The HP2 Program

for

HYDRUS (2D/3D)

A Coupled Code for Simulating Two-Dimensional Variably-Saturated Water Flow, Head Transport, Solute Transport and Biogeochemistry in Porous Media

(HYDRUS + PHREEQC + 2D)

Version 1.0

Jirka Šimůnek¹, Diederik Jacques², Miroslav Šejna³, and Martinus Th. van Genuchten⁴

September 2012

¹Department of Environmental Sciences University of California Riverside Riverside, CA, 92521, USA

²Performance Assessments, Belgian Nuclear Research Institute SCK•CEN, BE-2400 Mol, Belgium

> ³PC Progress, Ltd. Prague, Czech Republic

⁴Department of Mechanical Engineering Federal University of Rio de Janeiro Rio de Janeiro, Brazil

© 2012 J. Šimůnek and M. Šejna. All rights reserved.

Table	of	Contents
-------	----	----------

Ta	ble of (Contents	5	3
Li	st of Fig	gures		5
Li	st of Ta	bles		6
Ab	stract			7
1.	Intro	duction.		9
2.	Runn	ing HP2	from the HYDRUS (2D/3D) Graphical User Interface	11
	2.1.	Prepro	ocessing and Input Data	11
		2.1.1.	Main Processes	11
		2.1.2.	Solute Transport - General Information	12
		2.1.3.	HP2/3 Components and Database Pathway	12
			2.1.3.1. Thermodynamic Databases	13
			2.1.3.2. Components	14
		2.1.4.	PH2/3 Definitions	14
			2.1.4.1. Additions to Thermodynamic Database	15
			2.1.4.2. Definitions of Solution Compositions	16
			2.1.4.3. Geochemical Model	17
			2.1.4.4. Additional Output	17
		2.1.5.	Solute Transport Parameters	20
		2.1.6.	Solute Reaction Parameters	21
		2.1.7.	Initial and Boundary Conditions	20
		2.1.8.	HP2 Print and Punch Controls	20
	2.2.	Post-P	rocessing	25
		2.2.1.	Results – Graphical Display	25
		2.2.2.	Results – Other Information	25
3.	Exam	ple Prob	blems	27
4.	Step-l	by-Step]	Instructions for Selected Examples	
	4.1.	Examp	ole 1: Transport and Cation Exchange (Single Pulse)	
		4.1.1.	Problem Definition	
		4.1.2.	Input	
		4.1.3.	Output	
	4.2.	Examp	ble 2: Transport and Cation Exchange (Multiple Pulses)	

	4.2.1.	Problem Definition	37
	4.2.2.	Input	37
	4.2.3.	Output	39
4.3.	Exampl	e 3: Transport and Dissolution of Gypsum and Calcite	40
	4.3.1.	Problem Definition	40
	4.3.2.	Input	40
	4.3.3.	Output	44
4.4.	Exampl	e 4: Furrow Irrigation with Cation Exchange	48
	4.4.1.	Problem Definition	49
	4.4.2.	Input	50
	4.4.3.	Output	56
4.5.	Exampl	e 5: Leaching of the Uranium Tailings	59
	4.5.1.	Problem Definition	59
	4.5.2.	Input	61
	4.5.3.	Output	73
Reference	es		77

List of Figures

Figure 1.	The Main Processes dialog window11
Figure 2.	The Solute Transport dialog window12
Figure 3.	The HP2/3 Components and Database Pathway dialog window
Figure 4.	The HP2/3 Definitions dialog window (with a displayed Database Viewer)15
Figure 5.	The HP2 Definitions - Additions to Thermodynamic Database dialog window16
Figure 6.	The HP2 Definitions - Definitions of Solution Compositions dialog window17
Figure 7.	The HP2 Definitions - Geochemical Model dialog window18
Figure 8.	The HP2 Definitions - Additional Output dialog window19
Figure 9.	The Solute Transport Parameters dialog window
Figure 10.	The Reaction Parameters for Solute -1 dialog window21
Figure 11.	The "Initial Conditions" part of Data Tab of the Navigator Bar for the HP2 module.
Figure 12.	The HP2-related part of the Time-Variable Boundary Conditions dialog window.22
Figure 13.	The HP2- Print and Punch Controls dialog window23
Figure 14.	The "Results - Graphical Display" part of Data Tab of the Navigator Bar for the HP2 module
Figure 15.	Outflow concentrations of Cl, Ca, Na and K for the single-pulse cation exchange example
Figure 16.	Time series of K concentrations at four depths for the multiple-pulse cation exchange example
Figure 17.	Outflow concentrations for the multiple-pulse cation exchange example
Figure 18.	Vertical profiles of pH (top left), total aqueous C concentration (top right), total aqueous Ca concentration (middle left), total aqueous S concentration (middle right), the amount of gypsum (bottom left) and the amount of calcite (bottom right) at selected print times during dissolution of calcite and gypsum47
Figure 19.	Time series of pH (top left), total aqueous C concentration (top right), total aqueous Ca concentration (middle left), total aqueous S concentration (middle right), the amount of gypsum (bottom left) and the amount of calcite (bottom right) at selected depths (observation nodes) during dissolution of calcite and gypsum48
Figure 20.	Schematic representation and finite element mesh of the flow domain for the furrow rrigation system for example 4
Figure 21.	Pressure head (cm) profiles at times: a) 0.1, b) 0.5, c) 1, and d) 2 days for example 4.
Figure 22.	Chloride concentration profiles (mol L^{-1}) at times: a) 0.1, b) 1, c) 3, and d) 5 days for example 4

Figure 23.	Sodium concentration profiles (mol L ⁻¹) at times: a) 0.5, b) 1, c) 3, and d) 5 days for example 4
Figure 24.	Exchangeable concentrations of sodium (mol kg ⁻¹) profiles at times: a) 0.5, b) 1, c) 3, and d) 5 days for example 4
Figure 25.	Description for the Uranium Tailing Problem [Yeh and Tripathi, 1991]59
Figure 26.	The steady-state pressure head (cm) (top) and flux (cm/d) (bottom) profiles for the Tailing Pile Leaching example
Figure 27.	Uranium concentration profiles at time 0 (top), 250 (middle), and 500 d (bottom) for Tailing Pile Leaching example
Figure 28.	pH (top), calcite (mol/L) (middle), and gypsum (mol/L) (bottom) profiles after 1000 d for the Tailing Pile Leaching example

List of Tables

Table 1.	Soil specific solute transport parameters	20
Table 2.	List of test examples for the HP2 module	27
Table 3.	Reaction network for the uranium tailing problem	60
Table 4.	Initial and boundary compositions of recharge water and pore water in the tailings and regions outside of the tailing for the uranium tailing problem	61

Abstract

Šimůnek, J., D. Jacques, M. Šejna, and M. Th. van Genuchten, The HP2 Program for HYDRUS (2D/3D): A Coupled Code for Simulating Two-Dimensional Variably-Saturated Water Flow, Heat Transport, and Biogeochemistry in Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 78 pp., 2012.

This user manual documents the HP2 program that resulted from coupling Hydrus (its twodimensional part) with the PHREEOC geochemical code [Parkhurst and Appelo, 1999] to create this new comprehensive simulation tool (HP2 - acronym for HYDRUS-PHREEQC-2D), corresponding to a similar one-dimensional module HP1 [Jacques and Šimůnek, 2005; Jacques et al., 2006; Šimůnek et al., 2006, 2008). HP2 has, apart from the dimensionality (2D), the same capabilities as HP1. HP2 contains modules simulating (1) transient water flow, (2) the transport of multiple components, (3) mixed equilibrium/kinetic biogeochemical reactions, and (4) heat transport in two-dimensional variably-saturated porous media (soils). HP2 is thus a significant expansion of the individual HYDRUS-2D and PHREEQC programs by preserving most of their original features. The code still uses the Richards equation for simulating twodimensional variably-saturated water flow and advection-dispersion type equations for heat and solute transport. However, the loosely coupled program can simulate also a broad range of lowtemperature biogeochemical reactions in water, the vadose zone and in ground water systems, including interactions with minerals, gases, exchangers and sorption surfaces based on thermodynamic equilibrium, kinetic, or mixed equilibrium-kinetic reactions. HP2 (similarly as HP1) uses the operator-splitting approach with no iterations during one time step (a noniterative sequential modeling approach).

The HP2 code is fully incorporated into the HYDRUS (2D/3D) software package, and hence is installed automatically, together with selected examples, when one obtains HYDRUS (2D/3D) and HP2 licenses and downloads HYDRUS from the Hydrus website.

The purpose of this report is to documents the **HP2** program for the **HYDRUS** (**2D/3D**) software package [*Šimůnek et al.*, 2011; *Šejna et al.*, 2011] simulating two-dimensional variably-saturated water flow, heat transport, solute transport, and biogeochemistry. The HP2 module, as well as the description of the module in this report, is largely based on the earlier one-dimensional HP1 module *Jacques and Šimůnek* [2005, 2010]. One can find additional useful information, especially related to biogeochemical reactions, in the PHREEQC [*Parkhurst and Appelo*, 1999] and HP1 [*Jacques and Šimůnek*, 2005, 2010] manuals. The report serves as both a **Technical Manual** and a **User Manual**, as well as a reference document of the **Graphical User Interface** of **HP2** related parts of the **HYDRUS** software package.

DISCLAIMER

The HP2 module was developed as a supplemental module of the HYDRUS (2D/3D) software package to simulate the water flow, heat transport, solute transport, and biogeochemical reactions in soils and groundwater. The software has been verified against selected test cases. However, no warranty is given that the program is completely error-free. If you do encounter problems with the code, find errors, or have suggestions for improvement, please contact the senior author at

Jirka Šimůnek Tel/Fax: 1-951-827-7854 Email: jiri.simunek@ucr.edu

1. Introduction

This user manual documents the **HP2** program that resulted from coupling **Hydrus** (its twodimensional part) with the PHREEQC geochemical code [Parkhurst and Appelo, 1999] to create this new comprehensive simulation tool (HP2 - acronym for HYDRUS-PHREEQC-2D), corresponding to a similar one-dimensional module HP1 [Jacques and Šimůnek, 2005; Jacques et al., 2006; Šimůnek et al., 2006, 2008). HP2 has, apart from the dimensionality (2D), the same capabilities as HP1. HP2 contains modules simulating (1) transient water flow, (2) the transport of multiple components, (3) mixed equilibrium/kinetic biogeochemical reactions, and (4) heat transport in two-dimensional variably-saturated porous media (soils). HP2 is thus a significant expansion of the individual HYDRUS-2D and PHREEQC programs by preserving most of their original features. The code still uses the Richards equation for simulating twodimensional variably-saturated water flow and advection-dispersion type equations for heat and solute transport. However, the loosely coupled program can simulate also a broad range of lowtemperature biogeochemical reactions in water, the vadose zone and in ground water systems, including interactions with minerals, gases, exchangers and sorption surfaces based on thermodynamic equilibrium, kinetic, or mixed equilibrium-kinetic reactions. HP2 (similarly as HP1) uses the operator-splitting approach with no iterations during one time step (a noniterative sequential modeling approach). Jacques et al. [2006] evaluated the accuracy of the operator-splitting approach for a kinetic reaction network (i.e., sequential and parallel kinetic degradation reactions) by comparing HP1 with an analytical solution for TCE-degradation, as well as for mixed equilibrium and kinetic reactions involving different flow conditions (steadystate and transient).

Jacques and Šimůnek [2005], *Šimůnek et al.* [2006], *Jacques et al.* [2008ab], demonstrated the versatility of HP1 on several examples, which included a) the transport of heavy metals (Zn^{2+} , Pb^{2+} , and Cd^{2+}) subject to multiple cation exchange reactions, b) transport with mineral dissolution of amorphous SiO₂ and gibbsite (Al(OH)₃), c) heavy metal transport in a medium with a pH-dependent cation exchange complex, d) infiltration of a hyperalkaline solution in a clay sample (this example considers kinetic precipitation-dissolution of kaolinite, illite, quartz, calcite, dolomite, gypsum, hydrotalcite, and sepiolite), e) long-term transient flow and transport of major cations (Na⁺, K⁺, Ca²⁺, and Mg²⁺) and heavy metals (Cd²⁺, Zn²⁺, and Pb²⁺) in a soil profile, f) cadmium leaching in acid sandy soils, g) radionuclide transport, and h) long term uranium migration in agricultural field soils following mineral P-fertilization. Most of these examples have been rerun using HP2, which verified correct implementation of various components of the coupled program.

The HP2 code is fully incorporated into the **HYDRUS** (**2D/3D**) software package, and hence is installed automatically, together with selected examples, when one obtains HYDRUS (2D/3D) and HP2 licenses and downloads HYDRUS from the Hydrus website.

The main purpose of this report is to document a two-dimensional numerical module **HP2** that incorporates flow and transport processes, as well as biogeochemical reactions in variably-saturated porous media. **HP2** was developed specifically for the HYDRUS (2D/3D) software package [*Šimůnek et al.*, 2011; *Šejna et al.*, 2011]. The general conceptual basis of the module is

discussed in detail in reports of *Jacques and Šimůnek* [2005, 2010], and restated here for multidimensional systems.

The documentation in this report focuses mostly on implementation of the **HP2** module into **HYDRUS (2D/3D)**. All processes related to variably-saturated water flow, heat transport, and solute transport are described in detail in the **HYDRUS (2D/3D)** documentation [*Šimůnek et al.*, 2011], and will not be repeated here. Similarly, processes and reactions related to biogeochemical reactions are described in detail in the **PHREEQC** [*Parkhurst and Apello*, 1998] and **HP1** [*Jacques and Šimůnek*, 2005, 2010] manuals.

The **HP2** module may be used to analyze water flow, solute movement, and biogeochemical reactions in unsaturated, partially saturated, or fully saturated porous media. **HP2** can handle flow domains delineated by irregular boundaries. The flow region itself may be composed of nonuniform soils having an arbitrary degree of local anisotropy. Flow and transport can occur in the vertical plane, the horizontal plane, or in a three-dimensional region exhibiting radial symmetry about a vertical axis. The water flow part of the model considers prescribed head and flux boundaries, as well as boundaries controlled by atmospheric conditions.

The governing flow and transport equations are solved numerically using standard Galerkin-type linear finite element schemes. The **HP2** module is fully supported by the HYDRUS (2D/3D) graphical user interface [$\check{S}ejna\ et\ al.$, 2011]. Applications of the **HP2** module are demonstrated later in this report on several examples.

2. Running HP2 from the HYDRUS (2D/3D) Graphical User Interface

The HP2 code is fully incorporated into the HYDRUS (2D/3D) software package, and hence is installed automatically, together with selected examples, when one obtains HYDRUS (2D/3D) and HP2 licenses and downloads HYDRUS from the Hydrus website. The documentation in this report focuses mostly on implementation of the HP2 module into HYDRUS (2D/3D). All processes related to geometry design, finite element discretization, variably-saturated water flow, heat transport, solute transport, initial and boundary conditions are described in detail in the HYDRUS (2D/3D) documentation [*Šimůnek et al.*, 2011; *Šejan et al.*, 2011], and will not be repeated here. Similarly, processes and reactions related to biogeochemical reactions are described in detail in the PHREEQC [*Parkhurst and Apello*, 1998] and HP1 [*Jacques and Šimůnek*, 2005, 2010] manuals.

2.1. Preprocessing and Input Data

HP2 projects are managed in the same way as other HYDRUS (2D/3D) projects using the **Project Manager**. The Project Manager is used to manage data of existing projects, and to locate, open, delete, copy, or rename projects. A new HP2 project is created in the same as any other HYDRUS (2D/3D) project, i.e., using the button "New" in the Project Manager. Since all other inputs, i.e., domain design, FE discretization, water flow and heat transport, are the same as in standard HYDRUS (2D/3D) projects, only parts related specifically to HP2 are discussed below.

2.1.1. Main Processes

The **HP2** module is activated in the **Main Processes** window (Fig. 1) by selecting the **Solute Transport** check box and the **HP2** (**Hydrus + Phreeqc**) radio button.

Figure 1. The Main Processes dialog window.

2.1.2. Solute Transport - General Information

When the **HP2** module is used, basic information needed for defining solute transport problem is entered in the **Solute Transport** dialog window displayed in Figure 2. Once the **HP2** module is selected in the **Main Processes window**, large parts of the **Solute Transport** dialog window are disabled, since they are not relevant to HP2. However, a user can still select the **Space** and **Time Weighting Schemes**, and the **Stability Criterion**, which constraints the temporal discretization (see the HYDRUS Technical Manual). A user has to specify the **Number of Solutes** (i.e., main HP2 components) and can select the tortuosity model (either *Millington and Quirk* [1961] or *Moldrup* [1997, 2000] models can be used). Note that also **Mass Units** are disabled, since concentrations are entered using PHREEQC conventions (i.e., many different types of units can be used, such as mol/l, mmol/L, mg/L, ppm, etc), and results are reported in mol/L (with the assumption that 1 L water = 1 kg water).

Solute Transport		×
Time Weighting Scheme Explicit Scheme Explicit Scheme Crank-Nicholson Scheme Implicit Scheme	Space Weighting Scheme Galerkin Finite Elements Upstream Weighting FE GFE with Artificial Dispersion 	OK Cancel <u>H</u> elp
Solute Information		
Number of Solutes: 8 Pulse Duration [day]: 1000	Mass <u>U</u> nits: mol Stability Criterion: 2	
Iemperature Dependence of Paramete Water Content Dependence of Paramete Use Tortuosity	ers eters Juirk OMoldrup	
Attachment/Detachment Concept (viru: Fumigant Module Additional Fu	s, bacteria transport) 🔄 Filtration Theory Imigant Application at a GivenTime	
Iteration Criteria (for Nonlinear Adsorption o	nly)	
A <u>b</u> solute Concentration Tolerance: <u>R</u> elative Concentration Tolerance: <u>M</u> aximum Number of Iterations:	0	
Initial Conditions		. 🔺
In Liquid Phase Concentrations [Mass_	solute/Volume_water]	<u>`@</u>
○ In Total Concentrations [Mass_solute A ○ Nonequilibrium phase is initially at equilibrium phase is initially at equilibrium phase is initially at equilibrium phase.	/olume_soil] brium with equilibrium phase	<u>N</u> ext <u>P</u> revious

Figure 2. The Solute Transport dialog window.

2.1.3. HP2/3 Components and Database Pathway

The next window that appears is the **HP2/3 Components and Database Pathway** window (Fig. 3).

HP2/3 Components and Database Path to Folder with Thermodynamic I C:\ussl\HYDRUS3D 2.0\Thermody	Pathway Jatabases namicDB\PHREEQC.DAT <u>B</u> rowse	OK Cancel					
Component Presets 1 Total_H 2 Total_O 3 Na 4 K 5 Ca 6 CI 7 N(5)	Component Presets 1 Total_H The PHREEQC.IN 2 Total_O The PHREEQC.IN file specifying the chemical composition and chemical reactions can be created using either the HYDRUS GUI (see the Editor in the next dialog window) or the PHREEQC GUI. 4 K Image: Create PHREEQC.IN file using HYDRUS GUI 5 Ca The PHREEQC.IN file using HYDRUS GUI 6 CI The PHREEQC.In file will be created when the check box above is checked.						
	Boundary Conditions In Concentrations In Solution Compositions	<u>N</u> ext <u>P</u> revious					

Figure 3. The HP2/3 Components and Database Pathway dialog window.

Note that the option to specify initial and boundary conditions **In Concentrations** is disabled and only *Solution Compositions* can be used for this purpose (**In Solution Composition**). Also, the check box **Create PHREEQC.IN file using HYDRUS GUI** is selected by default. Although the PHREEQC.In file can be created outside of the HYDRUS GUI (e.g., using specialized PHREEQC GUIs), we do not recommend to do it that way. Both these options, as well as the format of the structured phreeqc.in file, are discussed in detail by *Jacques and Šimůnek* [2010].

When the option **In Solution Composition** is selected together with the option **Create PHREEQC.IN file using HYDRUS GUI**, then:

- the *phreeqc.in* file (the file with the definition of the geochemical model) is a structured file, which is created and can be modified using the HP2 Definitions dialog window (Fig. 4)
- the composition of the initial and boundary solutions has to be defined in *phreeqc.in* using specific solution composition numbers
- the temporal variation of the boundary solutions is defined in the HYDRUS GUI by specifying the solution composition number corresponding to the solution composition number defined in *phreeqc.in*
- the spatial distribution of the initial solutions is defined in the HYDRUS GUI by specifying the solution composition number in the soil domain corresponding to the solution composition number defined in *phreeqc.in*

2.1.3.1. Thermodynamic Databases

In the HP2/3 Components and Database Pathway window, users have to select the thermodynamic database to be used with HP2 calculations (*Path to Folder with Thermodynamic Databases*; Fig. 2). Thermodynamic databases contain definitions of various chemical species and thermodynamic constants for various chemical reactions, and related information (e.g., temperature dependence, ion activity model, etc). Using the "Browse" button, it is possible to

locate and select a thermodynamic database. Note that the format of the thermodynamic data in the database must follow the conventions of PHREEQC (see PHREEQC-2 manual, *Parkhurst and Appelo*, 1999). A number of thermodynamic databases (e.g., phreeqc.dat, wateq4f.dat, minteq.dat, llnl.dat, ex15.dat, and others, typically included in the PHREEQC-2 program) are installed with HYDRUS into the **ThermodynamicDB** folder. Users can create and use their own database files.

2.1.3.2. Components

The element names of components have to be listed in the **Components** column in the **HP2/3 Components and Database Pathway** dialog window. The number of components is specified in the **Solute Transport - General Information** dialog window (Fig. 2).

Components must start with a capital letter and must be present as element_name in the SOLUTION_MASTER_SPECIES keyword block of the thermodynamic database or in the *phreeqc.in* input file (which can be defined in the GUI in the editor *Addition to the Thermodynamic Database* of the **HP2/3 Definitions** dialog window, Fig. 4). Three special components are:

- **Total_O**: a component related to O(-2) that sums up all O(-2) in the aqueous species except in H₂O. It is recommended to include this component in each project.
- Total_H: a component related to H(1) that sums up all H(1) in the aqueous species except in H_2O . It is recommended to include this component in each project.
- **Charge**: a component related to the charge of the aqueous phase. This component should be used when a non-electrical surface complexation model involving charged species is used. In the non-electrical surface complexation model, positive or negative charges on the surface are not compensated. Therefore the aqueous phase also has a negative or positive charge. Note that the complete system (surface + aqueous phase) is charge balanced.

Each redox state of redox-sensitive components has to be defined as a component. Without a valence state, a redox-sensitive component will not be recognized. Thus, while Fe is not a valid component, Fe(2) and Fe(3) are. HP2 will issue a warning when a component is present in the aqueous phase during the geochemical calculations (with PHREEQC), but is not transported (i.e., when it is not defined as a component in the **HP2/3 Components and Database Pathway** dialog windows; Fig. 3).

2.1.4. HP2/3 Definitions

The *phreeqc.in* file can be modified by users using the text editors in the **HP2/3 Definitions** dialog window (Fig. 4). The **HP2/3 Definitions** dialog window has five pages that can be selected in the top left corner (**List of Pages**). The first four pages are four text editors using which one can edit:

(1) Additions to the Thermodynamic Database (section 2.1.4.1.),

(2) **Definitions of Solution Compositions** (section 2.1.4.2.),

(3) Geochemical Model (section 2.1.4.3.), and

(4) Additional Output (section 2.1.4.4.)

The fifth page (**5** - **Database Viewer**) displays the selected database (e.g., PHREEQC.DAT) (Fig. 4).

HP2/3 Definitions								X
List of Pages	Page 5 of 5 - Data	abase Viewer						ОК
1 - Additions to Thermodynamic Database 2 - Definitions of Solution Compositions 3 - Geochemical Model 4 - Additional Output	SOLUTION_MA # #element	STER_SPEC	IES	alk	gfw formula	element gfw		Cancel <u>H</u> elp
5 - Database Viewer	# H H(0)	H+ H2	-1.0 0.0	H H	- 1.008	-		Undo
Solution Solution	H(1) E O	H+ e- H2O	-1.0 0.0 0.0	0.0 0.0 0	0.0 16.0			Redo
	0(0) 0(-2) Ca	02 H2O Ca+2 Mg+2	0.0	0 0.0 Ca Ma	40.08			
⊕ Exchange ⊕ Gas_phase ⊕ Kinetics	Na K Fe	Na+ K+ Fe+2	0.0 0.0 0.0	Na K Fe	22.989 39.102 55.847	В		
ia⊡ Surface ia⊡ Solid_solution ia⊡ Dutput	Fe (+2) Fe (+3)	Fe+2 Fe+3 Mn+2	0.0	Fe Fe Mn	54, 938			
⊕ Print ⊕ Selected_output	Mn (+2) Mn (+3)	Mn+2 Mn+3	0.0	Mn Mn Al	26 981	5		
User_punch Chemical/physical (re)action	Ba Sr	Ba+2 Sr+2	0.0	Ba Sr	137.34	~		
⊕- Database ⊕- Advanced ⊕- Miscellaneous	C1 C	H45104 Cl- C03-2	0.0	C1 HC03	28.084 35.453 12.011	3		<u>N</u> ext
	C (+4)	C03-2	2.0	HC03			•	Previous

Figure 4. The HP2/3 Definitions dialog window (with a displayed Database Viewer).

The section **Keywords** (double-click to insert) (bottom left part) offers the most commonly used PHREEQC **Keywords** that are used in the four PHREEQC editors. The Keywords are hierarchically organized in a tree-like structure in seven main groups: *Solution Definition*, *Geochemical Model*, *Output*, *Chemical/Physical Reaction*, *Database*, *Advanced*, and *Miscellaneous*. A single click opens a particular tree subsection, a double click copies the selected keyword to the Editor Window.

2.1.4.1. Additions to Thermodynamic Database

Additional thermodynamic definitions can be added to the *phreeqc.in* file (not to the thermodynamic database file itsel) using the editor **Additions to Thermodynamic Database** in the **HP2/3 Definitions** dialog window (Fig. 4). Typical PHREEQC data blocks used here are (found under the *Database* group of the **Keywords**):

- SOLUTION_MASTER_SPECIES
- SOLUTION_SPECIES

- PHASES
- EXCHANGE_MASTER_SPECIES
- EXCHANGE_SPECIES
- SURFACE_MASTER_SPECIES
- SURFACE_SPECIES
- RATES

Users are referred to the PHREEQC-2 manual [*Parkhurst and Appelo*, 1999] for the conventions used for the input of thermodynamic data. An example of "*Additions to Thermodynamic Database*" is shown in Figure 5, in which three SOLUTION_MASTER_SPECIES (U, S, and P), 7 SOLUTION_SPECIES (PO_4^{3-} , SO_4^{2-} , UO_2^{2+} , $CaPO_4^{-}$, $CaHPO_4$, (UO_2)(OH)⁺, and (UO_2)₂ (OH)₂²⁺, and 2 PHASES (gypsum and calcite) are defined.

HP2/3 Definitions					and the second		×
List of Pages	Page 1 of 5 - /	Additions to Thermod	ynamic Datab	ase			ОК
Additions to Thermodynamic Database 2 · Definitions of Solution Compositions 3 · Geochemical Model 4 · Additional Output	#add new	thermodynamic MASTER_SPECIES	data - Th	is block will no	ot be overwritten by HP1	Î	Cancel <u>H</u> elp
5 - Database Viewer	Fe	Fe+2		0 55.847	55.847	=	
	Ca	Ca+2		0 40.08	40.08		Undo
Keywords (double-click to insert)	5	504-2	0.0	238.0290	238.0290		
Solution Definition	P	P04-3	2.0	30.9738	30.9738		Redo
Geochemical Model	SOLUTION	SPECIES					
	Ca	a+2 = Ca+2					
En Chemical/physical (re)action		log_k	0.0				
i Database		re+2 = re+2	0.0				
⊕ Advanced		P04-3 = P04-3	0.0				
		Log k	0.0				
	2	504-2 = 504-2					
	1	log_k	0.0				
	U 1	J02+2 = U02+2					
		log_k	0.0				
	C03-2 + 0	Ca+2 = CaCO3					
	log l	c 3.22					
	C03-2 + 0	Ca+2 + H+ = CaH	ICO3+				*
	log_l	c 11.43					۲ <u>۵</u>
	Fe+2 + H2	20 = FeOH+ + H	÷				
		C -9.5					<u>N</u> ext
	Ca+2 + 50					Ŧ	Previous
	-						

Figure 5. The HP2 Definitions - Additions to Thermodynamic Database dialog window.

2.1.4.2. Definitions of Solution Compositions

Compositions of the initial and boundary solutions are defined using the editor **Definitions of Solution Compositions** (Fig. 6) in the **HP2/3 Definitions** dialog window. Typical PHREEQC data blocks are SOLUTION and SOLUTION_SPREAD. The solution number refers to the solution composition numbers of the initial and boundary solutions defined in the Hydrus GUI.

A following solution composition numbering is used throughout this manual:

- Numbers 1001 2000: to define initial solutions for the mobile water phase.
- Numbers 2001 3000: to define initial solutions for the immobile water phase.
- Numbers 3001 4000: to define boundary solutions

Note that these numbers should all be larger than the maximum number of FE nodes. Thus if the number of FE nodes is 10,000, numbers higher than 10,000 should be used to define the solution compositions otherwise these elements will be linked to a specific FE node.

The initial conditions (spatial distribution of solution composition) are then defined directly using the solution composition numbers. Similarly, boundary conditions are defined using the solution composition numbers.

An example of a solution composition defined using concentrations of various components (i.e., Ca, C, U, P, S, and Fe) and in equilibrium with two phases (i.e., gypsum and calcite) is shown in Figure 6.

Figure 6. The HP2 Definitions - Definitions of Solution Compositions dialog window.

2.1.4.3. Geochemical Model

The definition of the geochemical model is done using the editor **Geochemical Model** (Fig. 7) in the **HP2/3 Definitions** dialog window and it typically involves the following PHREEQC data blocks:

- EXCHANGE
- EQUILIBRIUM_PHASES
- SURFACE
- KINETICS
- SOLID_SOLUTIONS

The numbering of geochemical keywords must either refer to the node numbers, such as

EXCHANGE 1-102

or to a particular material as defined using the HYDRUS GUI, such as

EXCHANGE 1001 -material 1

While in the former case, if the material distribution is changed, the user must change the numbering of the geochemical model as well, in the latter case, there is no need for that. Note that the exchanger number for the latter case should again be larger than the number of FE nodes.

Figure 7 shows an example of the Geochemical Model, in which a pure phase assemblage with three minerals (gypsum, calcite, and O₂) are defined in nodes 1 through 202 using the data block EQUILIBRIUM_PHASES. Cation exchange sites (EXCHANGE) with the cation exchange capacity X of 0.0011 mol/kg and with exchange sites in equilibrium with the solution composition 1001 are defined are also defined.

Figure 7. The HP2 Definitions - Geochemical Model dialog window.

Additionally, the following two lines

```
reactive_transport
-dimension 2
```

indicating to the PHREEQC part of the computational module that the application is twodimensional, should be written into this window. These two lines could be written to any part of the PHREEQC.in file, but we recommend to place them here.

Using the commands at the bottom of the window (Add: Exchange, Surface, Equilibrium Phases, and Kinetics), one can enter the Keyword for a particular process and a template, guiding users how to define a particular process.

2.1.4.4. Additional Output

The user can define additional output using the editor **Additional Output** (Fig. 8) in the **HP2/3 Definitions** dialog window by using the PHREEQC data blocks SELECTED_OUTPUT and USER_PUNCH.

Standard output in HP2 is limited to the concentration of the components. In addition, depending on the options selected in the **HP2/3** – **Print and Punch Control** dialog window (Fig. 13), a number of output files is created. HP2 specific output files (with the file name *variable.hpo*) have the same binary structure as other HYDRUS output files, such as *h.out* or *concx.out* and can be displayed using the GUI. Example shown in Figure 8 requests output for two mineral phases calcite and gypsum, and Na⁺ and Ca²⁺ concentrations at the cation exchange site X.

Figure 8. The HP2 Definitions - Additional Output dialog window.

2.1.5. Solute Transport Parameters

The standard structure of HYDRUS input parameters is preserved also for the HP2 transport module. The input parameters for individual components are described below. Figure 9 shows the **Solute Transport Parameters** dialog window, in which both soil-specific and solute-specific (identified by their component names) transport parameters are specified. Note that the molecular diffusion coefficient in the liquid (Diffus.W.) and gas (Diffus.G.) phases [LT⁻²] are the only solute-specific parameters. Fig. 13). A standard definition of a HP2 transport problem requires equal molecular diffusion coefficients for all components (see *Jacques and Šimůnek*, 2005). However, when a project is defined with no equilibrium aqueous complexation reactions and charged species, different molecular diffusion coefficients can be used.

s	olute Tr	ansport Para	ameters							×
	Soil Sp	ecific Parame	ters				Solute Sp	ecific Parameters	}	ОК
	Mat	Bulk.D. [M/cm^3]	Disp.L. [cm]	Disp.T. [cm]	Mass Tr. [1/day]	Thlmob. [·]	Name	Diffus. W. [cm^2/day]	Diffus. G. [cm^2/day]	Cancel
	1	1.4	2	0.2	0	0	Total_H	2	0	<u>H</u> elp
							Total_0	2	0	
							Ca	2	0	
							CI	2	0	
							Mg	2	0	
							Na	2	0	<u> </u>
							K	2	0	*@_
							S(6)	2	0	
										Next
										Previous
ĮĹ	-									

Figure 9. The Solute Transport Parameters dialog window.

Parameter	Notation	Description
Bulk. D.	ρ	Bulk density [M/L ³]
Disp.L.	λ_L	Longitudinal dispersivity [L]
Disp.T.	λ_T	Transverse dispersivity [L]
Mass Tr.	α	Mass transfer coefficient describing the rate of exchange between the mobile and immobile water contents $[T^{-1}]$. This parameters is used only when the dual-porosity solute transport model is used. Set equal to zero when this model is not used
ThImob.	$ heta_{im}$	Immobile water content when the dual-porosity solute transport model is used. Set equal to zero when this model is not used.

Table 1. Soil specific solute transport parameters.

2.1.6. Solute Reaction Parameters

All reaction parameters are specified in the PHREEQC.in input file (using PHREEQC specific text editors) and thus the **Reaction Parameters** dialog window (Fig. 10) is not used to specify the reaction parameters (that part of the window is disabled), but only to assign *Solution Compositions* to boundaries with constant water flow boundary conditions. *Solution Compositions* assigned to boundaries with time-variable water flow boundary conditions are given in the **Variable Boundary Conditions** window. Solution composition 3001 is used as the boundary condition in the example shown in Figure 10.

R	eaction P	arameters	for Solute	- 1							X
$\left[\right]$	Boundary	/ Conditions									ОК
	1	cBnd1 3001	cBnd2 0	cBnd3 0	cBnd4 0	cRoot 0	cWell 0	cBnd7 0	cAtm 0	d O	Cancel
		1									<u>H</u> elp
	Reaction	Parameters	:								
											*
											<u></u>
											Next

Figure 10. The Reaction Parameters for Solute -1 dialog window.

2.1.7. Initial and Boundary Conditions

Solution composition numbers (e.g., 1001) defined in **Definitions of Solution Compositions** window (Fig. 6) are used to assign different solution compositions to different parts of the transport domain as initial conditions (Fig. 11), similarly as other initial conditions. Solution composition numbers used to assign solute transport initial conditions must correspond to the solution composition numbers defined in *phreeqc.in*.

Initial Conditions
 Pressure Head
 Solution Composition

Figure 11. The "Initial Conditions" part of Data Tab of the Navigator Bar for the HP2 module.

Solution composition numbers (e.g., 1001) defined in **Definitions of Solution Compositions** window (Fig. 6) are similarly used to assign different solution compositions to different boundaries as boundary conditions. For boundaries with constant water flow conditions, solution composition numbers are specified in the **Reaction Parameters** dialog window (Fig. 10). For boundaries with time-variable water flow conditions, solution composition numbers are specified in the **Time Variable Boundary Conditions** dialog window (Fig. 12).

Ti	me Varia	able Boundar	ry Condition	s	1 1 14	P. 7	2.5	447	x
	Paramete	ers							ОК
		Var.H-3 [cm]	Var.Fl4 [cm/day]	Var.H-4 [cm]	cValue1 [kod]	cValue2 [kod]	cValue3 [kod]		Cancel
	1	0	0	450	1001	1002	3001		<u>H</u> elp
	2	0	0	450	1001	1002	3002		
	•							4	Add Line

Figure 12. The HP2-related part of the Time-Variable Boundary Conditions dialog window.

2.1.8. HP2 Print and Punch Controls

The **HP2 Print and Punch Controls** dialog window (Fig. 13) allows users to specify variables (i.e., water, temperature, pH, pe, ionic strength, alkalinity, charge balance, and percent error), times (Print Times), and locations (Observation Nodes), for which output should be provided. The information in this dialog should be self-explanatory. More information is provided in the help file and in the user manual of the HP1 program [*Jacques and Simunek*, 2010].

HP2/3 - Print and Punch Controls			×
Selected Output			ОК
Create Selected Output File	Water	lonic Strength	Cancel
File Name: UTailing.hse	Temperature	Alkalinity	<u>H</u> elp
	V pe	Percent Error	
Punch Times and Locations			
Controlled by HYDRUS	Controlled by PH <u>R</u> B	EQC	
Deserv. Nodes Printed to Different Files	Punch Cells:	1	
Mobile and Immobile Cells in Different Files	Punch <u>F</u> requency:	1	
Make <u>G</u> NUplot Templates			
Print Options			
Main Switch	Location		
No Printing in PHREEQC.OUT	le HYDRUS Observa	tion Nodes	
Printing in PHREEQC.OUT	Other Nodes : (e.g., 1 5 10)		
PHREEQC Dump	Print times		
No Dump Files	Controlled by HYDI	RUS	
Frequency by Print Times	🔵 Everyn Time Step	1	
Frequency by TLevel Print Times			<u>N</u> ext
Frequency Every n Time Steps	Number of Warnings:	2	Previous

Figure 13. The HP2 Print and Punch Controls dialog window.

2.2. Post-Processing

2.2.1. Results – Graphical Display

The output for the HP2 module is similar as the output for the standard HYDRUS module and for standard variables, such as pressure head, water contents, and so on. Multiple variables can be displayed in the View window (Figure 14). Main components defined in the HP2/3 Components and Database Pathway window (Fig. 3), variables selected in the HP2 Print and Punch Controls dialog window (Fig. 12), and variables specified in the Additional Output (Fig. 8) of the HP2/3 Definitions dialog window (Fig. 4) can be displayed this way.

Figure 14 below shows the "Results - Graphical Display" part of Data Tab of the Navigator Bar for the Leaching of the Uranium Tailings example given below (Section 4.5). From the HP2 variables, first seven are the main components (Total_H, Total_O, Ca, C, U, P, S, and Fe) defined in the HP2/3 Components and Database Pathway window (Fig. 3), the next two (pH and pe) are variables selected in the HP2 Print and Punch Controls dialog window (Fig. 12), and finally the last four (calcite, gypsum, ratherfordine and siderite) are mineral phases specified in the Additional Output (Fig. 8) of the HP2/3 Definitions dialog window.

2.2.2. Results – Other Information

The content of the PHREEQC.out output file is described in detail in the PHREEQC user manual [*Parkhurst and Appelo*, 1999].

3. Example Problems

The HP2 module supplements the standard HYDRUS program, which includes variably-saturated water flow and solute transport model, and thus the water flow, solute transport and colloids transport parts of the model have been tested earlier. Therefore, verification and test examples presented in this section concentrate on the demonstration of the new features of the model.

Table 2 shows selected two-dimensional examples that can be downloaded from the HYDRUS (HP2) website. Some of these examples are discussed in detail in the HP1 manuals [*Jacques and Šimůnek*, 2005, 2010]. Others are described in detail in Section 4 together with detailed step-by-step instructions how to develop them using the HYDRUS GUI. We will be continuously expanding this list of examples and tutorials, depending on users needs and interests.

Name	Flow ⁺	Description						
Verification example	Verification examples that can be downloaded from the HYDRUS website							
2D-EQCL	SS	Physical equilibrium transport of chloride (verification problem 1)						
2D-NEQCL	SS	Physical nonequilibrium transport of chloride (verification problem						
		1)						
2D-TransCl	Т	Transient physical nonequilibrium transport (verification problem 2)						
2D-TransCla	Т	Transient equilibrium transport (verification problem 2)						
2D-STAds	SS	Steady state transport of a nonlinearly adsorbing contaminant						
		(verification problem 3)						
2D-STDecay	SS	Steady state transport of a nonlinearly adsorbing and decaying						
		contaminant (verification problem 4)						
2D-SeasonChain	Т	First-order decay chain of nonlinearly adsorbing contaminants						
		during unsteady flow (verification problem 5)						
2D-CatExch	SS	Transport with multiple cation exchange (verification problem 6)						
2D-MinDis	SS	Transport with mineral dissolution						
2D-MCatExch		Heavy metal transport in a medium with a pH-dependent cation						
		exchange complex						

Table 2. List of test examples for the HP2 module.

Verification examples that are described below in this report and that can also be downloaded from the HYDRUS website

2D-CEC-1	SS	Example 1: Transport and Cation Exchange (Single Pulse)
2D-CEC-1	SS	Example 2: Transport and Cation Exchange (Multiple Pulses)
2D-HP1-1	SS	Example 3: Transport and Dissolution of Gypsum and Calcite
2D-CEC-Furrow	Т	Example 4: Furrow Irrigation with cation Exchange
UTailing	Т	Example 5: Leaching of the Uranium Tailings

⁺SS - steady-state water flow, T - transient water flow

4. Step-by-Step Instructions for Selected HP2 Examples

The purpose of these examples is to documents how to use the version 1.0 of HP2. The following tutorials are described in this report:

- 1. Example 1: Transport and Cation Exchange (Single Pulse)
- 2. Example 2: Transport and Cation Exchange (Multiple Pulses)
- 3. Example 3: Transport and Dissolution of Gypsum and Calcite
- 4. Example 4: Furrow Irrigation with cation Exchange
- 5. Example 5: Leaching of the Uranium Tailings

While the first three examples involve one-dimensional steady-state water flow, examples 4 and 5 involve transient two-dimensional water flow. Cation exchange is the main chemical process in examples 1, 2, and 4. Precipitation/dissolution reactions are the main chemical processes in examples 3 and 5. Each of these examples can be easily further modified to include additional chemical processes. Only simple structural FE-Meshes are used in all examples.

4.1. Example 1: Transport and Cation Exchange (Single Pulse)

4.1.1. Problem Definition

This example is adapted from Example 11 of the PHREEQC manual [*Parkhurst and Appelo*, 1999] and is also used in the HP1 manual [*Jacques and Simunek*, 2010]. The chemical composition of the effluent from an 8-cm column containing a cation exchanger is simulated in this example. The column initially contains a Na-K-NO₃ solution in equilibrium with the cation exchanger. The column is flushed with three pore volumes of a CaCl₂ solution. Ca, K and Na are at all times in equilibrium with the exchanger. The simulation is run for one day; the fluid flux density is equal to 24 cm/d (0.00027777 cm/s).

The column is discretized vertically into 40 finite elements and horizontally into two columns (i.e., 82 nodes). The example assumes that the same solution is initially associated with each node. This is, in general, not necessary and different solutions can be defined for each node. The solution, however, must be specified for each node. The exchanger can be defined also for each node, but it does not have to be (this depends on the specific conceptual geochemical model for a project). In this example we use the same exchanger composition at all nodes.

The initial Na-K-NO₃ solution is made by using 1×10^{-3} M NaNO₃ and 2×10^{-4} M KNO₃ M. The inflowing CaCl₂ solution has a concentration of 6×10^{-4} M. Both solutions were prepared under oxidizing conditions (in equilibrium with the partial pressure of oxygen in the atmosphere). The amount of exchange sites (*X*) is 1.1 meq/1 dm³ soil. The log *K* constants for the exchange reactions are defined in the PHREEQC.dat database and do not have to be therefore specified at the input.

This project is available in the Project Group '2D_Tests' and is named 2D-CEC-1. In this example, only the outflow concentrations of Cl, Ca, Na, and K are of interest.

- 4.1.2. Input
- **Project Manager** (File->Project Manager) *Button* "New"

New Project (or File->New)

Name: **2D-CEC-1** Description: Transport and Cation Exchange, single pulse Working Directory: Temporary – exists only when the project is open *Button* "Next"

```
Domain Type and Units (Edit->Domain Geometry->Domain Type and Units)

Type of Geometry: 2D - Simple

2D-Domain Options: 2D - Vertical Plane XZ

Units: cm

Initial Workspace: X-Min=0, X-Max=1, Z-Min=0, Z-Max=8 cm

Button "Next"
```

Regular Domain Definition Dimensions: $Lx = 1$ cm <i>Button</i> "Next"	(Edit->Domain Geometry->Simple Domain) n, $Lz = 8$ cm, Slope $\alpha = 0$
Main Processes (Edit->Flow Uncheck "Water Flow Check "Solute Transp <i>Button</i> "Next"	and Transport Parameters->Main Processes) " (Note: this is a steady-state water flow) ort"
Time Information (Edit->Fle Time Units: Final Time: Initial Time Step: Minimum Time Step: Maximum Time Step:	ow and Transport Parameters->Time Information) Seconds 86400 (s) 180 (s) 180 (s) 180 (s) (Note: we use the constant time step to have the same conditions as in the original comparable PHREEQC
Button "Next"	time steps in HP2).

Output Information (Edit->Flow and Transport Parameters->Output Information)

Print Options: Check T-Level Information Check Screen Output Check Press Enter at the End Print Times: Count: 12 Update Default *Button* "Next"

HP2/3 – Print and Punch Controls

Button "Next

Water Flow - Iteration Criteria (Edit->Flow and Transport Parameters->Water Flow Parameters->Iteration Criteria)

Leave default values except: Lower Time Step Multiplication Factor: 1 (Note: the constant time step) *Button* "Next"

Water Flow - Soil Hydraulic Model (Edit->Flow and Transport Parameters->Water Flow Parameters->Hydraulic Properties Model)

Leave default values as follows: Radio button - van Genuchten-Mualem Radio button - No hysteresis *Button* "Next" **Water Flow - Soil Hydraulic Parameters** (Edit->Flow and Transport Parameters->Water Flow Parameters->Soil Hydraulic Parameters)

Catalog of Soil Hydraulic Properties: Loam

Qs: 1 (Note: to have the same conditions as in the original comparable PHREEQC calculations)

Ks: 0.00027777 (cm/s) *Button* "Next"

Solute Transport – General Info (Edit->Flow and Transport Parameters->Solute Transport Parameters->General Information)

Number of Solutes: 7 Select "HP2 (HYDRUS+PHREEQC)" *Button* "Next"

Solute Transport – HP2/3 Components and Database Pathway

Database Pathway: Leave the default PHREEQC database and default path Add seven components: Total_O, Total_H, Na, K, Ca, Cl, N(5) Leave the checkbox on: "Create the PHREEQC.IN file Using HYDRUS GUI" Leave the radio button on: In Solution Composition *Button* "Next"

Solute Transport – HP2/3 Definitions

Definitions of Solution Composition

Define the initial condition 1001:

- K-Na-N(5) solution
- use pH to charge balance the solution
- Adapt the concentration of O(0) to be in equilibrium with the partial pressure of oxygen in the atmosphere

Define the boundary condition 3001:

- Ca-Cl solution
- Use pH to charge balance the solution
- Adapt the concentration of O(0) to be in equilibrium with the partial pressure of oxygen in the atmosphere

```
Solution 1001 Initial condition
-units mmol/kgw
pH 7 charge
Na 1
K 0.2
N(5) 1.2
O(0) 1 O2(g) -0.68
Solution 3001 Boundary solution
-units mmol/kgw
```

```
pH 7 charge
Ca 0.6
Cl 1.2
O(0) 1 O2(g) -0.68
```

Geochemical Model

Define for each node (82 nodes) the geochemical model, i.e., the cation exchange assemblage X (0.0011 moles/1000 cm³) and equilibrate it with the initial solution (solution 1001). Note that since no equilibrium constants for cation exchange are specified, they are taken from the PHREEQC.dat database. Additionally, indicate to PHREEQC, that this is a two-dimensional project.

```
EXCHANGE 1-82 @Layer 1@
  X 0.0011
  -equilibrate with solution 1001
reactive_transport
-dimension 2
```

Button "OK"

Additional Output

Since output is required only for the total concentrations and such output is available in the automatically generated file *obs_node.out*, there is no need to define additional output. If we want to have spatial profiles of cation exchange concentrations, then we can use the following command:

selected_output
-molalities NaX KX CaX2

Button "Next"

Solute Transport - Solute Transport Parameters (Edit->Flow and Transport Parameters->Solute Transport Parameters->Solute Transport Parameters)

Leave default values Bulk Density = $1.5 \text{ cm}^3/\text{g}$ Longitudinal Dispersivity, Disp.L = 0.2 cmTransverse Dispersivity, Disp.T = 0.02 cmMolecular Diffusion Coefficient for Liquid Phase, Diffus.W.=0*Button* "Next"

Solute Transport - Reaction Parameters (Edit->Flow and Transport Parameters->Solute Transport Parameters->Solute Reaction Parameters)

Boundary Condition: cBnd1=3001 (the solution composition number for the upper boundary condition) *Button* "Next"

Rectangular Domain Spatial Discretization (Edit->FE-Mesh->FE-Mesh Parameters)

Horizontal Discretization in X Count = 1 Entries in the x column: 0, 1 Horizontal Discretization in Z Count = 41 Default Entries in the z column Button "Next"

Rectangular Domain Discretization	P. 1 1 1 1 P. P.	×
Horizontal Discretization in X	Vertical Discretization in Z	ОК
Count: 2 Update	Count: 41 Update	Cancel
x [cm] dz [cm] 1 1 0.00 0.00 2 1.00 0.00 +	z [cm] 1 8.00 2 7.80 3 7.60 4 7.40 5 7.20 6 7.00 7 6.80 8 6.60 9 6.40 10 6.20 11 6.00 12 5.80 13 5.60 14 5.40	<u>H</u> elp
Generate Z - Coordinates	13 3.20	
Set relative size of finite elements: RS1: 1 RS2: 1 Generate	RS1=1.0 RS2=5.0	Next Previous Apply

Default Domain Properties (Edit->Domain Properties->Default Domain Properties)

Set Code on the first and last row to 1. Set the initial pressure head, *h*, for all nodes equal to zero. Set the temperature, Temp, to 25. Set the solution concentration, *sc*, to 1001. *Button* "Next"

	Layer	z [cm]	Code	h [cm]	Q	Mater	Roots	Axz	Bxz	Dxz	Temp [C]	sc		Cance
1	1	8.00	1	0	0	1	0	1	1	1	25	1001		
2	2	7.80	0	0	0	1	0	1	1	1	25	1001		<u>H</u> elp
3	3	7.60	0	0	0	1	0	1	1	1	25	1001		
4	4	7.40	0	0	0	1	0	1	1	1	25	1001		MS Even
5	5	7.20	0	0	0	1	0	1	1	1	25	1001		Import/Exp
6	6	7.00	0	0	0	1	0	1	1	1	25	1001		Copy St
7	7	6.80	0	0	0	1	0	1	1	1	25	1001		
8	8	6.60	0	0	0	1	0	1	1	1	25	1001		Copy A
9	9	6.40	0	0	0	1	0	1	1	1	25	1001		Basta
10	10	6.20	0	0	0	1	0	1	1	1	25	1001		Fasie
11	11	6.00	0	0	0	1	0	1	1	1	25	1001		Edit in
12	12	5.80	0	0	0	1	0	1	1	1	25	1001		Resizeable
13	13	5.60	0	0	0	1	0	1	1	1	25	1001		Window
14	14	5.40	0	0	0	1	0	1	1	1	25	1001		Op <u>e</u> n
15	15	5.20	0	0	0	1	0	1	1	1	25	1001		
16	16	5.00	0	0	0	1	0	1	1	1	25	1001		*
17	17	4.80	0	0	0	1	0	1	1	1	25	1001	Ŧ	1 1

Observation Nodes

Click on the **Domain Properties Tab** under the View Window.

On the Navigator Bar click on *Domain Properties – Observation Nodes* (or Insert->Domain Properties->Observation Nodes).

Click on the Insert Observation Node (Insert Observation Node) command on the Edit Bar and insert one observation nodes in the very bottom left node.

Run Calculations

Click the Calculate Current Project command (¹¹⁴) on the Toolbar (or Calculation-

>Calculate Current Project)

(Execution time on 3 GHz PC -7 s)

Note: This exercise will produce following warnings: "Master species N(3) is present in solution *n* but is not transported.". The same warning occurs for N(0). N(3) and N(0) are two secondary master species from the primary master species N. Only the secondary master species N(5) was defined as a component to be transported (Solute Transport - HP2 Components). HP2, however, checks if all components, which are present during the geochemical calculations, are defined in the transport model. If not, a warning message is generated. In our example, the concentrations of the components N(0) and N(3) are very low under the prevailing oxidizing conditions. Therefore, they can be neglected in the transport problem. If you want to avoid these warnings, you have to either include N(0) and N(3) as components to be transported or define an alternative primary master species representing nitrate (such as Nit⁻) using SOLUTION_MASTER_SPECIES and SOLUTION_SPECIES.

4.1.3. Output

When the program finishes, explore the output files. Display results for "Observation Points". Figure below can be created using the Observation Points (*All Concentration*) information (information from the *obs_nod.out* output file).

Figure 15. Outflow concentrations of Cl, Ca, Na and K for the single-pulse cation exchange example.

The results for this example are shown in Figure 15. The concentrations of node 41 (the last node) are plotted against time. Chloride is a conservative solute and arrives in the effluent at about one pore volume. The sodium initially present in the column exchanges with the incoming calcium and is eluted as long as the exchanger contains sodium. The midpoint of the breakthrough curve for sodium occurs at about 1.5 pore volumes. Because potassium exchanges more strongly than sodium (larger log K in the exchange reaction; note that log K for individual pairs of cations are defined in the database and therefore did not have to be specified), potassium is released after sodium. Finally, when all of the potassium has been released, the concentration of calcium increases to a steady-state value equal to the concentration of the applied solution.
4.2. Example 2: Transport and Cation Exchange (Multiple Pulses)

This project is available in the Project Group '2D_Tests' and is named 2D-CEC-2.

4.2.1. Problem Definition

This example is the same as Example 1, except that time variable concentrations are applied at the soil surface. The following sequence of pulses is applied at the top boundary:

0 - 8 hr: 6 x 10^{-4} M CaCl₂ 8 - 18 hr: 5 x 10^{-6} M CaCl₂, 1 x 10^{-3} M NaNO₃, and 2 x 10^{-4} M KNO₃ 18 - 38 hr: 6 x 10^{-4} M CaCl₂ 38 - 60 hr: 5 x 10^{-6} M CaCl₂, 1 x 10^{-3} M NaNO₃, and 8 x 10^{-4} M KNO₃

4.2.2. Input

Project Manager (File->Project Manager)

Click on **2D-CEC-1** *Button* "Copy" New Name: 2D-CEC-2 Description: Transport and Cation Exchange, multiple pulses *Button* "OK", "Open"

Time Information (Edit->Flow and Transport Parameters->Time Information)

Time Units:hoursFinal Time:60 (h)Initial Time Step:0.1 (h)Minimum Time Step:0.1 (h)Maximum Time Step:0.1 (h)Check Time-Variable Boundary ConditionsNumber of Time-Variable Boundary Records:4Button "Next"

Output Information (Edit->Flow and Transport Parameters->Output Information)

Number of Print Times: 12 Default *Button* "Next"

HP2/3 – Print and Punch Controls Button "Next"

Solute Transport – General Info (Edit->Flow and Transport Parameters->Solute Transport Parameters->General Information) Button "Next"

Solute Transport – HP2 Components and Database Pathway

Button "Next"

Solute Transport – HP2/3 Definitions

Definitions of Solution Composition

Add additional solution compositions for boundary conditions with numbers 3002 and 3003.

```
Solution 3002 Boundary solution
 -units mmol/kgw
ph 7 charge
Na 1
к 0.2
N(5) 1.2
Ca 5E-3
Cl 1E-2
O(0) 1 O2(g) -0.68
Solution 3003 Boundary solution
 -units mmol/kgw
ph 7 charge
Na 1
K 0.8
N(5) 1.8
Ca 5E-3
Cl 1E-2
O(0) 1 O2(g) -0.68
```

Button "OK"

Button "Next"

Time-Variable Boundary Conditions (Edit->Flow and Transport Parameters->Variable Boundary Conditions)

Fill in the time, and the solution composition numbers for the top boundary

Time	cValue1
8	3001
18	3002
38	3001
60	3003

Observation Nodes

Click on the **Domain Properties Tab** under the View Window.

On the Navigator Bar click on *Domain Properties – Observation Nodes* (or Insert->Domain Properties->Observation Nodes).

Click on the Insert Observation Node (Insert Observation Node) command on the Edit Bar and insert observation nodes on the left column at depths of 2, 4, 6, and 8 cm.

Run Calculations

Click the Calculate Current Project command (^{FFI}) on the Toolbar (or Calculation->Calculate Current Project) (Execution time on 3 GHz PC – 7 s)

4.2.3. Output

Figure 16 gives the K concentration at different depths in the profile. Figure 17 shows the outflow concentration. The first pulse is identical to the single pulse project. Then additional solute pulses of different solution compositions will restart the cation exchange process depending on the incoming solution composition.

Figure 16. Time series of K concentrations at four depths for the multiple-pulse cation exchange example.

Figure 17. Outflow concentrations for the multiple-pulse cation exchange example.

4.3. Example 3: Transport and Dissolution of Gypsum and Calcite

This project is available in the Project Group '2D_Tests' and is named 2D-HP1-1.

4.3.1. Problem Definition

Sulfate-free water is infiltrated in a 50-cm long homogeneous soil column under steady-state saturated flow conditions. The reactive minerals present in the soil column are calcite (CaCO₃) and gypsum (CaSO₄.2H₂O), both at a concentration of 2.176×10^{-2} mmol/kg soil.

Physical properties of the soil column are as follows: the porosity of 0.35, the saturated hydraulic conductivity of 10 cm/day, the bulk density of 1.8 g/cm³, and the dispersivity of 1 cm.

The input solution contains 1 mM $CaCl_2$ and is in equilibrium with the atmospheric partial pressure of oxygen and carbon dioxide. The initial soil solution is in equilibrium with the reactive minerals and with the atmospheric partial pressure of oxygen. As a result of these equilibria, the initial soil solution contains only Ca and oxidized components of S and C.

Calculate the movement of dissolution fronts of calcite and gypsum over a period of 2.5 days.

4.3.2. Input

```
Project Manager (File->Project Manager)
Button "New"
```

```
New Project (or File->New)
```

Name: 2D-HP1-1

Description: "Dissolution of calcite and gypsum in the soil profile" Working Directory: Temporary – exists only when the project is open *Button* Next"

Domain Type and Units (Edit->Domain Geometry->Domain Type and Units) Type of Geometry: 2D - Simple 2D-Domain Options: 2D - Vertical Plane XZ Units: cm Initial Workspace: X-Min=0, X-Max=1, Z-Min=0, Z-Max=5 cm Button "Next"
Regular Domain Definition (Edit->Domain Geometry->Simple Domain) Dimensions: $Lx = 1$ cm, $Lz = 50$ cm, Slope $\alpha = 0$ <i>Button</i> "Next"
Main Processes (Edit->Flow and Transport Parameters->Main Processes) Uncheck "Water Flow" (Note: this is a steady-state water flow)

Check "Solute Transport" *Button* "Next" **Time Information** (Edit->Flow and Transport Parameters->Time Information)

Time Units: Days Final Time: 2.5 (d) Initial Time Step: .001 (d) Maximum Time Step: 0.05 *Button* "Next"

Output Information (Edit->Flow and Transport Parameters->Output Information)

Print Options: Uncheck T-Level Information Check Interval Output Time Interval: 0.025 Check Screen Output Check Press Enter at the End Print Times: Count: 5 Update Default *Button* "Next"

HP2/3 – Print and Punch Controls

Check: "Make GNUplot Templates"

This allows easy visualization of time series and profile data for variables, which are defined in the SELECTED_OUTPUT section below in this dialog window and also defined later in the *Additional Output* part of the Solute Transport – HP2 Definitions dialog.

Button "Next"

```
Water Flow - Iteration Criteria (Edit->Flow and Transport Parameters->Water Flow
```

Parameters->Iteration Criteria) Leave default values *Button* "Next"

Water Flow – Soil Hydraulic Model (Edit->Flow and Transport Parameters->Water Flow Parameters->Hydraulic Properties Model)

Leave default values as follows: Radio button - van Genuchten-Mualem *Button* "Next"

Water Flow - Soil Hydraulic Parameters (Edit->Flow and Transport Parameters->Water Flow Parameters->Soil Hydraulic Parameters)

Catalog of Soil Hydraulic Properties: Loam Qs: 0.35 Ks: 10 (cm/d) *Button* "Next" Solute Transport – General Info (Edit->Flow and Transport Parameters->Solute Transport

Parameters->General Information) Number of Solutes: 6 Select "HP2 (HYDRUS+PHREEQC)" Button "Next"

Solute Transport – HP1 Components and Database Pathway

Database Pathway: Leave the default PHREEQC database and default path Six Components: Total_O, Total_H, Ca, C(4), Cl, S(6)

Note: Redox sensitive components should be entered with the secondary master species, i.e., with their valence state between brackets. The primary master species of a redox sensitive component, i.e., the element name without a valence state, is not recognized as a component to be transported. Therefore, the primary master species C cannot be entered here; one has to enter either C(4) or C(-4). Also S is not allowed; one has to enter either S(6) or S(-2). Note that the HYDRUS GUI will not check if a correct master species is entered. Because the redox potential is high in this example (a high partial pressure of oxygen), the secondary master species C(-4) and S(-2) are not considered.

Check: "Create PHREEQC.IN file using HYDRUS GUI" *Button* "Next"

Solute Transport – HP2/3 Definitions

Definitions of Solution Composition

Define the initial condition, i.e., the solution composition of water in the soil column, with the identifier 1001:

- Pure water
- Bring it in equilibrium with gypsum, calcite, and O(0), to be in equilibrium with the partial pressure of oxygen in the atmosphere

Define the boundary condition, i.e., the solution composition of water entering the soil column, with the identifier 3001:

- Ca-Cl solution
- Use pH to obtain the charge balance of the solution
- Adapt the concentration of O(0) and C(4) to be in equilibrium with the atmospheric partial pressure of oxygen and carbon dioxide, respectively

```
solution 1001
equilibrium_phases 1001
gypsum
calcite
02(g) -0.68
save solution 1001
end
solution 3001
```

```
-units mmol/kgw
pH 7 charge
Cl 2
Ca 1
O(0) 1 O2(g) -0.68
C(4) 1 CO2(g) -3.5
```

Button "OK"

Geochemical Model

Define for each node the geochemical model. Note that the initial amount of a mineral must be defined as mol/1 dm³ soil (i.e., 2.176×10^{-5} mol/kg soil * 1.8 kg/1 dm³). Additionally, indicate to PHREEQC, that this is a two-dimensional project.

```
Equilibrium_phases 1-101
gypsum 0 3.9E-5
calcite 0 3.9E-5
02(g) -0.68
reactive_transport
-dimension 2
```

Button "OK"

Additional Output

Define the additional output to be written to selected output files.

```
selected_output
  -totals Ca Mg Cl S C
  -equilibrium_phases gypsum calcite
```

Button "OK" Button "Next"

Solute Transport - Solute Transport Parameters (Edit->Flow and Transport Parameters->Solute Transport Parameters->Solute Transport Parameters)

Bulk D. = 1.8 (g/cm³) Longitudinal Dispersivity, Disp.L = 1 cm Transverse Dispersivity, Disp.T = 0.1 cm Molecular Diffusion Coefficient for Liquid Phase, Diffus.W.=0 *Button* "Next"

Solute Transport - Reaction Parameters (Edit->Flow and Transport Parameters->Solute Transport Parameters->Solute Reaction Parameters)

Boundary Condition: cBnd1=3001 (the solution composition number for the upper boundary condition)

Button "Next"

Rectangular Domain Spatial Discretization (Edit->FE-Mesh->FE-Mesh Parameters)

Horizontal Discretization in X Count = 1 Entries in the x column: 0, 1 Horizontal Discretization in Z Count = 101 Default Entries in the z column Button "Next"

Default Domain Properties (Edit->Domain Properties->Default Domain Properties)

Set Code on the first and last row to 1. Set the initial pressure head, *h*, for all nodes equal to zero. Set the temperature, Temp, to 25. Set the solution concentration, *sc*, to 1001. *Button* "Next"

Observation Nodes

Click on the **Domain Properties Tab** under the View Window.

On the Navigator Bar click on *Domain Properties – Observation Nodes* (or Insert->Domain Properties->Observation Nodes).

Click on the Insert Observation Node (Insert Observation Node) command on the Edit Bar and insert observation nodes at a depth increment of 10 cm.

Run Calculations

Click the Calculate Current Project command (\bowtie) on the Toolbar (or Calculation->Calculate Current Project) (Execution time on 3 GHz PC – 5 s)

4.3.3. Output

The standard HYDRUS output can be viewed using commands in the Results part of the Navigator Bar. Only the total concentrations of the components, which were defined in "Solute Transport – HP2 Components", at the observation nodes can be viewed using the HYDRUS-GUI.

HP2 creates a number of additional output files in the project folder. The path to the project folder is displayed in the Project Manager:

File -> Project Information

Path: Gives the path to the project group folder. The path can be copied into the Windows Explorer to locate all project files.

Following HP2 output files are created for the HP2-1 project:

Createdfiles.out	An ASCII text file containing a list of all files created by HP2 (in
	addition to the output files created by the HYDRUS module of
D1	HP2);
Phreeqc.out	An ASCII text file, which is the standard output file created by the
	PHREEQC-module in HP2 and can be viewed via the GUI:
	Results->HP2 Text Output
	or via the Project Navigator bar
ПЗD2_2D_ПГ2-1. <i>nse</i>	All ASCII text line, tab-deminited, that includes a selected output of
	transport calculations. Inspection of this file can be done with any
	spreadsheet, such as MS Excel:
obs_nod_chem41.out	T
obs_nod_chem81.out	
obs_nod_chem121.out	
obs_nod_chem161.out	
obs_nod_chem201.out	A series of ASCII files, tab-delimited, with the selected output for
	the defined observation nodes (41, 81, 121, 161, and 201) at
	specific times (every 0.025 days). Numerical values can be seen by
	opening this file in a spreadsheet, such as Excel. A single plot of
	time series at five observation nodes can be generated for each
	geochemical variable with the ts_*.plt files using the GNUPLOT
ta mII mlt	graphical program (see below);
ıs_pn.pu	an ASCH the containing command the instructions to generate a plot of pH (or po, or other variables) using CNUPLOT:
ts na nlt	plot of pH (of pe, of other variables) using ONOPLOT,
ts_pe.pii	An ASCII file containing command line instructions to generate a
is_i0i_Cu.pii	nlot with total concentrations of Ca (or Cl. S and C) using
	GNUPLOT:
ts tot Cl.plt	,
ts_tot_S.plt	
ts_tot_C.plt	
ts_eq_gypsum.plt	An ASCII file containing command line instructions to generate a
	plot with the amount of the minerals gypsum (or calcite) with
	GNUPLOT;
ts_eq_calcite.plt	
ts_d_eq_gypsum.plt	An ASCII file containing command line instructions to generate a
	plot with the change in amount of the minerals gypsum (or calcite)
4	with GNUPLOI;
ts_a_eq_calcite.plf	

To view these various plots, the GNUPLOT code needs to be installed on your computer. GNUPLOT is freeware software that can be downloaded from <u>http://www.gnuplot.info/</u>. Note that GNUPLOT (the wgnuplot.exe program for the Windows OS) is usually, after being downloaded, in the gnuplot\bin folder and does not require any additional special installation.

After opening the Windows version of GNUPLOT by clicking on wgnuplot.exe, a plot can be directly generated by carrying out these commands:

File->Open Browse to the project folder Open the template file of interest (*.plt)

The figure can be adapted using line commands (see tutorials on the internet). After adaptations, the command lines can be saved to be used later on. If you have trouble with the display of fonts, it is possible that the terminal on your computer is set incorrectly. In such case, type at the GNUPlot prompt:

Gnuplot> set terminal "Windows"

The default terminal for the plots should be Window. We illustrate here only how a plot can be transferred to another terminal:

Set terminal emf Set output "*name*.emf" Replot Set terminal window Replot

A *name*.emf file is created in the project directory.

Figure 18 shows vertical profiles of pH, total aqueous C concentration, total aqueous Ca concentration, total aqueous S concentration, the amount of gypsum and the amount of calcite at selected print times during dissolution of calcite and gypsum. Figure 19 shows the time series of pH, total aqueous C concentration, total aqueous Ca concentration, total aqueous S concentration, the amount of gypsum and the amount of calcite at selected observation nodes during dissolution of calcite at selected observation nodes during dissolution of calcite and gypsum.

Figure 18. Vertical profiles of pH (top left), total aqueous C concentration (top right), total aqueous Ca concentration (middle left), total aqueous S concentration (middle right), the amount of gypsum (bottom left) and the amount of calcite (bottom right) at selected print times during dissolution of calcite and gypsum.

Figure 19. Time series of pH (top left), total aqueous C concentration (top right), total aqueous Ca concentration (middle left), total aqueous S concentration (middle right), the amount of gypsum (bottom left) and the amount of calcite (bottom right) at selected depths (observation nodes) during dissolution of calcite and gypsum.

4.4. Example 4: Furrow Irrigation with Cation Exchange

4.4.1. Problem Definition

A furrow irrigation problem, similar to the one used in the UNSATCHEM manual, was used to simulate two-dimensional infiltration of gypsum saturated water into a sodic soil. The example thus simulates sodic soil reclamation problem and demonstrates the cation exchange feature of HP2. The schematic representation of the flow domain for the considered furrow irrigation together with the finite element mesh is presented in Figure 20. It is assumed that every other furrow is flooded with water and that the water level in the irrigated furrow is kept constant at a level of 6 cm. Due to symmetry, it is necessary to carry out the simulation only for the domain between the axis of two neighboring furrows. Free drainage is used as the bottom boundary condition and zero flux is considered on the rest of the boundary. The initial pressure head condition is -200 cm and the soil hydraulic properties for silt are used.

Figure 20. Schematic representation and finite element mesh of the flow domain for the furrow irrigation system for example 4.

The calculation was run at a constant temperature of 25 °C. The bulk density of the soil was taken as 1.4 g cm⁻³ and molecular diffusion as 2 cm²day⁻¹. Longitudinal and transverse dispersivities were equal to 2 and 0.2 cm, respectively.

The solution composition of the water initially present in the soil profile is that of the following highly sodic water: $Ca_T=1.0 Mg_T=0.0$, $Na_T=5.0$, $K_T=0.0$, $SO_{4T}=3.5$, $Cl_T=0.0 \text{ mmol } L^{-1}$. The cation exchange capacity is equal to 7.143 mmol kg⁻¹ (10 mmol dm⁻³) and is divided between exchangeable calcium and sodium (it is equilibrated with the solution). The solution composition of the irrigation water was almost gypsum saturated: $Ca_T=16.3$, $Mg_T=0.0$, $Na_T=4.4$, $K_T=0.0$, $Cl_T=5.0$, $SO_{4T}=16.0 \text{ mmol} L^{-1}$. As a consequence of the reactions of the irrigation water with the exchanger composition, cation exchange was the dominant chemical processes in the soil profile. Cation exchange is treated as an instantaneous process in the model.

4.4.2. Input

- **Project Manager** (File->Project Manager) *Button* "New"
- **New Project** (or File->New)

Name: **2D-CEC-Furrow**

Description: HP2 Test: Furrow Irrigation, Transport and Cation Exchange Working Directory: Temporary – exists only when the project is open *Button* "Next"

Domain Type and Units (Edit->Domain Geometry->Domain Type and Units)

Type of Geometry: 2D - Simple 2D-Domain Options: 2D - Vertical Plane XZ Units: cm Initial Workspace: X-Min=0, X-Max=100, Z-Min=0, Z-Max=100 cm *Button* "Next"

Regular Domain Definition (Edit->Domain Geometry->Simple Domain)

Dimensions: Lx = 100 cm, Lz = 100 cm, Slope $\alpha = 0$ Button "Next"

Main Processes (Edit->Flow and Transport Parameters->Main Processes) Check "Water Flow" (Note: this is transient water flow) Check "Solute Transport"

Check "HP2" Button "Next"

Time Information (Edit->Flow and Transport Parameters->Time Information)

Time Units:	Days
Final Time:	5 (d)
Initial Time Step:	0.0005 (d)

Minimum Time Step: 1e-05 (d) Maximum Time Step: 5 (d) *Button* "Next"

Output Information (Edit->Flow and Transport Parameters->Output Information)

Print Options: Check T-Level Information Check Screen Output Check Press Enter at the End Print Times: Count: 8

Print Times: 0.05, 0.1, 0.25, 0.5, 1, 2, 3, 5 (d) *Button* "Next"

HP2/3 – Print and Punch Controls

Number of Warnings: 5 *Button* "Next

Water Flow - Iteration Criteria (Edit->Flow and Transport Parameters->Water Flow

Parameters->Iteration Criteria) Leave default values *Button* "Next"

Water Flow - Soil Hydraulic Model (Edit->Flow and Transport Parameters->Water Flow

Parameters->Hydraulic Properties Model) Leave default values as follows: Radio button - van Genuchten-Mualem Radio button - No hysteresis Button "Next"

Water Flow - Soil Hydraulic Parameters (Edit->Flow and Transport Parameters->Water Flow Parameters->Soil Hydraulic Parameters)

Catalog of Soil Hydraulic Properties: Silt *Button* "Next"

Solute Transport – General Info (Edit->Flow and Transport Parameters->Solute Transport

Parameters->General Information) Number of Solutes: 8 *Button* "Next"

Solute Transport – HP2/3 Components and Database Pathway

Database Pathway: Leave the default PHREEQC database and default path Add seven components: Total_O, Total_H, Ca, Mg, Na, K, Cl, S(6) Leave the checkbox on: "Create the PHREEQC.IN file Using HYDRUS GUI" Leave the radio button on: In Solution Composition *Button* "Next"

Solute Transport – HP2/3 Definitions

Select Definitions of Solution Composition

Define the initial condition 1501:

- Ca-Na-SO₄ solution
- use pH to charge balance the solution
- Adapt the concentration of O(0) to be in equilibrium with the partial pressure of oxygen in the atmosphere

Define the boundary condition 3001:

- Ca-Na-Cl-SO₄ solution
- Use pH to charge balance the solution
- Adapt the concentration of O(0) to be in equilibrium with the partial pressure of oxygen in the atmosphere

```
Solution 1501 Initial condition
-units mmol/kgw
pH 7 charge
Na 5.0
Ca 1.0
Cl 0.0
S(6) 3.5
O(0) 1 O2(g) -0.68
Solution 3001 Boundary solution
 -units mmol/kgw
pH 7 charge
Ca 16.3
Na 4.4
Cl 5.0
S(6) 16.0
O(0) 1 O2(g) -0.68
```

Select Geochemical Model

Define for each node (1170 nodes) the geochemical model, i.e., the cation exchange assemblage X (0.01 moles/dm³) and equilibrate it with the initial solution (solution 1501). Note that since no equilibrium constants for cation exchange are specified, they are taken from the PHREEQC.dat database.

EXCHANGE 1-1170 X 0.01 -equilibrate with solution 1501

Additionally, you may indicate to PHREEQC, that this is a two-dimensional project. However, this information will be added by default in GUI, if not specified manually.

```
reactive_transport
-dimension 2
```

Select Additional Output

Define the additional output to be written to selected output files.

```
selected_output
-equilibrium_phases gypsum calcite
-molalities NaX CaX2
```

Button "Next"

Solute Transport - Solute Transport Parameters (Edit->Flow and Transport Parameters->Solute Transport Parameters->Solute Transport Parameters)

Leave default values Bulk Density = $1.4 \text{ cm}^3/\text{g}$ Longitudinal Dispersivity, Disp.L = 2 cm Transverse Dispersivity, Disp.T = 0.2 cmMolecular Diffusion Coefficient for Liquid Phase, Diffus.W.= $2 \text{ cm}^2/\text{d}$ (for all components) Button "Next"

Solute Transport - Reaction Parameters (Edit->Flow and Transport Parameters->Solute Transport Parameters->Solute Reaction Parameters)

Boundary Condition: cBnd1=3001 (the solution composition number for the upper boundary condition) *Button* "Next"

Rectangular Domain Spatial Discretization (Edit->FE-Mesh->FE-Mesh Parameters)

Horizontal Discretization in X

Count = 45

Entries in the x column: 0, 3, 6, 9, 12, 15, 16.5, 18, 19.5, 21, 22.5, 24, 25.5, 27, 28.5, 30, 32, 34, 36.5, 39, 42, 46, 50, 54, 58, 61, 63.5, 66, 68, 70, 71.5, 73, 74.5, 76, 77.5, 79, 80.5, 82, 83.5, 85, 88, 91, 94, 97, 100

Horizontal Discretization in Z

Count = 26

Entries in z column: 100, 99, 97.5, 95.5, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 62, 58, 54, 50, 45, 40, 34, 28, 21, 14, 7, 0

Button "Next"

Horizonta	I Discretization	in×	Vertical Di	scretization in Z	OK
Count:	45 Update		Count	26 Update	Cancel
	x [cm]	dz [cm] 🔺		z [cm] 🔺	Help
1	0.00	-15.00	1	100.00	
2	3.00	-15.00	2	99.00	
3	6.00	-15.00	3	97.50	
4	9.00	-15.00	4	95.50	
5	12.00	-15.00	5	93.00	
6	15.00	-15.00	6	90.00	
7	7 16.50 -13.50		7	87.00	
8	8 18.00 -12.00		8	84.00	
9	19.50 -10.50		9	81.00	
10	21.00 -9.00		10	78.00	
11	22.50	-7.50	11	75.00	
12	24.00	-6.00	12	72.00	
13	25.50	-4.50	13	69.00	
14	27.00	-3.00	14	66.00	
15	28.50	-1.50 👻	15	62.00 👻	
Generate	Z - Coordinate:	2			
	Set relative size	e of finite			
	elements:		RS	1=1.0	
	RS1:	1			
	RS2:	1			<u>N</u> ext
	Gene	rate			Previous

Default Domain Properties (Edit->Domain Properties->Default Domain Properties) Set Code on the last row to -6 (free drainage).

Set the initial pressure head, h, for all nodes equal to -200.

Set the temperature, Temp, to 25.

Set the solution concentration, sc, to 1501.

Button "Next"

	Laver	z [cm]	Code	h [cm]	ß	Mater	Boots	Axz	Bxz	Dxz	Temp [C]	sc		Canad
1	1	100.00		[o]	~ 0	1	0	1	1	1	25	1501		
2	2	99.00	0	-200	0	1	0	1	1	1	25	1501		<u>H</u> elp
3	3	97.50	0	-200	0	1	0	1	1	1	25	1501		
4	4	95.50	0	-200	0	1	0	1	1	1	25	1501		MC Freed
5	5	93.00	0	-200	0	1	0	1	1	1	25	1501		Import/Excel
6	6	90.00	0	-200	0	1	0	1	1	1	25	1501		
7	7	87.00	0	-200	0	1	0	1	1	1	25	1501		Copy S
8	8	84.00	0	-200	0	1	0	1	1	1	25	1501		Copy A
9	9	81.00	0	-200	0	1	0	1	1	1	25	1501		
10	10	78.00	0	-200	0	1	0	1	1	1	25	1501		Paste
11	11	75.00	0	-200	0	1	0	1	1	1	25	1501		Edit in
12	12	72.00	0	-200	0	1	0	1	1	1	25	1501		Resizeable
13	13	69.00	0	-200	0	1	0	1	1	1	25	1501		Window
14	14	66.00	0	-200	0	1	0	1	1	1	25	1501		Op <u>e</u> n
15	15	62.00	0	-200	0	1	0	1	1	1	25	1501		
16	16	58.00	0	-200	0	1	0	1	1	1	25	1501		*
17	17	54.00	0	-200	0	1	0	1	1	1	25	1501	Ŧ	2 (C)

Water Flow Boundary Conditions (Edit->Boundary Conditions->Water Flow) Click on the **Boundary Conditions Tab** under the View Window.

a) Click on Zoom by Rectangle (^(Q)) at the Toolbar (or View-> Zoom by Rectangle) and zoom on the left furrow.

Select *Constant Head* (Constant Head) from the Edit Bar, select bottom of the left furrow and 4 nodes on the side, specify 6 cm with *Equilibrium from the lowest located nodal point*.

- b) Click on *View All* (⁽¹⁾) at the Toolbar (or View->View All).
 Select *Free Drainage* (Free Drainage) from the Edit Bar, and select the entire bottom of the transport domain.
- c) On the Navigator Bar double click on Solute Transport
 Click on Display codes on the Edit Bar (Display Codes) and check that "-1" (or "+1") is displayed in the furrow. This means that solution composition 1 will be applied with the irrigation water.
 Uncheck "Display Codes" again.

Observation Nodes

Click on the **Domain Properties Tab** under the View Window.

On the Navigator Bar click on *Domain Properties – Observation Nodes* (or Insert->Domain Properties->Observation Nodes).

Click on the Insert command on the Edit Bar and specify 5 points arbitrarily in the transport domain between the furrow and the bottom of the transport domain.

Save

Save the project using the Save command (\square) on the Toolbar (or File->Save).

Run Calculations

Click the Calculate Current Project command (^{FFI}) on the Toolbar (or Calculation->Calculate Current Project)

4.4.3. Output

Figure 21 shows the pressure head profiles for four different times. The distribution of chloride concentrations (a tracer) is shown on Figure 22.

Figure 21. Pressure head (cm) profiles at times: a) 0.1, b) 0.5, c) 1, and d) 2 days for example 4.

Figure 22. Chloride concentration profiles (mol L^{-1}) at times: a) 0.1, b) 1, c) 3, and d) 5 days for example 4.

Figure 23. Sodium concentration profiles (mol L⁻¹) at times: a) 0.5, b) 1, c) 3, and d) 5 days for example 4.

Figures 23 and 24 present the liquid phase and exchangeable concentrations of sodium, respectively. The exchange phase concentrations reflect the changes in aqueous Na and Ca concentration. Note the significant lagging of the exchanger front to both the water and tracer front. Also due to the high nonlinearity of Na-Ca exchange, the concentration and exchange fronts are very sharp, in contrast to the more diffuse tracer fronts. After 5 days less than 25% of the profile has been reclaimed to exchangeable sodium percentage less than 15 (which has been the criteria defining the designation sodic soil). The selected cation exchange capacity of 10 mmol kg⁻¹ is relatively low. Selection of a higher exchange capacity and associated hydraulic properties of a finer textured soil would enhance both the time required for infiltration, as well as quantity of water required for reclamation.

Figure 24. Exchangeable concentrations of sodium (mol kgw⁻¹) profiles at times: a) 0.5, b) 1, c) 3, and d) 5 days for example 4.

4.5. Example 5: Leaching of the Uranium Tailings

4.5.1. Problem Definition

This problem was inspired by, and is a modification of (to make it more realistic), a problem reported by *Yeh and Tripathi* [1991]. The problem considers the release and migration of uranium from a simplified uranium mill tailings pile towards a river. The schematic of the transport domain is shown in Figure 25. The mill tailings pile is located adjacent to a surface that slopes down to a river. The medium has the hydraulic properties of a loam with the saturated hydraulic conductivity of $K_s = 3.78$ m/day.

Figure 25 Problem Description for the Uranium Tailing Problem [Yeh and Tripathi, 1991].

The horizontal bottom of the region is impermeable. The vertical left-edge has the Dirichlet boundary condition (*Variable Head 1*) with a groundwater table 12 m above the bottom of the transport domain (exactly in the middle of the boundary). The top boundary (except for the mill tailing pile and the river) has a flux boundary condition (*Variable Flux 2*) with a net rainfall rate of 0.139 cm/day. The horizontal region on the top of the mill tailings pile is a Cauchy flow boundary (*Variable Flux 3*) with an infiltration rate of 1.39 cm/day. The nodes on the vertical line on the right side and the nodes on the river bottom have the Dirichlet boundary condition (*Variable Head 1*) reflecting the position of water in the river (4.5 m above the bottom of the transport domain). A hypothetical pumping well with a withdrawal rate of 271.58 cm²/day is located at (x, z) = (400, 100). The region is discretized using a structural FE mesh with 1564 elements and 852 nodes.

Table 3 lists chemical reactions and their thermodynamic equilibrium constants considered in this example. For reactive hydrogeochemical transport, the problem consists of eight components: Total H, Total O, Ca, C, uranium, sulfate, phosphate, and Fe. A total of 35 species and 14 minerals is defined for the problem; redox reactions were not considered. Table 3 lists chemical reactions involved in this example.

Reaction	No	Log K
Aqueous Complexation Reactions	·	
$H_2O \iff H^+ + OH^-$	(R1)	-14.00
$Ca^{2+} + CO_3^{2-} \Leftrightarrow CaCO3 (aq)$	(R2)	3.22
$Ca^{2+} + H^+ + CO_3^{2-} \iff CaHCO_3^+$	(R3)	11.43
$Ca^{2+} + SO_4^{2-} \iff CaSO_4 (aq)$	(R4)	2.31
$Ca^{2+} + 2H^+ + PO_4^{3-} \Leftrightarrow CaH^2PO_4^+$	(R5)	20.96
$Ca^{2+} + PO_4^{3-} \iff CaPO_4-$	(R6)	6.46
$Ca^{2+} + H^+ + PO_4^{3-} \iff CaHPO_{4 (aq)}$	(R7)	15.08
$Ca^{2+} + H_2O \iff H^+ + CaOH^+$	(R8)	-12.58
$Fe^{2+} + SO_4^{2-} \iff FeSO_{4 (aq)}$	(R9)	2.20
$Fe^{2+} + H_2O \iff H^+ + FeOH^+$	(R10)	-9.50
$Fe^{2+} + 2H_2O \iff 2H^+ + Fe(OH)_{2 (aq)}$	(R11)	-20.57
$Fe^{2+} + 3H_2O \iff 3H^+ + Fe(OH)_3^-$	(R12)	-31.00
$Fe^{2+} + 4H_2O \iff 4H^+ + Fe(OH)_4^{2-}$	(R13)	-43.00
$UO_2^{2+} + H_2O \iff H^+ + (UO_2)(OH)^+$	(R14)	-5.30
$2UO_2^{2^+} + 2H_2O \iff 2H^+ + (UO2)_2(OH)_2^{2^+}$	(R15)	-5.68
$3UO_2^{2^+} + 4H_2O \iff 4H^+ + (UO2)_3(OH)_4^{2^+}$	(R16)	-11.88
$3UO_2^{2+} + 5H_2O \iff 5H^+ + (UO2)_3(OH)_5^+$	(R17)	-15.82
$4\mathrm{UO_2}^{2^+} + 7\mathrm{H_2O} \iff 7\mathrm{H^+} + (\mathrm{UO2})_4(\mathrm{OH})_7^+$	(R18)	-21.90
$3UO_2^{2+} + 7H_2O \iff 7H^+ + (UO_2)_3(OH)_7^-$	(R19)	-28.34
$UO_2^{2+} + CO_3^{2-} \Leftrightarrow (UO_2)(CO_3)_{(aq)}$	(R20)	9.65
$UO_2^{2^+} + 2CO_3^{2^-} \iff (UO_2)(CO_3)_2^{2^-}$	(R21)	17.08
$UO_2^{2^+} + 3CO_3^{2^-} \iff (UO_2)(CO_3)_3^{4^-}$	(R22)	21.70
$2UO_2^{2^+} + CO_3^{2^-} + 3H_2O \iff 3H^+ + (UO_2)_2(CO_3)(OH)_3^-$	(R23)	-1.18
$UO_2^{2+} + SO_4^{2-} \Leftrightarrow (UO_2)(SO_4)_{(aq)}$	(R24)	2.95
$UO_2^{2+} + 2SO_4^{2-} \Leftrightarrow (UO_2)(SO_4)_2^{2-}$	(R25)	4.00
$2\mathrm{H}^{+} + \mathrm{UO_{2}}^{2+} + \mathrm{PO_{4}}^{3-} \iff \mathrm{H_{2}}(\mathrm{UO_{2}})(\mathrm{PO_{4}})^{+}$	(R26)	23.20
$3H^{+} + UO_{2}^{2+} + PO_{4}^{3-} \iff H_{3}(UO_{2})(PO_{4})^{2+}$	(R27)	22.90
$\boxed{Ca^{2+} + 4H^{+} + UO_{2}^{2+} + 2PO_{4}^{3-} \iff CaH_{4}(UO_{2})(PO_{4})_{2}^{2+}}$	(R28)	45.24
$\boxed{Ca^{2^{+}} + 5H^{+} + UO_{2}^{2^{+}} + 2PO_{4}^{3^{-}} \iff CaH_{5}(UO_{2})(PO_{4})_{2}^{3^{+}}}$	(R29)	46.00
$H^+ + CO_3^{2-} \Leftrightarrow HCO_3^{}$	(R30)	10.32
$2H^+ + CO_3^{2-} \iff H_2CO_{3(aq)}$	(R31)	16.67
$H^+ + SO_4^{2-} \Leftrightarrow HSO_4^{-}$	(R32)	1.99

Table 3. Reaction network for the uranium tailing problem.

$H_{+} + PO_4^{3-} \Leftrightarrow HPO_4^{2-}$	(R33)	12.35
$2H^+ + PO_4^{3-} \Leftrightarrow H_2PO_4^{-}$	(R34)	19.55
$3H^+ + PO_4^{3-} \Leftrightarrow H_3PO4$	(R35)	21.74
Precipitation-Dissolution Reactions		
$Ca^{2+} + SO_4^{2-} \Leftrightarrow CaSO_{4(s)}$	(R36)	4.62
$Ca^{2+} + CO_3^{2-} \Leftrightarrow CaCO_{3(s)}$	(R37)	8.48
$5Ca^{2+} + 3PO_4^{3-} + H_2O \iff H^+ + Ca_5(OH)(PO_4)_{3(s)}$	(R38)	40.47
$Fe^{2+} + CO_3^{2-} \Leftrightarrow FeCO_{3(s)}$	(R39)	10.50
$Ca^{2+} + 2UO_2^{2+} + 2PO_4^{3-} \iff Ca(UO_2)_2(PO_4)_{2(s)}$	(R40)	48.61
$4\text{Ca}^{2+} + \text{H}^{+} + 3\text{PO}_{4}^{3-} \iff \text{Ca}_{4}\text{H}(\text{PO}_{4})_{3(s)}$	(R41)	48.20
$Ca^{2+} + H^+ + PO_4^{3-} \Leftrightarrow CaH(PO_4)_{(s)}$	(R42)	19.30
$Ca^{2+} + 2H_2O \iff 2H^+ + Ca(OH)_{2(s)}$	(R43)	-21.90
$3Fe^{2+} + 2PO_4^{3-} \Leftrightarrow Fe_3(PO_4)_{2(s)}$	(R44)	33.30
$Fe^{2+} + 2H_2O \iff 2H^+ + Fe(OH)_{2(s)}$	(R45)	-12.10
$UO_2^{2+} + 2H_2O \iff 2H^+ + (UO_2)(OH)_{2(s)}$	(R46)	-5.40
$UO_2^{2+} + CO_3^{2-} \Leftrightarrow (UO_2)(CO_3)_{(s)}$	(R47)	14.11
$Fe^{2+} + 2UO_2^{2+} + 2PO_4^{3-} \iff Fe(UO_2)_2(PO_4)_{2(s)}$	(R48)	46.00
$H^+ + UO_2^{2+} + PO_4^{3-} \Leftrightarrow H(UO_2)(PO_4)_{(s)}$	(R49)	25.00

The composition of the pore water in the tailings, pore water outside of the tailing pile and the recharge water are given in Table 4. Cauchy boundary conditions are considered on all boundaries where boundary conditions are specified. A total of 1000 days was simulated.

Table 4. Initial and boundary compositions of recharge water and pore water in the tailings and regions outside of the tailing for the uranium tailing problem.

Species	Inside the Tailing	Outside the Tailing	Recharge Water
Ca ²⁺	1.0×10^{-2}	$1.0 \ge 10^{-2}$	1.0 x 10 ⁻³
CO_{3}^{2}	1.0×10^{-2}	1.5×10^{-3}	1.5 x 10 ⁻³
UO_2^{2+}	5.0 x 10 ⁻⁴	1.0 x 10 ⁻⁷	1.0 x 10 ⁻⁸
PO ₄ ³⁻	1.0 x 10 ⁻⁶	1.0 x 10 ⁻⁶	1.0 x 10 ⁻⁶
$\mathrm{SO_4}^{2-}$	2.0 x 10 ⁻¹	2.0×10^{-2}	$1.0 \ge 0^{-4}$
H^+	2.0 x 10 ⁻¹	$1.0 \ge 10^{-3}$	1.ox 10 ⁻³
Fe ²⁺	3.5×10^{-2}	1.0 x 10 ⁻⁷	1.0x 10 ⁻⁷

4.5.2. Input **Project Manager** (File->Project Manager) Button "New" **New Project** (or File->New) Name: **UTailing** Description: "Mille Tailing Pile - transient water flow and reactive transport" Working Directory: Temporary – exists only when the project is open Button Next" **Domain Type and Units** (Edit->Domain Geometry->Domain Type and Units) Type of Geometry: 2D - Simple 2D-Domain Options: 2D - Vertical Plane XZ Units: cm Initial Workspace: X-Min=0, X-Max=10,500, Z-Min=0, Z-Max=2,400 cm Button "Next" **Regular Domain Definition** (Edit->Domain Geometry->Simple Domain) Dimensions: Lx = 10,500 cm, Lz = 2,400 cm, Slope $\alpha = 0$ Button "Next" **Main Processes** (Edit->Flow and Transport Parameters->Main Processes) Check "Water Flow" Check "Solute Transport" Check "HP2" Button "Next" **Time Information** (Edit->Flow and Transport Parameters->Time Information) Time Units: Days Final Time: 1,000 (d) Initial Time Step: 0.0001 (d) Minimum Time Step: 0.00001 (d) Maximum Time Step: 500 (d) Check Time-Variable Boundary Conditions Number of Time-Variable Boundary Records: 2 Button "Next" **Output Information** (Edit->Flow and Transport Parameters->Output Information) Print Options: **Uncheck T-Level Information Check Interval Output** Time Interval: 1 (d) Check Screen Output Check Press Enter at the End Print Times: Count: 20

Update Default *Button* "Next"

HP2/3 – Print and Punch Controls

Check: "Make GNUplot Templates"

This allows easy visualization of time series and profile data for variables, which are defined in the SELECTED_OUTPUT section below in this dialog window and also defined later in the *Additional Output* part of the Solute Transport – HP2 Definitions dialog.

Button "Next"

Water Flow - Iteration Criteria (Edit->Flow and Transport Parameters->Water Flow

Parameters->Iteration Criteria) Leave default values *Button* "Next"

Water Flow – Soil Hydraulic Model (Edit->Flow and Transport Parameters->Water Flow Parameters->Hydraulic Properties Model)

Leave default values as follows: Radio button - van Genuchten-Mualem No Hysteresis *Button* "Next"

Water Flow - Soil Hydraulic Parameters (Edit->Flow and Transport Parameters->Water Flow Parameters->Soil Hydraulic Parameters)

Number of Materials: 2 Catalog of Soil Hydraulic Properties: Loam (both lines) Name 1: Loam Name 2: Mill Tailing Pile Ks: 378 (cm/d) for both materials *Button* "Next"

Solute Transport – General Info (Edit->Flow and Transport Parameters->Solute Transport Parameters->General Information)

Number of Solutes: 8 *Button* "Next"

Solute Transport – HP1 Components and Database Pathway

Database Pathway: Create an empty database, which only defines a few obliged master components, such as Alkalinity, C, E, H, H(0), H(1), O, O(-2), O(0), H+, e-, H2O, and CO3-2 (see below) (Database Empty)
Six Components: Total_O, Total_H, Ca, C, U, P, S, Fe
Check: "Create PHREEQC.IN file using HYDRUS GUI"
Button "Next"

Database for the UTailing example:

SOLUTIO	N_MASTER_SPECIES			
Alkalin	ity CO3-2	1.0	50.05	50.05
С	CO3-2	2.0	61.0173	12.0111
Е	e-	0.0	0.0	0.0
Н	H+	-1.	1.008	1.008
H(0)	Н2	0.0	1.008	
H(1)	H+	-1.	1.008	
0	Н2О	0.0	16.00	16.00
0(-2)	Н2О	0.0	18.016	
O(0)	02	0.0	16.00	
SOLUTIO	N_SPECIES			
	H+ = H+			
	log_k	0.0		
	-gamma 9.0	0.0		
	e- = e-			
	log_k	0.0		
	H20 = H20			
	log_k	0.0		
	CO3-2 = CO3-2			
	log_k	0.0		
	-gamma 5.4	0.0		
	2 H+ + 2 e- = H	2		
	log_k	-3.15		
	delta_h -1.759	kcal		
	2H2O = O2 + 4H+	+ 4e-		
	log_k	-86.08		
	delta_h 134.79	kca		

Solute Transport – HP2/3 Definitions

Select Additions to Thermodynamic Database

SOLUTION_I	MASTER_SPECIES			
Fe	Fe+2	0	55.847	55.847
Ca	Ca+2	0	40.08	40.08
U	UO2+2	0.0	238.0290	238.0290
S	SO4-2	0.0	96.0616	32.064
P	PO4-3	2.0	30.9738	30.9738
SOLUTION	SPECIES			
Ca+2 = Ca	+2			
log_k	0.0			
Fe+2 = Fe	+2			
log_k	0.0			
PO4-3 = PO4-3	04-3			
log_k	0.0			
SO4 - 2 = SO4	04-2			
log_k	0.0			
UO2+2 = UO	02+2			
log_k	0.0			
CO3-2 + Ca	a+2 = CaCO3			
log_k	3.22			
CO3-2 + Ca	a+2 + H+ = CaHC	03+		
log_k	11.43			
Fe+2 + H20) = FeOH+ + H+			
log_k	-9.5			
Ca+2 + SO4	4-2 = CaSO4			
log_k	2.31			
Ca+2 + 2H-	+ + PO4-3 = CaH	2PO4+		

```
log k
           20.96
Ca+2 + PO4-3 = CaPO4-
   log_k 6.46
Ca+2 + H+ + PO4-3 = CaHPO4
   log_k 15.08
Fe+2 + SO4-2 = FeSO4
   log_k
         2.2
Fe+2 + 2H2O = Fe(OH)2 + 2H+
           -20.57
   log_k
Fe+2 + 3H2O = Fe(OH)3 - + 3H +
   log_k
           -31
Fe+2 + 4H2O = Fe(OH)4-2 + 4H+
   log_k
           -43
H2O + UO2+2 = (UO2)(OH) + + H+
   log_k -5.3
2H2O + 2UO2+2 = (UO2)2(OH)2+2 + 2H+
   log_k -5.68
4H2O + 3UO2+2 = (UO2)3(OH)4+2 + 4H+
   log_k -11.88
5H2O + 3UO2+2 = (UO2)3(OH)5+ + 5H+
   log_k -15.82
7H2O + 4UO2+2 = (UO2)4(OH)7+ + 7H+
   log k -21.9
7H2O + 3UO2+2 = (UO2)3(OH)7- + 7H+
   log k -28.43
CO3-2 + UO2+2 = (UO2)(CO3)
   log_k 9.65
2CO3-2 + UO2+2 = (UO2)(CO3)2-2
   log_k 17.08
3CO3-2 + UO2+2 = (UO2)(CO3)3-4
   log_k 21.7
2UO2+2 + CO3-2 + 3H2O = (UO2)2(CO3)(OH)3- + 3H+
   log_k -1.18
UO2+2 + SO4-2 =
                   (UO2)(SO4)
   log_k
         2.95
UO2+2 + 2SO4-2 = (UO2)(SO4)2-2
  log_k
         4
2H+ + UO2+2 + PO4-3 = H2(UO2)(PO4) +
   log_k 23.2
3H+ + UO2+2 + PO4-3 = H3(UO2)(PO4)+2
   log_k 22.9
Ca+2 + 4H+ + UO2+2 + 2PO4-3 = CaH4(UO2)(PO4)2+2
   log_k
           45.24
Ca+2 + 5H+ + UO2+2 + 2PO4-3 = CaH5(UO2)(PO4)2+3
   log k 46
H+ + CO3-2 =
                HCO3-
   log_k 10.32
2H+ + CO3-2 = H2CO3
   log_k 16.67
H+ + SO4-2 =
                   HSO4-
   log_k 1.99
H+ + PO4-3 =
                   HPO4-2
   log k 12.35
PHASES
gypsum
   CaSO4 = Ca+2 + SO4-2
   log k
           -4.62
```

```
calcite
CaCO3 = Ca+2 + CO3-2
log_k -8.48
Hydroxyapatite
```

```
Ca5(OH)(PO4)3 + H+ = 5Ca+2 + 3PO4-3 + H2O
   log k
          -40.47
Siderite
   FeCO3 = Fe+2 + CO3-2
   log_k -10.5
Autunite
   Ca(UO2)2(PO4)2 = Ca+2 + 2UO2+2 + 2PO4-3
           -48.61
   log k
Ca4H(PO4)3
   Ca4H(PO4)3 = 4Ca+2 + H+ + 3PO4-3
           -48.2
   log k
CaH(PO4)
   CaH(PO4) = Ca+2 + H+ + PO4-3
   log_k -19.5
Portlandite
   log_k 21.9
Vivianite
   Fe3(PO4)2 = 3Fe+2 + 2PO4-3
   log_k -33.3
Fe(OH)2
   Fe(OH)2 + 2H + = Fe + 2 + 2H2O
   log k
           12.1
beta-Schoepite
   UO2(OH)2 + 2H+ = UO2+2 + 2H2O
            5.4
   log_k
Rutherfordine
   UO2CO3 = UO2+2 + CO3-2
   log k
           -14.11
Bassetite
   Fe(UO2)2(PO4)2 = Fe+2 + 2UO2+2 + 2PO4-3
   log k
            -46
H(UO2)(PO4)
   H(UO2)(PO4) = H+ + UO2+2 + PO4-3
   log k
           -25
02(q)
   02 = 02
                 -2.960
   log k
   delta_h -1.844 kcal
H2(g)
   H2 = H2
   log k
                -3.150
   delta_h -1.759 kcal
```

Select Definitions of Solution Composition

Define the initial condition, i.e., the solution composition of water in the soil, with the identifier 1001:

• Bring it in equilibrium with gypsum, calcite, and O(0), to be in equilibrium with the partial pressure of oxygen in the atmosphere

Define the initial condition, i.e., the solution composition of water in the mine tailing, with the identifier 1002:

- pH 2.3
- Bring it in equilibrium with O(0), to be in equilibrium with the partial pressure of oxygen in the atmosphere
- Bring it in equilibrium with gypsum and calcite

• High level of U (=5e-4 mol/kgw)

Define the boundary condition, i.e., the solution composition of water entering the soil column, with the identifier 3001:

- Ca-Cl solution
- Use pH to obtain the charge balance of the solution
- Adapt the concentration of O(0) and C(4) to be in equilibrium with the atmospheric partial pressure of oxygen and carbon dioxide, respectively

```
solution 1001 soil
-temp 25
-units mol/kgw
-pH 2 charge
Ca 1E-2 calcite
C 1.5E-3
U 1E-7
P 1E-6
S 2E-1 gypsum
Fe 1E-7
O(0) 1 O2(q) -0.68 # O(0) initially in equilibrium with a partial
   pressure of oxygen of 10<sup>*</sup>-0.68 atm
end
solution 1002 mine tailing
-temp 25
-units mol/kgw
-pH 2.3
Ca 1E-2 charge
C 1E-2
U 5E-4
P 1E-6
S 2E-1
Fe 3.5E-2
O(0) 1 O2(q) -0.68 # O(0) initially in equilibrium with a partial
   pressure of oxygen of 10<sup>-0.68</sup> atm
equilibrium_phases 1002
gypsum 0 3.7E-3
calcite 0 0
save solution 1002
end
solution 3001 boundary condition
-temp 25
-units mol/kgw
-pH 7 charge
Ca 1E-3
C 1.5E-3
U 1E-8
P 1E-6
S 1E-4
Fe 1E-7
```

Select Geochemical Model

Define for each node the geochemical model. Note that the initial amount of a mineral must be defined as mol/1 dm³ soil. There is calcite (4.7e-4 mol/dm³ soil)

in the soil and gypsum (3.7e-3 mol/dm³ soil) in the waste zone. Many other mineral phases (see their names below) are allowed to precipitate. Additionally, indicate to PHREEQC, that this is a two-dimensional project (added by default).

```
equilibrium_phases 1001 soil
 -material 1
   calcite 0 4.7E-4
   gypsum 00
   Autunite 00
   Bassetite 0 0
   Ca4H(PO4)3 0 0
   CaH(PO4) 0 0
   Fe(OH)2
            0 0
   Hydroxyapatite 0 0
   Portlandite 0 0
   Rutherfordine 0 0
   Siderite 0 0
   Vivianite 0 0
   H(UO2)(PO4) 0 0
   beta-Schoepite 0 0
equilibrium_phases 1002 waste zone
 -material 2
   calcite 00
   gypsum 0 3.7E-3
   Autunite 00
   Bassetite 0 0
   Ca4H(PO4)3 0 0
   CaH(PO4) 0 0
   Fe(OH)2 0 0
   Hydroxyapatite 0 0
   Portlandite 0 0
   Rutherfordine 0 0
   Siderite 0 0
   Vivianite 0 0
   H(UO2)(PO4) 0 0
   beta-Schoepite 0 0
```

Select Additional Output

Define the additional output to be written to selected output files.

```
selected_output
    -equilibrium_phases calcite gypsum Rutherfordine
    Siderite
```

Button "Next"

Solute Transport - Solute Transport Parameters (Edit->Flow and Transport Parameters->Solute Transport Parameters->Solute Transport Parameters)

Bulk D. = 1.5 (g/cm³) Longitudinal Dispersivity, Disp.L = 250 cm Transverse Dispersivity, Disp.T = 25 cm Molecular Diffusion Coefficient for Liquid Phase, Diffus.W.=0

Button "Next"

Time-Variable Boundary Conditions[±] (Edit->Flow and Transport Parameters->Solute Transport Parameters->Variable Boundary Conditions)

	Time [days]	Precip. [cm/day]	Evap. [cm/day]	Transp. [cm/day]	hCritA [cm]	Var.Fl1 [cm/day]	Var.H-1 [cm]
1	500	0	0	0	10000	0	1200
2	1000	0	0	0	10000	0	1200
•							Þ
	Var.Fl2 [cm/day]	Var.H-2 [cm]	Var.Fl3 [cm/day]	Var.H-3 [cm]	Var.Fl4 [cm/day]	Var.H-4 [cm]	cValue1 [kod]
1	-0.139	0	-1.39	0	0	450	1001
2	-0.139	0	-1.39	0	0	450	1001
•							Þ
	Var.H-3 [cm]	Var.Fl4 [cm/day]	Var.H-4 [cm]	cValue1 [kod]	cValue2 [kod]	cValue3 [kod]	
1	0	0	450	1001	1002	3001	
2	0	0	450	1001	1002	3001	
•							4

Button "Next"

^{*}Why are we using Time-Variable Boundary Conditions, when the fluxes and concentrations are constant in time? HYDRUS reports actual and cumulative water (and solute fluxes) for different boundary parts with different types of boundary conditions. If we select everywhere Constant BC, then we would get only one total flux integrated over all boundary parts. By using different boundary types, HYDRUS will report various fluxes for different boundary parts.

Rectangular Domain Spatial Discretization (Edit->FE-Mesh->FE-Mesh Parameters)

Horizontal Discretization in X Count = 55 Horizontal Discretization in Z

Count = 16

- **x[cm]**: 0, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, 3500, 3750, 4000, 4250, 4500, 4750, 5000, 5200, 5400, 5600, 5800, 6000, 6200, 6400, 6600, 6800, 7000, 7200, 7400, 7550, 7700, 7850, 8000, 8150, 8300, 8450, 8600, 8750, 8900, 9050, 9200, 9350, 9500, 9625, 9750, 9875, 10000, 10125, 10250, 10375, 10500
- **dz[cm]:** 19*0, -35, -70, -140, -210, -310, -410, -535, -660, -770, -880, -1005, -1130, -1190, -1250, -1295, -1340, -1370, -1400, -1430, -1460, -1490, -1520, -1550, -1580, -1610, -1640, -1670, -1700, -1730, -1760, -1785, -1810, -1830, -1850, -1865, -1880
- **z[cm]:** 2400, 2350, 2300, 2200, 2100, 2000, 1900, 1800, 1650, 1500, 1250, 1000, 750, 500, 250, 0

Button "OK"

Count 1 2 3 4 5 6 7 8 9 10 11 12 12 12	55 Upa × [cm] 0.00 250.00 500.00 750.00 1000.00 1250.00 1250.00 1250.00	date dz [cm] 0.00 0.00 0.00 0.00 0.00 0.00	•	Count:	16 Update z [cm] ^ 2400.00 2350.00 2300.00	Cancel <u>H</u> elp
1 2 3 4 5 6 7 8 9 10 11 12 2	x [cm] 1000 250.00 500.00 750.00 1000.00 1250.00 1500.00	dz [cm] 0.00 0.00 0.00 0.00 0.00 0.00		1 2 3 4	z [cm] ^ 2400.00 2350.00 2300.00	<u>H</u> elp
1 2 3 4 5 6 7 8 9 10 11 12 2	0.00 250.00 500.00 750.00 1000.00 1250.00 1500.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		1 2 3 4	2400.00 2350.00 2300.00	
2 3 4 5 6 7 8 9 10 11 12 12	250.00 500.00 750.00 1000.00 1250.00 1500.00	0.00 0.00 0.00 0.00 0.00		234	2350.00 2300.00	
3 4 5 6 7 8 9 10 11 12 12	500.00 750.00 1000.00 1250.00 1500.00	0.00 0.00 0.00 0.00		3	2300.00	
4 5 6 7 8 9 10 11 12 12	750.00 1000.00 1250.00 1500.00	0.00		4		
5 6 7 8 9 10 11 12	1000.00 1250.00 1500.00	0.00			2200.00	
6 7 8 9 10 11 12	1250.00 1500.00	0.00		5	2100.00	
7 8 9 10 11 12	1500.00	0.00		6	2000.00	
8 9 10 11 12	1750.00	0.00		7	1900.00	
9 10 11 12	1700.00	0.00		8	1800.00	
10 11 12	2000.00	0.00		9	1650.00	
11 12	2250.00	0.00		10	1500.00	
12	2500.00	0.00		11	1250.00	
10	2750.00	0.00		12	1000.00	
13	3000.00	0.00		13	750.00	
14	3250.00	0.00		14	500.00	
15	3500.00	0.00	Ŧ	15	250.00 -	
Generate Z - Sel elei RS RS	- Coordinate: et relative size ements: G1: G2: Gene	s e of finite 1 1 fate		RS	1=1.0	Next Previous

Click on the **FE-Mesh Tab** under the View Window.

Zoom on the right side of the transport domain

From the Tool Bar select the command *Select by Rhomboid* (Select by Rhomboid) (or Edit->Select->Select by Rhomboid)

Select the 6 elements vertically from the top and 4 element horizontally from the right.

On the Navigator Bar click on *Remove Selected Elements* (Remove Selected Elements) to get the domain as shown below.

Material Distribution

Click on the **Domain Properties Tab** under the View Window.

On the Navigator Bar click on *Domain Properties – Material Distribution* (or Insert->Domain Properties->Material Distribution).

On the Edit Bar select Material 2 (Mill Tailing) and assign it as shown below

Nodal Recharge

On the Navigator Bar click on *Domain Properties – Nodal Recharge* (or Insert->Domain Properties->Nodal Recharge).

Double Click on the node with coordinates x=4,000 cm and z=1,000 cm. In the *Edit Nodal Recharge* window set *Value* to -271.58 cm²/d.

Subregions

On the Navigator Bar click on *Domain Properties – Subregions* (or Insert->Domain Properties->Subregions).

Click on Set Subregions = Materials (Edit bar)

On the Edit Bar select Subregion 2 (Mill Tailing) and assign it in the same part of the domain as Material 2.

Observation Nodes

On the Navigator Bar click on *Domain Properties – Observation Nodes* (or Insert->Domain Properties->Observation Nodes).

Click on the Insert Observation Node (Insert Observation Node) command on the Edit Bar and insert observation nodes at similar locations as shown below.

Initial Conditions

Click on the **Initial Conditions** under the View Window. On the Navigator Bar click on *Pressure Head*. Select the entire transport domain From the Edit Bar select the command *Set Pressure Head IC* (Set Pressure Head IC) (or Insert->Initial Condition->Pressure Head/Water Content) In the *Water Flow Initial Condition* window :

Check Equilibrium from the lowest located nodal point Check Slope in X-direction Set the slope to -4.4° Set Bottom Pressure Head Value to 1,200 cm

Distribution			Values in selected nodes	
 Same value for all nodes Equilibrium from the lowest loca Linear distribution with depth 	ated nodal point		No. of Sel. Nodes: 852 Minimum value: -1546.2 Maximum value: 120	
Slope in X - direction	-4.4	[*]	Other Options	
Slope in ⊻ - direction	0	[*]	Constant Internal Pressure <u>H</u> ead Sink/Source	
Pressure Head	Time-Variable Internal Pressure Head Sink/Sourc (values in Var. H4)			
Top Pressure Head Value:	-1546.26	[cm]	Time-Variable Internal	
Bottom Pressure Head Value:	1200	[cm]	Flux Sink/Source (values in Var. Fl <u>4</u>)	

On the Navigator Bar click on *Solution Composition*. Assigned the *Solution Compositions* as follows

Boundary Conditions

Click on the **Boundary Conditions** under the View Window.
On the Navigator Bar click on Water Flow. Assign BC as follows:

On the Navigator Bar click on Solute Transport. Assign Third-Type BC with the following pointers as shown below:

Run Calculations

Click the Calculate Current Project command (¹⁴¹) on the Toolbar (or Calculation->Calculate Current Project) (Execution time on 3 GHz PC – 468 s)

4.5.3. Output

The steady-state pressure heads and velocity fields are depicted in Figure 26. Uranium concentration profiles are shown in Figure 27. pH, calcite, and gypsum profiles are shown in Figure 28.

Figure 26. The steady-state pressure head (cm) (top) and flux (cm/d) (bottom) profiles for the Tailing Pile Leaching example.

Figure 27. Uranium concentration profiles at time 0 (top), 250 (middle), and 500 (bottom) d for Tailing Pile Leaching example.

Figure 28. pH (top), calcite (mol/L) (middle), and gypsum (mol/L) (bottom) profiles after 1000 d for the Tailing Pile Leaching example.

References

- Jacques, D., and J. Šimůnek, User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1, Description, Verification and Examples, Version 1.0, SCK•CEN-BLG-998, Waste and Disposal, SCK•CEN, Mol, Belgium, 79 pp., 2005.
- Jacques, D., J. Šimůnek, D. Mallants, and M. Th. van Genuchten, Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles, *J. Contam. Hydrology*, 88, 197-218, 2006.
- Jacques, D., J. Šimůnek, D. Mallants, and M. Th. van Genuchten, Modeling coupled hydrological and chemical processes: Long-term uranium transport following mineral phosphorus fertilization, *Vadose Zone Journal*, 7(2), 698-711, 2008.
- Jacques, D., J. Šimůnek, D. Mallants and M. Th. van Genuchten, Modelling coupled water flow, solute transport and geochemical reactions affection heavy metal migration in a Podzol soil, *Geoderma*, 145, 449-461, 2008.
- Jacques, D., J. Simunek, D. Mallants, and M. Th. van Genuchten, Modelling the fate of uranium from inorganic phosphorus fertilizer applications in agriculture. In: L. J. De Kok and E. Schnug (eds), *Loads and Fate of Fertilizer-Derived Uranium*, p. 57-64, Backhuys Publ., Leiden, Netherlands, 2008.
- Jacques, D., and J. Šimůnek, Notes on HP1 a software package for simulating variablysaturated water flow, heat transport, solute transport and biogeochemistry in porous media, HP1 Version 2.2, *SCK*•*CEN*-*BLG*-*1068*, Waste and Disposal, SCK•CEN, Mol, Belgium, 113 pp., 2010.
- Millington, R. J., and J. M. Quirk, Permeability of porous solids, *Trans. Faraday Soc.*, 57, 1200-1207, 1961.
- Moldrup, P., T. Olesen, D. E. Rolston, and T. Yamaguchi, Modeling diffusion and reaction in soils: VII. Predicting gas and ion diffusivity in undisturbed and sieved soils, *Soil Sci.*, 162(9), 632-640, 1997.
- Moldrup, P., T. Olesen, J. Gamst, P. Schjønning, T. Yamaguchi, and D. E. Rolston, Predicting the gas diffusion coefficient in repacked soil: water-induced linear reduction model, *Soil Sci. Soc. Am. J.*, 64, 1588-1594, 2000.
- Parkhurst, D. L., and C. A. J. Appelo, User's guide to PHREEQC (Version 2) A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. Water-Resources Investigations, *Report 99-4259*, Denver, Co, USA, 1999.
- Šejna, M., J. Šimůnek, and M. Th. van Genuchten, The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, *User Manual*, Version 2.0, PC Progress, Prague, Czech Republic, pp. 280, 2011.
- Šimůnek, J., D. Jacques, M. Th. van Genuchten, and D. Mallants, Multicomponent geochemical transport modeling using the HYDRUS computer software packages, J. Am. Water Resour. Assoc., 42(6), 1537-1547, 2006.
- Šimůnek, J., M. Th. van Genuchten, and M. Šejna, Modeling Subsurface Water Flow and Solute Transport with HYDRUS and Related Numerical Software Packages, In: Garcia-Navarro & Playán (eds.), *Numerical Modelling of Hydrodynamics for Water Resources*, An International Workshop, Centro Politecnico Superior, University of Zaragoza Spain, June 18-21 2007. Taylor & Francis Group, London, ISBN 978-0-415-44056-1, 95-114, 2007.

- Šimůnek, J., M. Th. van Genuchten, and M. Šejna, Development and applications of the HYDRUS and STANMOD software packages and related codes, *Vadose Zone J.*, 7(2), 587-600, 2008.
- Šimůnek, J., D. Jacques, N. K. C. Twarakavi, and M. Th. van Genuchten, Modeling subsurface flow and contaminant transport as influenced by biological processes at various scales using selected HYDRUS modules, *Biologia*, 64(3), 465-469, 2009.
- Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, *Technical Manual*, Version 2.0, PC Progress, Prague, Czech Republic, pp. 258, 2011.
- van Genuchten, M. Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, *Soil Sci. Soc. Am. J.*, 44, 892-898, 1980.
- Yeh, G. T., and V. S. Tripathi, A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components, *Water Resour. Res.*, 25, 93-108, 1989.
- Yeh, G. T., and V. S. Tripathi, A model for simulating transport of reactive multispecies components: Model development and demonstration, *Water Resour. Res.*, *27*, 3075-3094, 1991.