
- Historical Development (models of increasing com)
- Preferential Flow and Transport
- Spatial Heterogeneity
- ◆ Effects of Chemical Conditions HP1/2/3
- Colloid-Facilitated Solute Transport
- Miscellaneous Other Options

Preferential Flow and Transport Approaches

Approaches commonly used in Soil Physics and Subsurface Hydrology assume that there are two pore systems:

- Dual-Porosity Models while water in the macropore domain is mobile, water in the micropore domain is immobile; dissolved solutes move into and out of immobile domain by molecular diffusion (e.g., van Genuchten and Wierenga, 1976)
- Dual-Permeability Models while water is mobile in both domains, it moves slower in the micropores and faster in the macropores (e.g., Gerke and van Genuchten, 1992).

Alternative Terms: Matrix – Fracture Micropores – Macropores Intra-porosity – Inter-porosity

 J_{mo} – traction of exchange sites in contact with the mobile region [-] f_{cm} – fraction of exchange sites in mobile region in equilibrium with the liquid phase [-] ω_{ph} – mass transfer between mobile and immobile regions (physical process) [T⁻¹] ω_{ch} – first-order mass transfer (sorption rate; chemical process) [T⁻¹]

Dual-Porosity Model (with Equilibrium Sorption)

♦ Solute Transport

 $s = s_{mo}^e + s_{im}^e$

 f_{mo} – fraction of exchange sites in contact with the mobile region [-] ω_{ph} – mass transfer between mobile and

immobile regions (physical process) [T⁻¹]

Colloid Transport in Dual-Permeability Media Bradford et al. [2009] Hypothesis: Colloids colliding with solid surfaces in fast regions of the pore space experience different hydrodynamic forces than colloids Region 1 in slow regions. The higher hydrodynamic forces in the fast region act to remove colloids from the solid surface, thus causing the fast region to be Region 2 associated with lower rates of colloid retention. Colloid exchange occurs between the two regions in the aqueous phase. $\rho \frac{\partial S_1}{\partial t} = k_{a1} \theta_1 c_1 - k_{d1} \rho S_1 - \delta_{d1} \rho S_1 -$ Colloid exchange may also occur on the solid phase from fast to slow regions due to either $\rho \frac{\partial s_2}{\partial t} = k_{a2} \theta_2 c_2 - k_{d2} \rho s_2 + \frac{\rho k_{12} s_1}{m}$ rolling or sliding of colloids on the solid

 $\frac{\partial \theta_f c_f}{\partial t} + \rho \frac{\partial s_f^e}{\partial t} = \frac{\partial}{\partial z} \left(\theta_f D_f \frac{\partial c_f}{\partial z} \right) - \frac{\partial q c_f}{\partial z} - \phi_f - \frac{\Gamma_s}{w} - \Gamma_f$

 $\frac{\partial \theta_m c_m}{\partial t} + \rho \frac{\partial s_m^e}{\partial t} = \frac{\partial}{\partial z} \left(\theta_m D_m \frac{\partial c_m}{\partial z} \right) - \frac{\partial q c_m}{\partial z} - \phi_m - \frac{\Gamma_s}{1 - w} - \Gamma_m$

 $\Gamma_{s} = \boldsymbol{\omega}_{dn} (1 - w) \boldsymbol{\theta}_{w} (c_{f} - c_{w}) + \Gamma_{w} c^{*}$

 $r_{s} = \frac{\omega_{dp}}{\omega_{dp}}(1-w)\theta_{1}(c_{2}-c_{1})$ surface. - transfer of colloids from solid phase region 1 to 2 [T¹] - colloid exchange between liquids in regions 1 to 2 [T¹]

Colloid Transport in Dual-Permeability Media

Colloids are transported through the bulk aqueous phase by advection and dispersion in Region 1.

- Region 2 is associated with the zone of colloid interaction with the SWI. The thickness of this region is very small. Colloids may be transported by advection and dispersion, but with much lower velocity than in Region 1.
- Mass transfer of colloids to and from regions 1 to 2 is quantified using first-order kinetic expressions (ak₁₂; (1-a)k₂₁).
- Colloids in Region 2 interacts with SWI (kinetic retention and release, k_{2x} and k_d). Immobilized colloids on the solid phase may fill up retention locations over time (blocking, \u03c6).

Bradford et al. [2011] provide initial estimates of various model parameters.

Physical Nonequilibrium Solute Transport Models in HYDRUS

a) Uniform Flow

- b) Mobile-Immobile Water
- c) Dual-Porosity (Šimůnek et al., 2003)
- d) Dual-Permeability (Gerke and van Genuchten, 1993)

Chemical Nonequilibrium Solute Transport Models in HYDRUS Šimůnek and van Genuchten (2008): a) b) d) c) e) θ θ θ θ_{im} θ_{m} θ, C, a) One-Site Kinetic Model **Two-Site Model** (kinetic and instantaneous sorption) **b**) c) **Two Kinetic Sites Model** (particle transport, e.g., colloids, viruses, bacteria) **Dual-Porosity with One Kinetic Site Model**

d) Dual-Porosity with One Kinetic Site Mod e) Dual-permeability with Two-Site Model

Nonequilibrium Models in the HYDRUS GUI

Variably-Saturated Water Flow

Solute Transport

Soil Hydraulic Model	×	Solute Transport			
Nohada Kada	OK Cencel Brevious	Time Weighting Scheme Constitution Description Description Description Description Dependence on Environmental Por Time	Space Weighting Sc Galerian Finite El C Upstream Weight C GFE with Artificial Stability Ordenion chors	cheme Rements tring FE Dispersion 2	OK Cancel Devicus Next
Darl Stratul, Duar Formatality Model C Darlysonaly (Durin Lead on Granuchter, Marken) C Darlysonaly (Indel - Innobile, water c. mass testels) C Darlysonaly (Indel - Innobile, see a mass testels) Models below exceeding and severated water == C (Darlysomaticity) (Carendic on as granico) C Darlysomaticity (Carendic ona granico)	Beb	Impendue Dependence of T Whete Context Dependence at T Nonequilibrum Solue Trensport M Equilibrum Model Che-site soption model (Demi Two Kinetic Stes Model (Particl Two Kinetic Stes Model (Particl Two Kinetic Stes Model (Stee) Deal Procoly (Mobile Immobile	ensport end Reaction Para inssport end Reaction Para iodels cal Nonequilbrum) ical Nonequilbrum) ie Transport Using Attachms on Filtestion Theory, Chemi Water) Model (Physical No	meters ameters ent(Detschment, Chemi ical Nonequilbrium) onequilbrium)	Brip
C Look-up Tables Mydressis Phydressis Phydressis in printing on our of C hydressis in network our out of puncturkiny C hydressis in network our (to puncing Bob Lenterd) C hydressis in network our (to puncing Bob Lenterd) C hydressis in network our (to puncing Bob Lenterd) C hydressis in network our (to puncing Bob Lenterd)		Deal-Docady Model with Two-3 Noneoutlinimit Deal-Proceeding Model with Two-3 Noneoutlinimit Access Proceedings Thereton Chiefes - Chylor Ricellese Dealer Ricellese Deale	le Soption in the Mobile 2 Problems Tolerance herefion P	me (Physical and Cher Antos of Firefit, Sortio 7: Use Torkuosky Each Amber of Solutes Note Question	ncel 1914/101 mil 1 1 0.08

- Introduction Background on HYDRUS
- Historical Development (models of increasing complexity)
- Preferential Flow and Transport
- Spatial Heterogeneity
- ◆ Effects of Chemical Conditions HP1/2/3
- Colloid-Facilitated Solute Transport
- Miscellaneous Other Options

DeterministicStochasticImage: Stock asticImage: Stock asticImage: Stock asticImage: Stock asticImage: Stock astic astic

Spatial Heterogeneity

Stochastic Spatial Heterogeneity

HYDRUS: The spatial variability of hydraulic properties can be approximated by means of a set of linear scaling transformations, which relate the individual soil hydraulic characteristics [$\theta(h)$ and K(h)] to reference characteristics [$\theta^*(h^*)$ and $K^*(h^*)$]:

$$K(h) = \alpha_{K} K^{*}(h^{*})$$
$$\theta(h) = \theta_{r} + \alpha_{\theta} [\theta^{*}(h^{*}) - \theta_{r}^{*}]$$
$$h = \alpha_{*} h^{*}$$

HYDRUS GUI can generate random fields for α_k , α_h , and α_{θ}

- Normally or log-normally distributed

- Correlation lengths in x and z direction
- Miller-Miller geometrical similitude $(a_K = a_h^{-2})$

Transport in Heterogeneous Soils

Miller-Miller Similitude: generate scaling factors for pressure heads (a_h) and calculate scaling factors for hydraulic conductivities $(a_k = a_h^{-2})$ Standard Deviation of log10 (a_h) = 0.5

Correlation length in the horizontal direction Correlation length in the vertical direction = 50 (left) and 10 (right) cm = 10 (left) and 50 (right) cm

Horizontal Layering

Vertical Preferential Pathways

Column Studies with Artificial Macropore and Different Solution Chemistry Conditions

Yusong Wang (PhD student) (submitted to WRR):

- + Homogeneous columns (fine/coarse sand, 120/710 μm; L=13 cm, r=4.8 cm)
- ◆ Columns (*L*=20 cm, *r*=13.2 cm) with an artificial macropore (*r*=1.14 cm)
- Saturated flow
- Bromide, microorganisms *E.coli* D21g (1.84 μm) and coliphage φX174 (27 nm)
 Ionic Strength *IS*=0, 1, 5, 20, and 100 mM

Photo of a heterogeneous soil column with a lens in the middle and simulated flow field.

- Introduction Background on HYDRUS
- Historical Development (models of increasing complexity)
- Preferential Flow
- Spatial Heterogeneity
- ◆ Effects of Chemical Conditions HP1/2/3
- Colloid-Facilitated Solute Transport
- Miscellaneous Other Options

Transients in Solution IS

HP1/2/3 (HYDRUS+PHREEQC)

HYDRUS-1D or HYDRUS (2D/3D):

- Variably-Saturated Water Flow
- Solute Transport
 Heat transport
- Root water uptake
- PHREEQC [Parkhurst and Appelo, 1999]:
- Available chemical reactions:
- Aqueous complexation
- Redox reactions
- Ion exchange (Gains-Thomas)
- Surface complexation diffuse double-layer model and nonelectrostatic surface complexation model
- Precipitation/dissolution
- Chemical kinetics
- Biological reactions

HYDRUS GUI for HP1/2/3 Total,H Total,O Charge Ca Mg Na K Fe(2) Fe(2) P2/3 Components and Database Path Path to Folder with Thermody ses 0K. C:\usaNHYDBUS3D 2 0\ThermodynamicDB\PHBEEQC DAT Browse Cancel Help File PHREEQC.IN Con The PHREEQC.IN file specifying the chemical composition and chemical reactions can be created using either the HYDRUS GUI (see the Editor in the next dialog window) or the PHREEQC GUI. Me(2) Presets ompone Total_H MinCl Al Ba Sr Sr C(4) Alkul S(6) N(5) Total_0 Na Create PHREEQC.IN file using HYDRUS GUI The PHREEQC.In file will be created when the check a undary Conditions N(3) 8 Next. In Solution Composition Previ Jacques, D., and J. Šimůnek, Notes on the HP1 software – a coupled code for variably-saturated water flow, heat transport, solute transport and biogeochemistry in porous media, HP1 Version 2.2, *SCK-CEN-BLG-1068*, Waste and Disposal, SCK-CEN, Mol, Belgium, 114 pp., 2010.

HYDRUS GUI for HP1/2/3

HP1 Examples

- Transport of Heavy Metals (Zn²⁺, Pb²⁺, and Cd²⁺) subject to a multiple pH-dependent Cation Exchange
- Transport and mineral dissolution of Amorphous SiO₂ and Gibbsite
- Infiltration of a Hyperalkaline Solution in a clay sample (kinetic precipitation-dissolution of kaolinite, illite, quartz, calcite, dolomite, gypsum, hydrotalcite, and sepiolite)
- Kinetic biodegradation of NTA (biomass, cobalt)
- Long-term Uranium transport following mineral phosphorus fertilization (pH-dependent surface complexation and cation exchange)
- Transport of Explosives, such as TNT and RDX
- Property Changes (porosity/conductivity) due to precipitation/ dissolution reactions

OUTLINE

- Introduction Background on HYDRUS
- Historical Development (models of increasing complexity)
- Preferential Flow
- Spatial Heterogeneity
- ◆ Effects of Chemical Conditions HP1/2/3
- Colloid-Facilitated Solute Transport (C-Ride)
- Miscellaneous Other Options

Colloid-Facilitated Solute Transport

- Many contaminants should be relatively immobile in the subsurface since under normal conditions they are strongly sorbed to soil.
- They can also sorb to colloids, which often move at rates similar or faster as non-sorbing tracers.
- Experimental evidence exists that many contaminants are transported not only in a dissolved state by water, but also sorbed to moving colloids.
- Examples: heavy metals, radionuclides, pesticides, viruses, pharmaceuticals, hormones, and other contaminants.

HYDRUS + add-on Module C-Ride

HYDRUS and HYDRUS (2D/3D)

- variably saturated water flow
- heat transport
- root water uptake
- solute transport
- ◆ **C-Ride** (Šimůnek et al., 2006, 2012)
 - Particle Transport - colloids, bacteria, viruses, nanoparticles
 - attachment/detachment, straining, blocking
 - Colloid-Facilitated Solute Transport
 - transport of solutes attached to particles

Colloid, Virus, and Bacteria Transport

Colloid-Facilitated Solute Transport

Bacteria-Facilitated Cadmium Transport

OUTLINE

- ♦ Introduction Background on HYDRUS
- Historical Development (models of increasing complexity)
- Preferential Flow
- ◆ Spatial Heterogeneity
- ◆ Effects of Chemical Conditions HP1/2/3
- ♦ Colloid-Facilitated Solute Transport
- Miscellaneous Other Options (e.g., parallel computing, other HYDRUS modules, HYDRUS web)

ParSWMS – Parallelized Version of HYDRUS

- ParSWMS (Hardelauf et al., 2007) Parallelized version of SWMS_3D, an earlier and simpler version of HYDRUS-3D.
- **Developed by** Forschungszentrum Jülich, Germany.
- MPI (Message-Passing Interface). LINUX or UNIX OSs.
- Test Supercomputer with 41 SMP nodes with 32 processors each (total 1312 processors)

3D Water flow problem 275.706 finite element node

(Herbst et al., 2008)

2D Water flow and solute transport (Hardelauf et al., 2007)

HYDRUS and its Modules

- ♦ HYDRUS + PHREEOC = HP1/2/3 (hydrological + biogeochemical processes)
- ♦ HYDRUS + C-Ride (colloid-facilitated solute transport)
- HYDRUS + DualPerm (preferential water flow and solute transport)
- HYDRUS + Wetland (CW2D/CWM1) (processes in constructed wetlands)
- HYDRUS + UNSATCHEM (hydrological + CO₂ + geochemical processes)
- HYDRUS + MODFLOW (hydrological processes at the large scale)

http://www.pc-progress.com/en/Default.aspx

HYDRUS Tutorials

Public Library of HYDRUS-1D Projects

B hallow search Ca	mai Gareni S	n New Property Securit Security Securitaria	About up Containe
8 ton	Palectérary s	(manual to project)	
B Property	Chinase a Project	d Group name to petitud of projects in the group sont office statule	
Retron 10	in the second	Bengen	A
B Description	0.00	Basic Dead Protect Elanges	turber with the turbers
Enterenter Enterenter	-	Basil Investo Protect Elargine	Installed with the software
Creat Creat	1823	Examples demonstrating the HP1 program (coupled injuries 4G and PHREEDC)	torialed with the anthrane
-	unsettat .	Examples deviced deglocalitant diskin (regories device) and ration domini terrary residency	Subject with the Sufference
· Due Paradity	failure	Examples with Dual-Permeasitits shows and other non-quiltonum modes, with interhapis on weller from	Contrast tax (1.9.46)
Tanajut Bitane SCo	-	Examples from Section and an Arrowing Colling with emphasis an investigation work thereas in the news adding one for adding published in the CD Spacer lesses of relation Areas backing Sec.	Constant new IS + MRL
B Rute Laters	-	Examples derivativating new splaces for altraspiseric boundary conditions	Construction .
Colorad Paratoried Source	-	Europea detected and another transfer condition with output product or values rated	Environmentation (1.4-60)
D Package for 90.001.000	Dod., WY	As easing the sense and the set of the last sense and the set of the attraction to be added and the set of the	10.3 MB
The second second	CUTHE	In example demonstrating a companion of patroletone parted of using effect (2000) ar INCRUS programs. Constant part buccarbo part	Constructions distantion
W. Billing-11	Bully interes	Exemption demonstrating the use of the new risk water and solute update term (which	Internations
Pilling-IT	College Basile Laboration	is exercise introduction of an accordance provided to the second strate of any affect (2009) and (2008) of improvem Taxon (2009) descending to an Exercises demonstrating the sec of the new road value and values galaxies provide the second strategies of the second value and values and values (second strate of the second strate provided strategies).	Constructions and a set off

Public Library of HYDRUS (2D/3D) Projects

Availability: Download H	YDRUS projects now (11,1 MB)
Project	Description
Sub211a Subsuit urea-an	ace drip impation for the B fertigation strategy (fertigation near beginning of irrigation). Solutes considered: nmoelum-eitrate, potassium, phosphorus (Hanson et al., 2006).
Sub211c Subsuff urea-an	ace drip impation for the E ferligation strategy (ferligation near the end of irrigation). Solutes considered: nmonlum-nitrate, potassium, phosphorus (Hanson et al., 2006).
Sub213 Subsurf Solutes	ace drip intigation for the M50 fertigation strategy (fertigation during the middle 50% of the irrigation event) considered: urea-ammonium-nitrate, potassium, phosphorus (Hanson et al., 2006).
Sub1112 Subsurf 2008).	ace drip irrigation, water table depth of 0.5 m, 0.3 dSim, irrigation efficiency=0.9, 7 per week (Hanson et al.,
Sub1212 Subsurf 2008).	ace drip imigation, water table depth of 0.5 m, 1.0 dSim, imigation efficiency =0.9, 7 per week (Hanson et al.,
Sub2111 Subsuff 2008).	ace drip irrigation, water table depth of 1.0 m, 0.3 dSim, irrigation efficiency =0.9, 2 per week (Hanson et al.,

Bapps, T. H., T. J. Trod, J. Smichek, and P. J. Shoure. <u>Comparison of Lindus2D simulations of dita intration with screetine</u> *dispationaliss*, J. et al. 2009 (2009), 2009 (2009), 2009 (2009), 2009. Digit, A., M. Tr. van Genuchten, and T. H. Skapps, <u>Performance of picture intrations scattere</u>, 506 Science, 174(6), 312-320, 2009.

HYDRUS Discussion Forums

	🙆 🗠 😋 👘	And France Business Of Tale	of France Landson	and a supported line	· · · · ·		Sec.
-	Constant Sparse - Hydrol 23				• () • + top • 300	+ tpit+	e- "
	Taple	Author	Replies	Read	Last Pest		
ģ,	Insetierz conditions	dar_10	3	324	87/22/2008 10.45.51 Apr 2018	1°	
2	nicealitrium	Scient	1	229	01/04/2008 14-10-02	18	
1	Effect of cost data on model convergence	DELCHAR .	- 1	388	84/35/2008 12:22-00	8	
3	Convergence on high precipitation events	amathat		295	en/an/peor 22-24-20	19*	
2	transent in porces media	Infia	. 3	278	04/24/2008 15:07:08	197	
2	editration with variable bc	kuttor	3	868	86/68/2008 14-20.27 htt:2008	B.	
5	where is the extent who he at my line period	pe.122	1	221	en/un/seen initia	8	
	time variable houndary condition reput, data	pn122	6	457	04/14/2008 00.01112	19	
3	LAUszund.cove	Lata	1	381	BAUKE/DAMA DE-DE-DE-	8	
2	dust presentations	athreast 1		238	en/asymme id.dl.at	1P	
5	HODING MORE ON	2/8/2	1	621	88/99/2008 17/28.47	19	
24	Summers - examplementation	Desc		628	en/an/anne musical	P.	
۵.	Hargenaves PET calculations & specified Ra	Juto	- 1	306	en/as/pone co.d+de	B.	
۵.	Surface, and manual evaluation	Christ2	4	305	85/108/2008 20.++.20	8	
Ċ)	Seturated vs. Unstatuted	Isabalia	1	443	BALTRA DAMA DE CALLE	IF.	
	Streams logics 182 - 283 of 444, surray	to beloothing a decerd	ra andre from	d'apre e			
these 204	are 30 Pages of Topics: 12 + moto even last tages. From (1) t-sches or new.)	Dites. fast	tenen	Descrip	Tel Belet/Finan		

Hand to be and the second to be and t	an users of Antibio Landers parts of Antibio Landers parts of Antibio Landers parts of Antibio Landers of An	 And D. C. R. & Control of the Markovic Media (Control of the Markovic Media) (Con	In zone man promote implementaria for infigrates since ease. Aproximate in the flow function of the same transmission of the same of the same of the same transmission of the same transmission of the ease flow function of the same transmission of the same transmission of the same of an extension of the same transmission of the ease of the same of the same transmission of the ease of the same of the same transmission of the ease of the same of the same transmission of the ease of the same of the same transmission of the ease of the same of the same transmission of the ease of the same of the same transmission of the ease of the same transmission of the same of the ease of the same transmission of the same transmission of the ease of the same transmission of the same transmission of the ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of the ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of the same transmission of ease of the same transmission of
nduckey Hoture 20 4 Markyan References Roman annum striv 2015 20 Bandand VE Segal 6, T. Kushini, Y. Hualien, and U. Shani, Haler upbale and hydraulics of the northan Higosystem, Yadose 1034, 2018 1134, 2018	Brg Hydra-20 & Michigan Rafewiczas (furner version strivPDRuS 20-Bandard) a fluorePDRUS-20 is an update (Fold-StriktS-20 and CH44V-20)	 Segal, E., T. Kushnir, Y. Muslerr, and U. Shani, Water uptake 17234, 2008 	and hydraulics of the roof hair Historghere, Vadose Zone J. 7, 1027-

