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DISCLAIMER

This report documents versions 1.0 and 2.0 of STANMOD, a software package for

evaluating solute transport in porous media using analytical solutions of the convection-dispersion

equation. The software has been verified against a large number of test cases. However, no warranty

is given that the program is completely error-free. If you do encounter problems with the code, find

errors, or have suggestions for improvement, please contact one of the authors at

U. S. Salinity Laboratory
USDA, ARS
450 West Big Springs Road
Riverside, CA  92507

Tel. 909-369-4865 (J. Simunek)
Tel. 909-369-4846 (M. Th. van Genuchten)
Fax. 909-342-4964
E-mail jsimunek@ussl.ars.usda.gov

rvang@ussl.ars.usda.gov
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ABSTRACT

Simunek, J., M. Th. van Genuchten, M. Sejna, N. Toride, F. J. Leij,  1999.  The STANMOD

Computer Software for Evaluating Solute Transport in Porous Media Using Analytical Solutions of

Convection-Dispersion Equation, Versions 1.0 and 2.0, U.S. Salinity Laboratory, USDA, ARS,

Riverside, California.

This report documents versions 1.0 and 2.0 of STANMOD (STudio of ANalytical

MODels), a Windows based computer software package for evaluating solute transport in porous

media using analytical solutions of the convection-dispersion solute transport equation. Version 1.0

of STANMOD includes at present the following models: CXTFIT 2.0 [Toride et al., 1995], CFITM

[van Genuchten, 1980], CFITIM [van Genuchten, 1981], and CHAIN [van Genuchten, 1985].

Version 2.0 of STANMOD, to be released in the spring of 2000, will also include the models

3DADE [Leij and Bradford, 1994] and N3DADE [Leij and Toride, 1997]. The original manuals of

all models included in STANMOD accompany this report.

The software package includes a modified and updated version of the CXTFIT code of

Toride et al. [1995] for estimating solute transport parameters using a nonlinear least-squares

parameter optimization method. This code may be used to solve the inverse problem by fitting a

variety of mathematical solutions of theoretical transport models, based upon the one-dimensional

convection-dispersion (or advection-dispersion) equation (CDE), to experimental results. The

program may also be used to solve the direct or forward problem to determine concentrations as a

function of time and/or position. Three different one-dimensional transport models are considered:

(i) the conventional CDE; (ii) the chemical and physical nonequilibrium CDEs; and (iii) a

stochastic stream tube model based upon the local-scale equilibrium or nonequilibrium CDE.

STANMOD also includes an updated version of the CFITM  code of van Genuchten [1980]

for analyzing observed column effluent data using analytical solutions of the one-dimensional

equilibrium convective-dispersive transport equations. The code considers analytical solutions for

both semi-finite and finite columns. The model provides an easy to use, efficient and accurate

means of determining various transport parameters by optimizing observed column effluent data.

CFITM represents a simple alternative to the much more comprehensive, but also more complex,

CXTFIT model.
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STANMOD also contains an updated version of the CFITIM code of van Genuchten

[1981] for analyzing observed column effluent data using analytical solutions of the one-

dimensional equilibrium and nonequilibrium convective-dispersive transport equations. The code

includes analytical solutions for semi-finite columns. The nonequilibrium solutions for bicontinuum

model, the two-region flow model for physical nonequilibrium and the two-site sorption model for

chemical nonequilibrium. The model provides an easy to use, efficient and accurate means of

determining various transport parameters by optimizing column effluent data.

In addition, STANMOD 1.0 includes the modified and updated CHAIN code of van

Genuchten [1985] for analyzing the convective-dispersive transport of solutes involved in sequential

first-order decay reactions . Examples are the migration of radionuclides, in which the chain

members form first-order decay reactions, and the simultaneous movement of various interacting

nitrogen or organic species.

STANMOD 2.0 includes the 3DADE code of Leij and Bradford [1994] for evaluating

analytical solutions for three-dimensional equilibrium solute transport in the subsurface. The

analytical solutions pertain to selected cases of three-dimensional solute transport during steady

unidirectional water flow in porous media having uniform flow and transport properties. The

transport equation contains terms accounting for solute movement by convection and dispersion, as

well as for solute retardation, first-order decay, and zero-order production. The 3DADE code can be

used to solve the direct problem, i.e., the concentration is calculated as a function of time and space

for specified model parameters, and the indirect (inverse) problem in which the program estimates

selected parameters by fitting one of the analytical solutions to specified experimental data.

Finally, STANMOD 2.0 incorporates the N3DADE code of Leij and Toride [1997] for evaluating

analytical solutions for a three-dimensional nonequilibrium solute transport in porous media. The

analytical solutions pertain to three-dimensional solute transport during steady unidirectional water

flow in porous media in systems of semi-infinite length in the longitudinal direction, and of infinite

length in the transverse direction. The solutions can be applied also to one- and two-dimensional

problems. The flow and transport properties of the medium are again assumed to be

macroscopically uniform.  Nonequilibrium solute transfer can occur between two domains in either

the liquid or the absorbed phase. The transport equation contains terms accounting for solute

movement by advection and dispersion, as well as for solute retardation, first-order decay, and zero-

order production.
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c concentration
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D dispersion coefficient
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Kd distribution coefficient
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R retardation factor

r radial coordinate

t time

t0 pulse time

T dimensionless time
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v pore-water velocity

x, y, z spatial coordinates

α mass transfer coefficient
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θim immobile water content

θm mobile water content

σD standard deviation of the logtransform of dispersion coefficient

σv standard deviation of the logtransform of pore-water velocity

ρvKd correlation between the pore-water velocity, v, and the distribution coefficient, Kd

ω dimensionless mass transfer coefficient

<..> ensemble  average, e.g., <v> is mean pore-water velocity



x



xi



1

1.  INTRODUTION

The fate and transport of dissolved substances in soils and groundwater is generating

considerable interest because of concerns for the quality of the subsurface environment. The

behavior of solutes over relatively long spatial and temporal scales must generally be assessed with

the help of theoretical models since it is usually not feasible to carry out experimental studies over

sufficiently long distances and/or time periods. Mathematical models are often also used to predict

solute concentrations before management strategies are implemented. Advances in software and

hardware now permit the simulation of subsurface transport using sophisticated mathematical

models. Unfortunately, it is generally difficult to obtain reliable values for transport parameters such

as the pore-water velocity, the retardation factor, the dispersion coefficient, and/or degradation or

production parameters.

A large number of computer programs now exists for evaluating solute transport in porous

media using analytical solutions of the convection-dispersion equation. The purpose of this project

was to integrate the most widely used models into a one software package. We developed for this

purpose a suite of analytical models STANMOD (Versions 1.0) that includes, at present, the

following models for one-dimensional transport: CFITM [van Genuchten, 1980], CFITIM [van

Genuchten, 1981], CHAIN [van Genuchten, 1985], and CXTFIT (2.0) [Toride et al., 1995]. The

models 3DADE [Leij and Bradford, 1994] and N3DADE [Leij and Toride, 1997] for multi-

dimensional transport problems will be available in version 2.0 of STANMOD to be released in the

spring of 2000. In this report we briefly describe the different analytical models included in

STANMOD and review some typical examples that were included with the software. Detailed

descriptions of all models are given in the original manuals, which are included as PDF files on the

STANMOD CD. The manuals provide the governing transport equations, boundary and initial

conditions, the derived analytical solutions, as well as description of several illustrative examples.

The graphics-based user-interface of STANMOD is for the MS Windows environment and

is largely based on libraries developed for the HYDRUS-1D and HYDRUS-2D software packages

[Simunek et al., 1998, 1999].  All computational programs were written in FORTRAN, and the

graphic interface in MS Visual C++.
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2.  OVERVIEW OF INCLUDED MODELS

2.1.  CFITM

The CFITM  code of van Genuchten [1980] can be used for analyzing observed column

effluent data using analytical solutions of the one-dimensional equilibrium convection-dispersion

transport equations. The code includes analytical solutions for both infinite and finite columns. The

model provides a convenient, efficient and accurate means of determining transport parameters by

fitting analytical solutions to observed column effluent data. The unknown parameters include the

column Peclet number, P, the retardation factor, R, and the dimensionless pulse time, T0. CFITM

represents an easy to use, simple alternative to the more complex CXTFIT model reviewed in

section 2.4.

2.2.  CFITIM

The CFITIM code of van Genuchten [1981] can be used for analyzing observed column

effluent data using analytical solutions for one-dimensional equilibrium and nonequilibrium

convective-dispersive transport. The code includes analytical solutions for infinite columns. The

nonequilibrium models are based on the assumption that, either for physical or chemical reasons,

adsorption does not proceed at an equal rate in all parts of the soil medium. The model provides an

easy to use, efficient and accurate means of fitting various transport parameters to observed column

effluent data. Depending upon the exact form of the transport model, the program allows up to five

different parameters to be estimated simultaneously. The unknown parameters include the column

Peclet number, P, the retardation factor, R, the dimensionless pulse time, T0, and the dimensionless

parameters $ (a nonequilibrium partitioning coefficient), and T (a transfer coefficient).
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2.3.  CHAIN

The CHAIN code of van Genuchten [1985] can be used to analyze the convective-

dispersive transport of solutes involved in sequential first-order decay reactions. The problem of

solute transport involving sequential first-order decay reactions frequently occurs in soil systems.

Examples are the migration of radionuclides in which the chain members form first-order decay

reactions, and the simultaneous movement of various interacting nitrogen [Cho, 1972] or organic

(e.g., pesticide) species. CHAIN is based on analytical solutions of the CDE that describe the

simultaneous convective-dispersive transport of up to four species involved in such consecutive

chain reactions. This program only considers the forward problem.

2.4.  CXTFIT

The program CXTFIT 2.1 may be used to estimate parameters in several analytical models

for solute transport during steady one-dimensional flow by fitting analytical solutions for the models

to observed laboratory or field solute transport data. The inverse problem is solved by minimizing

an objective function that consists of the sum of the squared differences between observed and fitted

concentrations. The objective function is minimized using a nonlinear least-squares inversion

method according to Marquardt [1963]. In addition, CXTFIT 2.1 may be used for the direct

problem to predict solute distributions versus time and/or space for specified model parameters.

CXTFIT 2.1 is an extension and update of earlier versions published by van Genuchten

[1979, 1981], Parker and van Genuchten [1984] and Toride et al. [1995]. CXTFIT 2.1, as before,

uses the convection-dispersion equation, but with a larger number of analytical solutions pertaining

to various initial, boundary, and production value problems. The nonequilibrium transport models

also contain terms for zero-order production and first-order decay. Considerably more attention is

being paid to the use of stream tube models for simulating transport in heterogeneous fields, thus

reflecting the growing popularity of stochastic approaches for modeling field-scale solute transport.

A bivariate lognormal probability density function is used to quantify stochastic pore-water velocity
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and either stochastic dispersion, adsorption, or nonequilibrium solute transfer. Solute concentrations

across the field can be either in the resident mode or in two different types of flux-averaged modes.

2.5.  3DADE

The 3DADE code of Leij and Bradford [1994] is intended for evaluating analytical

solutions for three-dimensional equilibrium solute transport in the subsurface. The analytical

solutions pertain to selected cases of three-dimensional solute transport during steady unidirectional

water flow in porous media having uniform flow and transport properties. The transport equation

contains terms to account for solute movement by convection and dispersion, as well as for solute

retardation, first-order decay, and zero-order production. The 3DADE code can be used to solve the

direct problem, i.e., the concentration is calculated as a function of time and space for specified

model parameters, and the indirect (inverse) problem in which the program estimates selected

parameters by fitting one of the analytical solutions to specified experimental data. Transient

analytical solutions are evaluated for five different transport scenarios (three boundary value

problems and two initial value problems) in either a Cartesian or cylindrical coordinate system.

Simple steady-state solutions are also provided for three initial value problems.

2.6.  N3DADE

The N3DADE code of Leij and Toride [1997] can be used to evaluate analytical solutions

for three-dimensional nonequilibrium solute transport in porous media. The analytical solutions

hold for three-dimensional solute transport during steady unidirectional water flow in porous media

of semi-infinite length in the longitudinal direction, and of infinite length in the transverse

directions. The solutions can be also applied to one and two-dimensional problems. The flow and

transport properties of the medium are assumed to be macroscopically uniform. Nonequilibrium

solute transfer can occur between two domains in either the liquid or the absorbed phase. The

transport equation contains terms accounting for solute movement by advection and dispersion, as

well as for solute retardation, first-order decay, and zero-order production. Unlike 3DADE, the
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N3DADE code can be used only to solve the direct problem, i.e., concentrations are calculated as a

function of time and space for specified model parameters. A comprehensive set of specific

solutions is presented using Dirac, Heaviside and exponential functions to describe a variety of

initial, boundary and production profiles. A rectangular or circular inflow area is specified for the

boundary value problem, while for the initial and production value problems the respective initial

and production profiles are defined for parallelepipedal, cylindrical, or spherical regions of the soil.

Solutions are given for volume-averaged or resident concentrations, as well as for flux-averaged or

flowing concentrations.
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3.  EXAMPLES

STANMOD is installed with numerous examples that are divided into eight groups

(workspaces): CFITM, CFITIM, CHAIN, Direct, Inverse, Stochast, 3DADE, and N3DADE. The

first three workspaces CFITM, CFITIM, and CHAIN contain examples of the corresponding

models. The next three workspaces Direct, Inverse, and Stochast contain examples of the direct,

inverse, and stochastic problems solved with the CXTFIT model. The last two workspaces 3DADE

and N3DADE contain examples of the 3DADE and N3DADE models. Users are advised to select

an example closest to their particular problem, copy this example and then simply modify the input

data. A list of all examples, together with brief descriptions, is given in Table 1 at the end of this

chapter.

3.1.  Examples of the CFITM model

The CFITM workspace contains two examples for the CFITM model. Both examples

pertain to the transport of chromium through a sand [Wierenga, 1980, unpublished data; van

Genuchten, 1980]. Observed effluent data from a 5-cm long soil column are fitted using an

analytical solution of the convection-dispersion solute transport equation. Example1 uses the

analytical solution for a semi-infinite system, while Example2 holds for a finite system. Peclet

numbers, P, and retardation factors, R, were fitted in both examples.

3.2.  Examples of the CFITIM model

The CFITIM workspace includes five examples for the CFITIM model. Example1

demonstrates the used of CFITIM on a generated data set using the assumption of physical non-

equilibrium solute transport (Figure 1 of van Genuchten [1980]). Four parameters (the Peclet

number, P, the retardation factor, R, and the dimensionless coefficients β (a nonequilibrium

partitioning coefficient) and T (transfer coefficient)) were fitted simultaneously using the generated

effluent curve for a 30-cm long soil column. Example2 and Example3 consider the movement of

tritiated water through a Glendale clay loam in a 30-cm long column. The nonequilibrium transport
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model with five fitted parameters (P, R, β, T, and the dimensionless pulse time, T0) was considered

for Example2 (Figure 1 of van Genuchten [1980]), while the linear equilibrium adsorption model

with three fitted parameters (P, R, and T0) was used for Example3. Examples Fig79a (Figure 7.9a of

Toride et al. [1995]) and Fig79b (Figure 5 of van Genuchten [1980] and Figure 7.9b in Toride et al.

[1995]) consider the transport of tritiated water and boron, respectively, through Glendale clay loam

in a 30-cm long column. In both examples, parameters of the non-equilibrium transport model are

optimized against the effluent curves.

3.3.  Examples of the CHAIN model

Two examples are presented here to illustrate typical results that can be obtained with the

program. The first example (Nitrogen) applies to the three-species nitrification chain (NH4
+ - NH2

- -

NH3
-) (Figure 1 of van Genuchten [1985]). The second example deals with the radionuclide decay

chain (238Pu - 234U - 230Th - 226Ra) (Figure 2 of van Genuchten [1985]), which serves as an

illustration of modeling subsurface radionuclide transport.

3.4.  Examples of the CXTFIT model

Examples of the CXTFIT model are divided into three workspaces. The first group (Direct)

contains direct problems, the second group (Inverse) involves inverse problems, and the third group

(Stochast) contains stochastic examples. Most examples were taken from the original CXTFIT

manual [Toride et al., 1995], several other examples from a book chapter by van Genuchten and

Cleary [1979], and two examples from a book chapter by Leij and Toride [1998].

3.4.1.  Direct problems

The first 2 examples (Fig51 and Fig52) were taken from a book chapter by Leij and Toride

[1998], the next 9 examples (Fig71 through Fig78) from the original CXTFIT manual [Toride et al.,

1995], and the last 15 examples (Fig105 through Fig1012b) from a book chapter by van Genuchten

and Cleary [1979].
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Examples Fig51 and Fig52 demonstrate the use of the nonequilibrium solute transport

options in the CXTFIT code. Examples Fig51 (Figure 5.1 of Leij and Toride [1998]) and Fig52

(Figure 5.2 of Leij and Toride [1998]) use the first-order physical nonequilibrium model to calculate

concentrations in the mobile and immobile phases as a function of time at a depth of 50 cm for a 2-d

pulse input at the soil surface. Four different combinations of the mobile water content (β = θm/θ =

0.25, 0.5, 0.75, and 0.99) and the transfer rate (ω = 0.2, 1, 5, 1000) are used in example Fig51, while

five different fractions of sorption sites (f = 0, 0.25, 0.5, 0.75, 1) that equilibrate with the mobile

region are used in example Fig52.

3.4.1.1.  Examples taken from Toride et al. [1995]

The first two examples (Fig71 and Fig72) deal with solutions of the direct problem for

equilibrium transport. Example Fig71 (Figure 7.1 of Toride et al. [1995]) illustrates the effect of

the first-order decay constant, µ (=0, 0.25, 0.5, 1 d-1) on solute distribution. Resident concentrations

at t =7.5 d were calculated for a single pulse input of duration 5 d starting at t = 0 to a solute-free

soil profile. Examples Fig72a and Fig72b (Figures 7.2a and 7.2b of Toride et al. [1995]) calculate

flux (cf) and resident (cr) concentrations for two values of the Peclet number, P (= 2, 10),

respectively, as a function of relative distance when solute-free water is applied to a soil having a

stepwise initial resident distribution.

The next four examples (Fig75 and Fig78) deal with solutions of the direct problem for

nonequilibrium transport. Examples Fig75 and Fig76 were included to demonstrate differences

between the one-site and two-site nonequilibrium sorption models. Example Fig75 (Figure 7.5 of

Toride et al. [1995]) show the effects of the first-order mass transfer rate coefficient, α (= 0.08, 0.2,

10, 1000 d-1), on breakthrough curves in terms of the flux-averaged concentration, as a result of

applying a Dirac delta input function to an initially solute free soil. Example Fig76 (Figure 7.6 of

Toride et al. [1995]) calculates breakthrough curves according to the two-site nonequilibrium CDE

for four values of the fraction of sorption sites (f = 0, 0.3, 0.7, and 0.999), and using the same initial

and boundary conditions as for Fig75. Values of 0.08 and 0.2 d-1 for the first-order mass transfer

rate, α, were used in Fig76a and Fig76b, respectively. Examples Fig77a and Fig77b (Figures 7.7a

and 7.7b of Toride et al. [1995]) calculate breakthrough curves using different sets of R, α, and f

values in the two-site nonequilibrium CDE for Dirac delta input and pulse input, respectively. The
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last example (Fig78) involving a direct problem concerns deterministic nonequilibrium transport as

described by an initial value problem. This case calculates equilibrium and nonequilibrium resident

concentrations and total concentration profiles at T = 1 for three values of the partitioning

coefficient β (= 0.1, 0.5, and 0.9).

3.4.1.2.  Examples adopted from van Genuchten and Cleary [1979]

Examples Fig105 and Fig105a (Figure 10.5 of van Genuchten and Cleary [1979])

demonstrate the effect of the first-order decay coefficient µ (= 0, 0.1, 0.2, 0.35) on Picloram

movement through Norge loam using either a pulse or step input, respectively, and assuming

applicability of the equilibrium CDE. Example Fig108 (Figure 10.8 of van Genuchten and Cleary

[1979]) demonstrates the effect of the dimensionless mass transfer coefficient ω (= 0.001, 0.28, 0.7,

1.7, 2.8, 7.0, 1000000) on calculated effluent curves for 2,4,5-T movement through Glendale clay

loam using the two-region physical nonequilibrium CDE model). Example Fig109 (Figures 10.9a

and 10.9b of van Genuchten and Cleary [1979]) demonstrates the effect of the dimensionless

partitioning coefficient β (= 0.2, 0.35, 0.5, 0.65, 0.80, 0.99) on calculated effluent curves from, and

spatial concentration distributions in, an aggregated sorbing medium, respectively, assuming two-

region physical nonequilibrium transport. Example Fig1010 (Figures 10.10a and 10.10b of van

Genuchten and Cleary [1979]) demonstrates the effect of the retardation factor R (= 1.0, 1.75, 2.5,

3.5, and 5.0) on calculated effluent curves from, and spatial concentration distributions in, an

aggregated sorbing medium, respectively, again assuming two-region physical nonequilibrium

transport. Example Fig1011 (Figures 10.11a and 10.11b of van Genuchten and Cleary [1979])

calculates solute concentration versus time and distance for an aggregated sorbing medium,

respectively, assuming two-region physical nonequilibrium model, as affected by the dimensionless

mass transfer coefficient ω (= 0.02, 0.2, 0.5, 1.5, 7.5, 1000). Finally, Example Fig1012 (Figures

10.12a and 10.12b of van Genuchten and Cleary [1979]) demonstrates the effect of the Peclet

number P (= 5, 15, 40, 100, 10000) on calculated effluent curves from, and spatial concentration

distribution in, an aggregated sorbing medium, respectively, assuming two-region physical

nonequilibrium transport.
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3.4.2.  Stochastic problems

Examples presented in this group demonstrate the use of the stochastic stream tube model in

the CXTFIT code. The first two example (Fig45a and Fig45b) calculates field-scale resident

concentrations, cr, versus depth resulting from the instantaneous application of a solute to the

surface as a BVP (variable mass) and an IVP (constant mass) (Figure 4.5 of Toride et al. [1995]).

The next two examples (Fig47a and Fig47b) calculate field-scale resident concentrations versus

depth as a result of a pulse-type solute application of constant duration (Figure 4.7 of Toride et al.

[1995]).

The next example (Fig710) demonstrates the effect of variability in the pore-water velocity,

v, on the field-scale resident concentration profile and the distribution of the variance for cr in the

horizontal plane (Figure 7.10 of Toride et al. [1995]). This example calculates the mean resident

concentration and its variance as a function of depth at t = 3 d for three values of σv (=0.1, 0.3, 0.5)

as a result of a 2-d solute application to a solute-free soil. Examples Fig711a, Fig711b, and Fig711c

calculate the breakthrough curves for three types of field-scale concentration modes (Figure 7.11 in

Toride et al. [1995]).

Example Fig713 demonstrates the effect of correlation (ρvKd = -1, 0, +1) between the pore-

water velocity, v, and the distribution coefficient, Kd, on calculated field-scale resident

concentration, cr, profiles (Figure 7.13 of Toride et al. [1995]). Field-scale concentrations at t = 5 d

resulting from a Dirac delta input at t  = 0 are calculated versus depth for either perfect or no

correlation between v and Kd. Finally, examples Fig714a and Fig714b calculate field-scale resident

and total concentrations, respectively, assuming stochastic nonequilibrium solute transport. Both

examples assume a negatively correlated v and Kd (ρvKd = -1) using three values of the mass transfer

coefficient ω (Figure 7.14 of Toride et al. [1995]).

3.4.3.  Inverse problems

The parameter estimation option of the CXTFIT model is demonstrated with seven

examples. The first three examples (Fig73a, Fig73b, and Fig74) deal with equilibrium solute

transport, and the next two examples (Fig79a and Fig79b) with nonequilibrium solute transport.

Two additional examples (Fig712 and Fig715) consider field-scale stochastic solute transport.
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In the first two examples (Fig73a and Fig73b), the pore-water velocity, v, and dispersion

coefficient, D, are estimated from breakthrough curves measured at three different depths (11, 17,

and 23 cm) with four-electrode electric conductivity sensors. Breakthrough curves were a result of

(a) continuous application of a 0.001 M NaCl solution to an initially solute-free saturated sand, and

(b) leaching with solute free water during unsaturated conditions, respectively. In the third inverse

example (Fig74), the pore-water velocity, v, dispersion coefficient, D, and the duration of the KCl

application for a pulse input, t0, to an undisturbed sandy soil are estimated from breakthrough curves

measured at a depth of 10 cm with a TDR probe.

The two examples of nonequilibrium solute transport (Fig79a corresponding to Figure 7.9a

of Toride et al. [1995], and Fig79b corresponding to Figure 5 of van Genuchten [1980] and Figure

7.9b of Toride et al. [1995]) consider transport of tritiated water and boron, respectively, through

Glendale clay loam in a 30-cm long column. In both examples parameters of the non-equilibrium

transport model were optimized against effluent curves. The same examples are also considered

using the CFITIM model.

The stochastic option of CXTFIT, together with parameter estimation, is demonstrated with

examples Fig712 and Fig715. The first example (Figure 7.12 of Toride et al. [1995]) pertains to

resident concentrations in a 0.64-ha field to which a bromide pulse was applied for 1.69 d followed

by leaching with solute-free water [Jury et al., 1982]. The stream tube model was used to estimate

the mean pore-water velocity <v>, the mean dispersion coefficient <D>, and their standard

deviations σv and σD, respectively. The second example (Figure 7.15 of Toride et al. [1995])

demonstrates the estimation of parameters in the stream tube model for reactive transport using a

hypothetical data set. The standard deviation, σKd, and the coefficient of correlation between v, and

Kd, i.e., ρvKd, were fitted to the hypothetical data, while keeping <v>, σv, and <Kd> constant.

3.5.  Examples of the 3DADE model

Nine examples (Example1 through Example9) are presented here to illustrate the use of the

3DADE model. The first five examples (Example1 through Example5) solve direct problems, while

the last four examples (Example6 through Example9) inverse parameter estimation problems.

Example1 calculates steady-state concentration profiles for a diffuse solute source in one

quadrant of the soil surface (Figure 2a of Leij et al. [1991]). Example2 and Example 3 calculate



13

transient concentration profiles for transport from a rectangular solute source at the surface using

either a first- or third-type boundary condition (Figure 4 of Leij et al. [1991]), respectively.

Example4 calculates transient concentration profiles for transport from a parallelepipedal initial

distribution (Figure 3 of Leij et al. [1991]). Finally, Example5 calculates transient concentration

profiles for transport from a circular solute source at the surface using a third-type boundary

condition (Figure 7 of Leij et al. [1991]).

Inverse problems are demonstrated using four examples (Example6 through Example9). The

first example (Example6) considers (similarly to Example1) solute application in one quadrant of

the soil surface. The parameters R, Dx, and Dy (retardation factor, and dispersion coefficients in the

x- and y-directions, respectively) are fitted using a breakthrough curve at a specified position and the

steady-state profile at a selected transect. The second inverse example (Example7) involves the

estimation of the parameters R, µ, λ, Dx, Dy, and Dz (retardation factor, first-order rate coefficient for

decay, zero-order rate coefficient for production, and dispersion coefficients in the x-, y- and z-

directions, respectively) for solute transport from a parallelepipedal initial distribution.

Breakthrough curves at ten positions along the x coordinate and two transverse profiles were used

for the problem. This optimization example was repeated (Example8) for a data set in which errors

of "10 % were imposed on the transverse concentration profiles (Figure 2 of Leij et al. [1994]). The

final example (Example9) concerns the application of a solute pulse from a circular area at the soil

surface. Parameters t0, Dx, and Dr (pulse time, and dispersion coefficients in the x- and r-directions,

respectively) were estimated using concentrations at several spatial locations at a specific time.

3.6.  Examples of the N3DADE model

Five examples are presented here to illustrate the use of the N3DADE model for calculating

concentration profiles using the nonequilibrium solute transport CDE. The first two examples

demonstrate the use of N3DADE to solve boundary value problems (BVP), the next two examples

initial value problems (IVP), and the last example a production value problem (PVP).

The first example (Figures 6, 7a, and 7b of Leij and Toride [1997]) calculates breakthrough

curves at a depth of 50 cm (Exampl1a) and the flux-averaged spatial concentration distribution

(Exampl1b) for instantaneous solute application from a disk having radius of 2.5 cm at the soil

surface. The problem involves a circular geometry. The second example (Exampl2a and Exampl2b,
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Figures 8 and 9 of Leij and Toride [1997]) pertain to flux-averaged concentration profiles resulting

from the continuous application of solute to a rectangular surface area (-2.5 < y < 2.5, -2.5 < z <

2.5). Exampl2a calculates equilibrium, nonequilibrium and total concentrations versus longitudinal

distance at three different times, while Exampl2b calculates concentrations in the transverse plane at

two longitudinal positions.

The third example (Example3, Figure 10 of Leij and Toride [1997]) considers an initial

value problem (rectangular) with solute initially located in the regions 5 < x < 15 (c = 1) and 25 < x

< 35 (c = 0.5) for 15 < y < 25 and -100 < z < 100. The fourth example (Example4, Figure 11 of Leij

and Toride [1997]), which also pertains to an initial value problem (in this case spherical), assumes

that the solute has initially a maximum value at the point given by x=5, y=0, and z=5, and that the

solute concentration decreases exponentially from the maximum.

The last example (Example5, Figure 12 of Leij and Toride [1997]) involves solute

production in a cylindrical region of the soil (0 < x < 10 and 0 < r < 2.5). The problem is modeled as

a production value problem (PVP) with a heaviside function for the longitudinal and transversal

directions, with production in the equilibrium phase equal to 0.5, and in the nonequilibrium phase

equal to 1.
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Table 1. Summary of examples included in STANMOD.

Model/Workspace Name Brief Description

CFITM/CFITM Example1
Example2

Example 2A: Chromium (Column Number 4) - Semi-Finite Sysem
Example 2B: Chromium (Column Number 4) - Finite Sysem

CFITIM/CFITIM Example1
Example2
Example3
Fig79a
Fig79b

Generated data, Nonequilibrium model
Example 2D: Tritiated water (EXP. 5-2); Nonequilibrim model
Example 2H: Tritiated water (EXP. 5-2); Linear adsorption model
Tritium effluent curve from Glendale clay loam; Nonequilibrim model
Boron effluent [exp. 3-1, van Genuchten, 1974]; Nonequilibrim model

CHAIN/CHAIN Nitrogen
Radionuc

Nitrogen chain [Cho, 1972]
Radionuclide transport

CXTFIT/Direct Fig51
Fig52
Fig71
Fig72a
Fig72b
Fig75
Fig76a
Fig76b
Fig77a
Fig77b
Fig78
Fig105
Fig105a
Fig108
Fig109
Fig109a
Fig109b
Fig1010
Fig1010a
Fig1010b
Fig1011
Fig1011a
Fig1011b
Fig1012
Fig1012a
Fig1012b

First-order nonequilibrium model, effect of β and ω
First-order nonequilibrium model, effect of β and f
Fig.7-1: The deterministic CDE (BVP+PVP)
Fig.7-2a: Flux vs. (resident) conc. for the IVP, Cf(Z) (a) P=2 (b) P=10
Fig.7-2b: (Flux) vs. resident conc. for the IVP, Cf(Z) (a) P=2  (b) P=10
Fig.7-5: Nonequilibrium one-site CDE (β=1/R, ω=0.08, 0.2, 1.0, 10)
Fig.7-6a: Two-site CDE (ω =0.08, f=0, 0.3, 0.7,0.99875)
Fig.7-6b: Two-site CDE (ω =0.2, f =0, 0.3, 0.7,0.99875)
Fig.7-7a: Two-site CDE for βR=0.22 - Dirac input
Fig.7-7b: Two-site CDE for βR=0.22 - pulse input
Fig.7-8: IVP for the nonequilibrium CDE
Equilibrium model, Effect of first-order decay, Step Input
Equilibrium model, Effect of first-order decay, Pulse Input
One-Site Model, Effect of mass-transfer coefficient
Two-site model, Effect of mobile/immobile water ratio, Cf(T)
Two-site model, Effect of mobile/immobile water ratio, Cf(Z)
Two-site model, Effect of mobile/immobile water ratio, Cr(Z)
Two-site model, Effect of retardation factor, Cf(T)
Two-site model, Effect of retardation factor, Cf(Z)
Two-site model, Effect of retardation factor, Cr(Z)
Two-site model, Effect of mass transfer coefficient, Cf(T)
Two-site model, Effect of mass transfer coefficient, Cf(Z)
Two-site model, Effect of mass transfer coefficient, Cr(Z)
Two-site model, Effect of Peclet number, Cf(T)
Two-site model, Effect of Peclet number, Cf(Z)
Two-site model, Effect of Peclet number, Cr(Z)
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Table 1.  (continued).

Model/Workspace Name Brief Description

CXTFIT/Inverse Fig73a
Fig73b
Fig74
Fig79a
Fig79b
Fig712
Fig715

Fig.7-3a: Steady saturated flow in a sand column
Fig.7-3b: Steady saturated flow in a sand column
Fig.7-4: Estimation of duration time (MASS = 1 in Block B)
Fig.7-9a: Tritium effluent curve from Glendale clay loam
Fig.7-9b: Boron effluent curve (exp. 3-1, van Genuchten , 1974)
Fig.7-12: Field-scale bromide movement (after Jury at al ., 1982)
Fig.7-15: Hypothetical field-scale reactive solute transport

CXTFIT/Stochast Fig45a
Fig45b
Fig47a
Fig47b
Fig710
Fig711a
Fig711b
Fig711c
Fig713
Fig714a
Fig714b

Fig4-5: Stream tube model (STM) with random v, BVP vs. (IVP)
Fig4-5: Stream tube model (STM) with random v, (BVP) vs. IVP
Fig4-7: STM with random v, Constant and (variable) duration
Fig4-7: STM with random v, (Constant) and variable duration
Fig.7-10: STM with random v, Effect of σv

Fig.7-11: STM with random v, ensemble-averaged flux conc.
Fig.7-11: STM with random v, field-scale flux conc.
Fig.7-11: STM with random v, field-scale resident conc.
Fig.7-13: STM with random v and Kd, effect of ρvKd

Fig.7-14: Nonequilibrium field-scale transport , field-scale cr

Fig.7-14: Nonequilibrium field-scale transport , field-scale ct

3DADE/3DADE Example1
Example2
Example3
Example4
Example5
Example6
Example7
Example8
Example9

Figure 2A: Diffuse source in semi-infinite region of surface, Steady-state.
Figure 4: Rectangular source at surface, First-type BC.
Figure 4: Rectangular source at surface, Third-type BC.
Figure 3B: Parallelepipedal initial distribution, Third-type BC.
Figure 7: Circular source at surface, Third-type BC.
Inverse: Diffuse source in semi-infinite region of surface, First-type BC.
Inverse: Parallelepipedal initial distribution, Third-type BC.
Inverse: Parallelepipedal initial distribution, Third-type BC.
Inverse: Circular source at surface, First-type BC.

N3DADE/N3DADE Exampl1a
Exampl1b
Exampl2a
Exampl2b
Example3
Example4
Example5

BVP: Fig. 6: Instantaneous application from disc (cm,d)
BVP: Fig. 7: Instantaneous application from disc (cm,d)
BVP: Fig. 8: Heaviside application finite rectangle
BVP: Fig. 9: Heaviside application finite rectangle
IVP: Fig. 10: Heaviside initial, Finite rectangle
IVP: Fig. 11: Exponential distribution about (5,0,0), Spherical coordinate
PVP: Fig. 12: Heaviside production, Circular coordinate
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4. USERS MANUAL

The computational modules of the STANMOD software package (i.e., CFITM, CFITIM,

CHAIN, CXTFIT, 3DADE, N3DADE) were all written in FORTRAN. However, the interactive

graphics-based interface for the MS Windows environment was written in C++. In addition to

information given in this chapter and the original manuals of the different codes, extensive context-

sensitive on-line help is made part of the interface. By pushing the F1 button, or clicking on the

Help button while working in any window, the user obtains information about the window content.

In addition, context-sensitive help is available using the "SHIFT+F1" help button. In this mode the

mouse cursor changes to a help cursor (a combination of arrow + question mark), and the user can

proceed by clicking on the object for which help is needed (i.e., a menu item, toolbar button, or

other feature). At this point a help file will be displayed, giving information about the item on which

the user clicked.

STANMOD is the main program unit defining the overall computational environment of the

system. This module controls execution of the program and determines which other optional

modules are necessary for a particular application. The module contains a project manager and both

the pre-processing and post-processing units. The pre-processing unit includes specification of all

necessary parameters to successfully run the FORTRAN codes. The post-processing unit consists of

simple x-y plots for graphical presentation of the results and a dialog window that displays an

ASCII output file.

The work for a new project should begin by opening the Project Manager, and giving a

name and brief description of the new project. Users must also decide where to save the project's

data (to which workspace). After clicking OK, the user has to select the specific program (e.g.,

CXTFIT or CFTM) for which the input is to be created. Then select the Type of Problem command

from the Input Menu. From this point on the program will navigate the user through the entire

process of entering input files. The user may either select particular commands from a menu, or

allow the interface to lead him/her through the process of entering input data by repeatedly selecting

the Next button. Alternatively, clicking the Previous button will return the user to the previous

window.

A Project Manager is used to manage data of existing projects, and to help locate, open,

copy, delete and/or rename desired projects or their input or output data. A "project" represents any
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particular problem to be solved by STANMOD. The project name (8 letters maximum), as well as a

brief description of the project, helps to locate a particular problem. Input and output data for each

project are placed in a subdirectory with the same name as the project. Projects are represented by a

file project_name.cxt and the project_name subdirectory.

The Project Manager gives users considerable freedom in terms of organizing his/her

projects.  The projects are grouped into Workspaces that can be placed anywhere in accessible

memory, i.e., on local and/or network hard drives. The Workspace can be any existing accessible

subdirectory (folder). STANMOD is installed together with several default workspaces. For

example, the Direct, Inverse, and Stochast workspaces located in the STANMOD subdirectory

contain test examples for, respectively, direct, inverse, and stochastic problems that can be analyzed

with the CXTFIT program. We suggest that the user creates his/her own workspaces, e.g., the

MyDirect and MyInverse workspaces, and keeps the provided examples intact for further reference.

Projects can be copied with the Project Manager only within a particular workspace. Users can

copy projects between workspaces using standard file managing software, e.g., Windows Explorer.

In that case users must copy both the subdirectory of a particular project and the project_name.cxt

file. Another way of copying a project between Workspaces is to first open the project and then

using the command Save as to save this project to a new location.
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